1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-29 12:03:03 +00:00
freebsd/sys/kern/subr_taskqueue.c

722 lines
17 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2000 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpuset.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/taskqueue.h>
Move dynamic sysctl(8) variable creation for the cd(4) and da(4) drivers out of cdregister() and daregister(), which are run from interrupt context. The sysctl code does blocking mallocs (M_WAITOK), which causes problems if malloc(9) actually needs to sleep. The eventual fix for this issue will involve moving the CAM probe process inside a kernel thread. For now, though, I have fixed the issue by moving dynamic sysctl variable creation for these two drivers to a task queue running in a kernel thread. The existing task queues (taskqueue_swi and taskqueue_swi_giant) run in software interrupt handlers, which wouldn't fix the problem at hand. So I have created a new task queue, taskqueue_thread, that runs inside a kernel thread. (It also runs outside of Giant -- clients must explicitly acquire and release Giant in their taskqueue functions.) scsi_cd.c: Remove sysctl variable creation code from cdregister(), and move it to a new function, cdsysctlinit(). Queue cdsysctlinit() to the taskqueue_thread taskqueue once we have fully registered the cd(4) driver instance. scsi_da.c: Remove sysctl variable creation code from daregister(), and move it to move it to a new function, dasysctlinit(). Queue dasysctlinit() to the taskqueue_thread taskqueue once we have fully registered the da(4) instance. taskqueue.h: Declare the new taskqueue_thread taskqueue, update some comments. subr_taskqueue.c: Create the new kernel thread taskqueue. This taskqueue runs outside of Giant, so any functions queued to it would need to explicitly acquire/release Giant if they need it. cd.4: Update the cd(4) man page to talk about the minimum command size sysctl/loader tunable. Also note that the changer variables are available as loader tunables as well. da.4: Update the da(4) man page to cover the retry_count, default_timeout and minimum_cmd_size sysctl variables/loader tunables. Remove references to /dev/r???, they aren't used any longer. cd.9: Update the cd(9) man page to describe the CD_Q_10_BYTE_ONLY quirk. taskqueue.9: Update the taskqueue(9) man page to describe the new thread task queue, and the taskqueue_swi_giant queue. MFC after: 3 days
2003-09-03 04:46:28 +00:00
#include <sys/unistd.h>
#include <machine/stdarg.h>
2000-12-08 20:09:00 +00:00
static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
static void *taskqueue_giant_ih;
static void *taskqueue_ih;
static void taskqueue_fast_enqueue(void *);
static void taskqueue_swi_enqueue(void *);
static void taskqueue_swi_giant_enqueue(void *);
struct taskqueue_busy {
struct task *tb_running;
TAILQ_ENTRY(taskqueue_busy) tb_link;
};
struct taskqueue {
STAILQ_HEAD(, task) tq_queue;
taskqueue_enqueue_fn tq_enqueue;
void *tq_context;
TAILQ_HEAD(, taskqueue_busy) tq_active;
struct mtx tq_mutex;
struct thread **tq_threads;
int tq_tcount;
2008-07-18 07:10:33 +00:00
int tq_spin;
int tq_flags;
int tq_callouts;
taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
};
#define TQ_FLAGS_ACTIVE (1 << 0)
#define TQ_FLAGS_BLOCKED (1 << 1)
#define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2)
#define DT_CALLOUT_ARMED (1 << 0)
#define TQ_LOCK(tq) \
do { \
if ((tq)->tq_spin) \
mtx_lock_spin(&(tq)->tq_mutex); \
else \
mtx_lock(&(tq)->tq_mutex); \
} while (0)
#define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED)
2008-07-18 07:10:33 +00:00
#define TQ_UNLOCK(tq) \
do { \
if ((tq)->tq_spin) \
mtx_unlock_spin(&(tq)->tq_mutex); \
else \
mtx_unlock(&(tq)->tq_mutex); \
} while (0)
#define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
void
_timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
int priority, task_fn_t func, void *context)
{
TASK_INIT(&timeout_task->t, priority, func, context);
callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
CALLOUT_RETURNUNLOCKED);
timeout_task->q = queue;
timeout_task->f = 0;
}
static __inline int
TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
int t)
{
2008-07-18 07:10:33 +00:00
if (tq->tq_spin)
return (msleep_spin(p, m, wm, t));
return (msleep(p, m, pri, wm, t));
}
static struct taskqueue *
_taskqueue_create(const char *name __unused, int mflags,
taskqueue_enqueue_fn enqueue, void *context,
int mtxflags, const char *mtxname)
{
struct taskqueue *queue;
2008-07-18 07:10:33 +00:00
queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
if (!queue)
return NULL;
2008-07-18 07:10:33 +00:00
STAILQ_INIT(&queue->tq_queue);
TAILQ_INIT(&queue->tq_active);
queue->tq_enqueue = enqueue;
queue->tq_context = context;
2008-07-18 07:10:33 +00:00
queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
