1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-15 10:17:20 +00:00
freebsd/sys/pci/if_ti.c

2516 lines
66 KiB
C
Raw Normal View History

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
/*
* Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
* Manuals, sample driver and firmware source kits are available
* from http://www.alteon.com/support/openkits.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Alteon Networks Tigon chip contains an embedded R4000 CPU,
* gigabit MAC, dual DMA channels and a PCI interface unit. NICs
* using the Tigon may have anywhere from 512K to 2MB of SRAM. The
* Tigon supports hardware IP, TCP and UCP checksumming, multicast
* filtering and jumbo (9014 byte) frames. The hardware is largely
* controlled by firmware, which must be loaded into the NIC during
* initialization.
*
* The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
* revision, which supports new features such as extended commands,
* extended jumbo receive ring desciptors and a mini receive ring.
*
* Alteon Networks is to be commended for releasing such a vast amount
* of development material for the Tigon NIC without requiring an NDA
* (although they really should have done it a long time ago). With
* any luck, the other vendors will finally wise up and follow Alteon's
* stellar example.
*
* The firmware for the Tigon 1 and 2 NICs is compiled directly into
* this driver by #including it as a C header file. This bloats the
* driver somewhat, but it's the easiest method considering that the
* driver code and firmware code need to be kept in sync. The source
* for the firmware is not provided with the FreeBSD distribution since
* compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
*
* The following people deserve special thanks:
* - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
* for testing
* - Raymond Lee of Netgear, for providing a pair of Netgear
* GA620 Tigon 2 boards for testing
* - Ulf Zimmermann, for bringing the GA260 to my attention and
* convincing me to write this driver.
* - Andrew Gallatin for providing FreeBSD/Alpha support.
*/
#include "vlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#if NVLAN > 0
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#endif
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <pci/if_tireg.h>
#include <pci/ti_fw.h>
#include <pci/ti_fw2.h>
#define TI_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
#if !defined(lint)
static const char rcsid[] =
1999-08-28 01:08:13 +00:00
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct ti_type ti_devs[] = {
{ ALT_VENDORID, ALT_DEVICEID_ACENIC,
"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
{ ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
"Alteon AceNIC 1000baseT Gigabit Ethernet" },
{ TC_VENDORID, TC_DEVICEID_3C985,
"3Com 3c985-SX Gigabit Ethernet" },
{ NG_VENDORID, NG_DEVICEID_GA620,
"Netgear GA620 1000baseSX Gigabit Ethernet" },
{ NG_VENDORID, NG_DEVICEID_GA620T,
"Netgear GA620 1000baseT Gigabit Ethernet" },
{ SGI_VENDORID, SGI_DEVICEID_TIGON,
"Silicon Graphics Gigabit Ethernet" },
{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
"Farallon PN9000SX Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int ti_probe __P((device_t));
static int ti_attach __P((device_t));
static int ti_detach __P((device_t));
static void ti_txeof __P((struct ti_softc *));
static void ti_rxeof __P((struct ti_softc *));
static void ti_stats_update __P((struct ti_softc *));
static int ti_encap __P((struct ti_softc *, struct mbuf *,
u_int32_t *));
static void ti_intr __P((void *));
static void ti_start __P((struct ifnet *));
static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
static void ti_init __P((void *));
static void ti_init2 __P((struct ti_softc *));
static void ti_stop __P((struct ti_softc *));
static void ti_watchdog __P((struct ifnet *));
static void ti_shutdown __P((device_t));
static int ti_ifmedia_upd __P((struct ifnet *));
static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
int, u_int8_t *));
static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
static void ti_setmulti __P((struct ti_softc *));
static void ti_mem __P((struct ti_softc *, u_int32_t,
u_int32_t, caddr_t));
static void ti_loadfw __P((struct ti_softc *));
static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
caddr_t, int));
static void ti_handle_events __P((struct ti_softc *));
static int ti_alloc_jumbo_mem __P((struct ti_softc *));
static void *ti_jalloc __P((struct ti_softc *));
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
static void ti_jfree __P((caddr_t, void *));
static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *));
static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *));
static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
static int ti_init_rx_ring_std __P((struct ti_softc *));
static void ti_free_rx_ring_std __P((struct ti_softc *));
static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
static int ti_init_rx_ring_mini __P((struct ti_softc *));
static void ti_free_rx_ring_mini __P((struct ti_softc *));
static void ti_free_tx_ring __P((struct ti_softc *));
static int ti_init_tx_ring __P((struct ti_softc *));
static int ti_64bitslot_war __P((struct ti_softc *));
static int ti_chipinit __P((struct ti_softc *));
static int ti_gibinit __P((struct ti_softc *));
static device_method_t ti_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ti_probe),
DEVMETHOD(device_attach, ti_attach),
DEVMETHOD(device_detach, ti_detach),
DEVMETHOD(device_shutdown, ti_shutdown),
{ 0, 0 }
};
static driver_t ti_driver = {
"ti",
ti_methods,
sizeof(struct ti_softc)
};
static devclass_t ti_devclass;
DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
static u_int32_t ti_eeprom_putbyte(sc, byte)
struct ti_softc *sc;
int byte;
{
register int i, ack = 0;
/*
* Make sure we're in TX mode.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x80; i; i >>= 1) {
if (byte & i) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
} else {
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
}
DELAY(1);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
}
/*
* Turn off TX mode.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Check for ack.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
return(ack);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.'
* We have to send two address bytes since the EEPROM can hold
* more than 256 bytes of data.
*/
static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
struct ti_softc *sc;
int addr;
u_int8_t *dest;
{
register int i;
u_int8_t byte = 0;
EEPROM_START;
/*
* Send write control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
printf("ti%d: failed to send write command, status: %x\n",
sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return(1);
}
/*
* Send first byte of address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
printf("ti%d: failed to send address, status: %x\n",
sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return(1);
}
/*
* Send second byte address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
printf("ti%d: failed to send address, status: %x\n",
sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return(1);
}
EEPROM_STOP;
EEPROM_START;
/*
* Send read control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
printf("ti%d: failed to send read command, status: %x\n",
sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return(1);
}
/*
* Start reading bits from EEPROM.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
for (i = 0x80; i; i >>= 1) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
byte |= i;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
}
EEPROM_STOP;
/*
* No ACK generated for read, so just return byte.
*/
*dest = byte;
return(0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int ti_read_eeprom(sc, dest, off, cnt)
struct ti_softc *sc;
caddr_t dest;
int off;
int cnt;
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = ti_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return(err ? 1 : 0);
}
/*
* NIC memory access function. Can be used to either clear a section
* of NIC local memory or (if buf is non-NULL) copy data into it.
*/
static void ti_mem(sc, addr, len, buf)
struct ti_softc *sc;
u_int32_t addr, len;
caddr_t buf;
{
int segptr, segsize, cnt;
caddr_t ti_winbase, ptr;
segptr = addr;
cnt = len;
ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
ptr = buf;
while(cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
if (buf == NULL)
bzero((char *)ti_winbase + (segptr &
(TI_WINLEN - 1)), segsize);
else {
bcopy((char *)ptr, (char *)ti_winbase +
(segptr & (TI_WINLEN - 1)), segsize);
ptr += segsize;
}
segptr += segsize