queue->tq_flags |= TQ_FLAGS_ACTIVE;
if (enqueue == taskqueue_fast_enqueue ||
enqueue == taskqueue_swi_enqueue ||
enqueue == taskqueue_swi_giant_enqueue ||
enqueue == taskqueue_thread_enqueue)
queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
return queue;
}
struct taskqueue *
taskqueue_create(const char *name, int mflags,
taskqueue_enqueue_fn enqueue, void *context)
{
return _taskqueue_create(name, mflags, enqueue, context,
MTX_DEF, "taskqueue");
}
void
taskqueue_set_callback(struct taskqueue *queue,
enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
void *context)
{
KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
(cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
("Callback type %d not valid, must be %d-%d", cb_type,
TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
KASSERT((queue->tq_callbacks[cb_type] == NULL),
("Re-initialization of taskqueue callback?"));
queue->tq_callbacks[cb_type] = callback;
queue->tq_cb_contexts[cb_type] = context;
}
/*
* Signal a taskqueue thread to terminate.
*/
static void
taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
{
while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
wakeup(tq);
TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
}
}
void
taskqueue_free(struct taskqueue *queue)
{
TQ_LOCK(queue);
queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
taskqueue_terminate(queue->tq_threads, queue);
KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
mtx_destroy(&queue->tq_mutex);
free(queue->tq_threads, M_TASKQUEUE);
free(queue, M_TASKQUEUE);
}
static int
taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
{
struct task *ins;
struct task *prev;
/*
* Count multiple enqueues.
*/
2008-07-18 07:10:33 +00:00
if (task->ta_pending) {
if (task->ta_pending < USHRT_MAX)
task->ta_pending++;
TQ_UNLOCK(queue);
return (0);
}
/*
* Optimise the case when all tasks have the same priority.
*/
prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
if (!prev || prev->ta_priority >= task->ta_priority) {
STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
} else {
prev = NULL;
for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
prev = ins, ins = STAILQ_NEXT(ins, ta_link))
if (ins->ta_priority < task->ta_priority)
break;
if (prev)
STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
else
STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
}
task->ta_pending = 1;
if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
TQ_UNLOCK(queue);
2008-07-18 07:10:33 +00:00
if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
queue->tq_enqueue(queue->tq_context);
if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
TQ_UNLOCK(queue);
/* Return with lock released. */
return (0);
}
int
taskqueue_enqueue(struct taskqueue *queue, struct task *task)
{
int res;
TQ_LOCK(queue);
res = taskqueue_enqueue_locked(queue, task);
/* The lock is released inside. */
return (res);
}
static void
taskqueue_timeout_func(void *arg)
{
struct taskqueue *queue;
struct timeout_task *timeout_task;
timeout_task = arg;
queue = timeout_task->q;
KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
timeout_task->f &= ~DT_CALLOUT_ARMED;
queue->tq_callouts--;
taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
/* The lock is released inside. */
}
int
taskqueue_enqueue_timeout(struct taskqueue *queue,
struct timeout_task *timeout_task, int ticks)
{
int res;
TQ_LOCK(queue);
KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
("Migrated queue"));
KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
timeout_task->q = queue;
res = timeout_task->t.ta_pending;
if (ticks == 0) {
taskqueue_enqueue_locked(queue, &timeout_task->t);
/* The lock is released inside. */
} else {
if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
res++;
} else {
queue->tq_callouts++;
timeout_task->f |= DT_CALLOUT_ARMED;
if (ticks < 0)
ticks = -ticks; /* Ignore overflow. */
}
if (ticks > 0) {
callout_reset(&timeout_task->c, ticks,
taskqueue_timeout_func, timeout_task);
}
TQ_UNLOCK(queue);
}
return (res);
}
static void
taskqueue_drain_running(struct taskqueue *queue)
{
while (!TAILQ_EMPTY(&queue->tq_active))
TQ_SLEEP(queue, &queue->tq_active, &queue->tq_mutex,
PWAIT, "-", 0);
}
void
taskqueue_block(struct taskqueue *queue)
{
TQ_LOCK(queue);
queue->tq_flags |= TQ_FLAGS_BLOCKED;
TQ_UNLOCK(queue);
}
void
taskqueue_unblock(struct taskqueue *queue)
{
TQ_LOCK(queue);
queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
if (!STAILQ_EMPTY(&queue->tq_queue))
queue->tq_enqueue(queue->tq_context);
TQ_UNLOCK(queue);
}
static void
taskqueue_run_locked(struct taskqueue *queue)
{
struct taskqueue_busy tb;
struct task *task;
int pending;
TQ_ASSERT_LOCKED(queue);
tb.tb_running = NULL;
TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
while (STAILQ_FIRST(&queue->tq_queue)) {
/*
* Carefully remove the first task from the queue and
* zero its pending count.
*/
task = STAILQ_FIRST(&queue->tq_queue);
STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
pending = task->ta_pending;
task->ta_pending = 0;
tb.tb_running = task;
TQ_UNLOCK(queue);
task->ta_func(task->ta_context, pending);
TQ_LOCK(queue);
tb.tb_running = NULL;
wakeup(task);
}
TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
if (TAILQ_EMPTY(&queue->tq_active))
wakeup(&queue->tq_active);
}
void
taskqueue_run(struct taskqueue *queue)
{
TQ_LOCK(queue);
taskqueue_run_locked(queue);
TQ_UNLOCK(queue);
}
static int
task_is_running(struct taskqueue *queue, struct task *task)
{
struct taskqueue_busy *tb;
TQ_ASSERT_LOCKED(queue);
TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
if (tb->tb_running == task)
return (1);
}
return (0);
}
static int
taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
u_int *pendp)
{
if (task->ta_pending > 0)
STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
if (pendp != NULL)
*pendp = task->ta_pending;
task->ta_pending = 0;
return (task_is_running(queue, task) ? EBUSY : 0);
}
int
taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
{
int error;
TQ_LOCK(queue);
error = taskqueue_cancel_locked(queue, task, pendp);
TQ_UNLOCK(queue);
return (error);
}
int
taskqueue_cancel_timeout(struct taskqueue *queue,
struct timeout_task *timeout_task, u_int *pendp)
{
u_int pending, pending1;
int error;
TQ_LOCK(queue);
pending = !!callout_stop(&timeout_task->c);
error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
timeout_task->f &= ~DT_CALLOUT_ARMED;
queue->tq_callouts--;
}
TQ_UNLOCK(queue);
if (pendp != NULL)
*pendp = pending + pending1;
return (error);
}
void
taskqueue_drain(struct taskqueue *queue, struct task *task)
{
if (!queue->tq_spin)
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
TQ_LOCK(queue);
while (task->ta_pending != 0 || task_is_running(queue, task))
TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
TQ_UNLOCK(queue);
}
void
taskqueue_drain_all(struct taskqueue *queue)
{
struct task *task;
if (!queue->tq_spin)
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
TQ_LOCK(queue);
task = STAILQ_LAST(&queue->tq_queue, task, ta_link);
if (task != NULL)
while (task->ta_pending != 0)
TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
taskqueue_drain_running(queue);
KASSERT(STAILQ_EMPTY(&queue->tq_queue),
("taskqueue queue is not empty after draining"));
TQ_UNLOCK(queue);
}
void
taskqueue_drain_timeout(struct taskqueue *queue,
struct timeout_task *timeout_task)
{
callout_drain(&timeout_task->c);
taskqueue_drain(queue, &timeout_task->t);
}
static void
taskqueue_swi_enqueue(void *context)
{
Change the preemption code for software interrupt thread schedules and mutex releases to not require flags for the cases when preemption is not allowed: The purpose of the MTX_NOSWITCH and SWI_NOSWITCH flags is to prevent switching to a higher priority thread on mutex releease and swi schedule, respectively when that switch is not safe. Now that the critical section API maintains a per-thread nesting count, the kernel can easily check whether or not it should switch without relying on flags from the programmer. This fixes a few bugs in that all current callers of swi_sched() used SWI_NOSWITCH, when in fact, only the ones called from fast interrupt handlers and the swi_sched of softclock needed this flag. Note that to ensure that swi_sched()'s in clock and fast interrupt handlers do not switch, these handlers have to be explicitly wrapped in critical_enter/exit pairs. Presently, just wrapping the handlers is sufficient, but in the future with the fully preemptive kernel, the interrupt must be EOI'd before critical_exit() is called. (critical_exit() can switch due to a deferred preemption in a fully preemptive kernel.) I've tested the changes to the interrupt code on i386 and alpha. I have not tested ia64, but the interrupt code is almost identical to the alpha code, so I expect it will work fine. PowerPC and ARM do not yet have interrupt code in the tree so they shouldn't be broken. Sparc64 is broken, but that's been ok'd by jake and tmm who will be fixing the interrupt code for sparc64 shortly. Reviewed by: peter Tested on: i386, alpha
2002-01-05 08:47:13 +00:00
swi_sched(taskqueue_ih, 0);
}
static void
taskqueue_swi_run(void *dummy)
{
taskqueue_run(taskqueue_swi);
}
static void
taskqueue_swi_giant_enqueue(void *context)
{
swi_sched(taskqueue_giant_ih, 0);
}
static void
taskqueue_swi_giant_run(void *dummy)
{
taskqueue_run(taskqueue_swi_giant);
}
static int
_taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
cpuset_t *mask, const char *ktname)
{
struct thread *td;
struct taskqueue *tq;
int i, error;
if (count <= 0)
return (EINVAL);
tq = *tqp;
tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
M_NOWAIT | M_ZERO);
if (tq->tq_threads == NULL) {
printf("%s: no memory for %s threads\n", __func__, ktname);
return (ENOMEM);
}
for (i = 0; i < count; i++) {
if (count == 1)
error = kthread_add(taskqueue_thread_loop, tqp, NULL,
&tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
else
error = kthread_add(taskqueue_thread_loop, tqp, NULL,
&tq->tq_threads[i], RFSTOPPED, 0,
"%s_%d", ktname, i);
if (error) {
/* should be ok to continue, taskqueue_free will dtrt */
printf("%s: kthread_add(%s): error %d", __func__,
ktname, error);
tq->tq_threads[i] = NULL; /* paranoid */
} else
tq->tq_tcount++;
}
for (i = 0; i < count; i++) {
if (tq->tq_threads[i] == NULL)
continue;
td = tq->tq_threads[i];
if (mask) {
error = cpuset_setthread(td->td_tid, mask);
/*
* Failing to pin is rarely an actual fatal error;
* it'll just affect performance.
*/
if (error)
printf("%s: curthread=%llu: can't pin; "
"error=%d\n",
__func__,
(unsigned long long) td->td_tid,
error);
}
thread_lock(td);
sched_prio(td, pri);
sched_add(td, SRQ_BORING);
thread_unlock(td);
}
return (0);
}
int
taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
const char *name, ...)
{
char ktname[MAXCOMLEN + 1];
va_list ap;
va_start(ap, name);
vsnprintf(ktname, sizeof(ktname), name, ap);
va_end(ap);
return (_taskqueue_start_threads(tqp, count, pri, NULL, ktname));
}
int
taskqueue_start_threads_pinned(struct taskqueue **tqp, int count, int pri,
int cpu_id, const char *name, ...)
{
char ktname[MAXCOMLEN + 1];
va_list ap;
cpuset_t mask;
va_start(ap, name);
vsnprintf(ktname, sizeof(ktname), name, ap);
va_end(ap);
/*
* In case someone passes in NOCPU, just fall back to the
* default behaviour of "don't pin".
*/
if (cpu_id != NOCPU) {
CPU_ZERO(&mask);
CPU_SET(cpu_id, &mask);
}
return (_taskqueue_start_threads(tqp, count, pri,
cpu_id == NOCPU ? NULL : &mask, ktname));
}
static inline void
taskqueue_run_callback(struct taskqueue *tq,
enum taskqueue_callback_type cb_type)
{
taskqueue_callback_fn tq_callback;
TQ_ASSERT_UNLOCKED(tq);
tq_callback = tq->tq_callbacks[cb_type];
if (tq_callback != NULL)
tq_callback(tq->tq_cb_contexts[cb_type]);
}
void
taskqueue_thread_loop(void *arg)
Move dynamic sysctl(8) variable creation for the cd(4) and da(4) drivers out of cdregister() and daregister(), which are run from interrupt context. The sysctl code does blocking mallocs (M_WAITOK), which causes problems if malloc(9) actually needs to sleep. The eventual fix for this issue will involve moving the CAM probe process inside a kernel thread. For now, though, I have fixed the issue by moving dynamic sysctl variable creation for these two drivers to a task queue running in a kernel thread. The existing task queues (taskqueue_swi and taskqueue_swi_giant) run in software interrupt handlers, which wouldn't fix the problem at hand. So I have created a new task queue, taskqueue_thread, that runs inside a kernel thread. (It also runs outside of Giant -- clients must explicitly acquire and release Giant in their taskqueue functions.) scsi_cd.c: Remove sysctl variable creation code from cdregister(), and move it to a new function, cdsysctlinit(). Queue cdsysctlinit() to the taskqueue_thread taskqueue once we have fully registered the cd(4) driver instance. scsi_da.c: Remove sysctl variable creation code from daregister(), and move it to move it to a new function, dasysctlinit(). Queue dasysctlinit() to the taskqueue_thread taskqueue once we have fully registered the da(4) instance. taskqueue.h: Declare the new taskqueue_thread taskqueue, update some comments. subr_taskqueue.c: Create the new kernel thread taskqueue. This taskqueue runs outside of Giant, so any functions queued to it would need to explicitly acquire/release Giant if they need it. cd.4: Update the cd(4) man page to talk about the minimum command size sysctl/loader tunable. Also note that the changer variables are available as loader tunables as well. da.4: Update the da(4) man page to cover the retry_count, default_timeout and minimum_cmd_size sysctl variables/loader tunables. Remove references to /dev/r???, they aren't used any longer. cd.9: Update the cd(9) man page to describe the CD_Q_10_BYTE_ONLY quirk. taskqueue.9: Update the taskqueue(9) man page to describe the new thread task queue, and the taskqueue_swi_giant queue. MFC after: 3 days
2003-09-03 04:46:28 +00:00
{
struct taskqueue **tqp, *tq;
tqp = arg;
tq = *tqp;
taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
TQ_LOCK(tq);
while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
taskqueue_run_locked(tq);
/*
* Because taskqueue_run() can drop tq_mutex, we need to
* check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
* meantime, which means we missed a wakeup.
*/
if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
break;
TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
}
taskqueue_run_locked(tq);
/*
* This thread is on its way out, so just drop the lock temporarily
* in order to call the shutdown callback. This allows the callback
* to look at the taskqueue, even just before it dies.
*/
TQ_UNLOCK(tq);
taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
TQ_LOCK(tq);
/* rendezvous with thread that asked us to terminate */
tq->tq_tcount--;
wakeup_one(tq->tq_threads);
TQ_UNLOCK(tq);
kthread_exit();
Move dynamic sysctl(8) variable creation for the cd(4) and da(4) drivers out of cdregister() and daregister(), which are run from interrupt context. The sysctl code does blocking mallocs (M_WAITOK), which causes problems if malloc(9) actually needs to sleep. The eventual fix for this issue will involve moving the CAM probe process inside a kernel thread. For now, though, I have fixed the issue by moving dynamic sysctl variable creation for these two drivers to a task queue running in a kernel thread. The existing task queues (taskqueue_swi and taskqueue_swi_giant) run in software interrupt handlers, which wouldn't fix the problem at hand. So I have created a new task queue, taskqueue_thread, that runs inside a kernel thread. (It also runs outside of Giant -- clients must explicitly acquire and release Giant in their taskqueue functions.) scsi_cd.c: Remove sysctl variable creation code from cdregister(), and move it to a new function, cdsysctlinit(). Queue cdsysctlinit() to the taskqueue_thread taskqueue once we have fully registered the cd(4) driver instance. scsi_da.c: Remove sysctl variable creation code from daregister(), and move it to move it to a new function, dasysctlinit(). Queue dasysctlinit() to the taskqueue_thread taskqueue once we have fully registered the da(4) instance. taskqueue.h: Declare the new taskqueue_thread taskqueue, update some comments. subr_taskqueue.c: Create the new kernel thread taskqueue. This taskqueue runs outside of Giant, so any functions queued to it would need to explicitly acquire/release Giant if they need it. cd.4: Update the cd(4) man page to talk about the minimum command size sysctl/loader tunable. Also note that the changer variables are available as loader tunables as well. da.4: Update the da(4) man page to cover the retry_count, default_timeout and minimum_cmd_size sysctl variables/loader tunables. Remove references to /dev/r???, they aren't used any longer. cd.9: Update the cd(9) man page to describe the CD_Q_10_BYTE_ONLY quirk. taskqueue.9: Update the taskqueue(9) man page to describe the new thread task queue, and the taskqueue_swi_giant queue. MFC after: 3 days
2003-09-03 04:46:28 +00:00
}
void
Move dynamic sysctl(8) variable creation for the cd(4) and da(4) drivers out of cdregister() and daregister(), which are run from interrupt context. The sysctl code does blocking mallocs (M_WAITOK), which causes problems if malloc(9) actually needs to sleep. The eventual fix for this issue will involve moving the CAM probe process inside a kernel thread. For now, though, I have fixed the issue by moving dynamic sysctl variable creation for these two drivers to a task queue running in a kernel thread. The existing task queues (taskqueue_swi and taskqueue_swi_giant) run in software interrupt handlers, which wouldn't fix the problem at hand. So I have created a new task queue, taskqueue_thread, that runs inside a kernel thread. (It also runs outside of Giant -- clients must explicitly acquire and release Giant in their taskqueue functions.) scsi_cd.c: Remove sysctl variable creation code from cdregister(), and move it to a new function, cdsysctlinit(). Queue cdsysctlinit() to the taskqueue_thread taskqueue once we have fully registered the cd(4) driver instance. scsi_da.c: Remove sysctl variable creation code from daregister(), and move it to move it to a new function, dasysctlinit(). Queue dasysctlinit() to the taskqueue_thread taskqueue once we have fully registered the da(4) instance. taskqueue.h: Declare the new taskqueue_thread taskqueue, update some comments. subr_taskqueue.c: Create the new kernel thread taskqueue. This taskqueue runs outside of Giant, so any functions queued to it would need to explicitly acquire/release Giant if they need it. cd.4: Update the cd(4) man page to talk about the minimum command size sysctl/loader tunable. Also note that the changer variables are available as loader tunables as well. da.4: Update the da(4) man page to cover the retry_count, default_timeout and minimum_cmd_size sysctl variables/loader tunables. Remove references to /dev/r???, they aren't used any longer. cd.9: Update the cd(9) man page to describe the CD_Q_10_BYTE_ONLY quirk. taskqueue.9: Update the taskqueue(9) man page to describe the new thread task queue, and the taskqueue_swi_giant queue. MFC after: 3 days
2003-09-03 04:46:28 +00:00
taskqueue_thread_enqueue(void *context)
{
struct taskqueue **tqp, *tq;
tqp = context;
tq = *tqp;
wakeup_one(tq);
Move dynamic sysctl(8) variable creation for the cd(4) and da(4) drivers out of cdregister() and daregister(), which are run from interrupt context. The sysctl code does blocking mallocs (M_WAITOK), which causes problems if malloc(9) actually needs to sleep. The eventual fix for this issue will involve moving the CAM probe process inside a kernel thread. For now, though, I have fixed the issue by moving dynamic sysctl variable creation for these two drivers to a task queue running in a kernel thread. The existing task queues (taskqueue_swi and taskqueue_swi_giant) run in software interrupt handlers, which wouldn't fix the problem at hand. So I have created a new task queue, taskqueue_thread, that runs inside a kernel thread. (It also runs outside of Giant -- clients must explicitly acquire and release Giant in their taskqueue functions.) scsi_cd.c: Remove sysctl variable creation code from cdregister(), and move it to a new function, cdsysctlinit(). Queue cdsysctlinit() to the taskqueue_thread taskqueue once we have fully registered the cd(4) driver instance. scsi_da.c: Remove sysctl variable creation code from daregister(), and move it to move it to a new function, dasysctlinit(). Queue dasysctlinit() to the taskqueue_thread taskqueue once we have fully registered the da(4) instance. taskqueue.h: Declare the new taskqueue_thread taskqueue, update some comments. subr_taskqueue.c: Create the new kernel thread taskqueue. This taskqueue runs outside of Giant, so any functions queued to it would need to explicitly acquire/release Giant if they need it. cd.4: Update the cd(4) man page to talk about the minimum command size sysctl/loader tunable. Also note that the changer variables are available as loader tunables as well. da.4: Update the da(4) man page to cover the retry_count, default_timeout and minimum_cmd_size sysctl variables/loader tunables. Remove references to /dev/r???, they aren't used any longer. cd.9: Update the cd(9) man page to describe the CD_Q_10_BYTE_ONLY quirk. taskqueue.9: Update the taskqueue(9) man page to describe the new thread task queue, and the taskqueue_swi_giant queue. MFC after: 3 days
2003-09-03 04:46:28 +00:00
}
TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
INTR_MPSAFE, &taskqueue_ih));
TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
Move dynamic sysctl(8) variable creation for the cd(4) and da(4) drivers out of cdregister() and daregister(), which are run from interrupt context. The sysctl code does blocking mallocs (M_WAITOK), which causes problems if malloc(9) actually needs to sleep. The eventual fix for this issue will involve moving the CAM probe process inside a kernel thread. For now, though, I have fixed the issue by moving dynamic sysctl variable creation for these two drivers to a task queue running in a kernel thread. The existing task queues (taskqueue_swi and taskqueue_swi_giant) run in software interrupt handlers, which wouldn't fix the problem at hand. So I have created a new task queue, taskqueue_thread, that runs inside a kernel thread. (It also runs outside of Giant -- clients must explicitly acquire and release Giant in their taskqueue functions.) scsi_cd.c: Remove sysctl variable creation code from cdregister(), and move it to a new function, cdsysctlinit(). Queue cdsysctlinit() to the taskqueue_thread taskqueue once we have fully registered the cd(4) driver instance. scsi_da.c: Remove sysctl variable creation code from daregister(), and move it to move it to a new function, dasysctlinit(). Queue dasysctlinit() to the taskqueue_thread taskqueue once we have fully registered the da(4) instance. taskqueue.h: Declare the new taskqueue_thread taskqueue, update some comments. subr_taskqueue.c: Create the new kernel thread taskqueue. This taskqueue runs outside of Giant, so any functions queued to it would need to explicitly acquire/release Giant if they need it. cd.4: Update the cd(4) man page to talk about the minimum command size sysctl/loader tunable. Also note that the changer variables are available as loader tunables as well. da.4: Update the da(4) man page to cover the retry_count, default_timeout and minimum_cmd_size sysctl variables/loader tunables. Remove references to /dev/r???, they aren't used any longer. cd.9: Update the cd(9) man page to describe the CD_Q_10_BYTE_ONLY quirk. taskqueue.9: Update the taskqueue(9) man page to describe the new thread task queue, and the taskqueue_swi_giant queue. MFC after: 3 days
2003-09-03 04:46:28 +00:00
TASKQUEUE_DEFINE_THREAD(thread);
struct taskqueue *
taskqueue_create_fast(const char *name, int mflags,
taskqueue_enqueue_fn enqueue, void *context)
{
return _taskqueue_create(name, mflags, enqueue, context,
MTX_SPIN, "fast_taskqueue");
}
/* NB: for backwards compatibility */
int
taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
{
return taskqueue_enqueue(queue, task);
}
static void *taskqueue_fast_ih;
static void
taskqueue_fast_enqueue(void *context)
{
swi_sched(taskqueue_fast_ih, 0);
}
static void
taskqueue_fast_run(void *dummy)
{
taskqueue_run(taskqueue_fast);
}
TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
int
taskqueue_member(struct taskqueue *queue, struct thread *td)
{
int i, j, ret = 0;
for (i = 0, j = 0; ; i++) {
if (queue->tq_threads[i] == NULL)
continue;
if (queue->tq_threads[i] == td) {
ret = 1;
break;
}
if (++j >= queue->tq_tcount)
break;
}
return (ret);
}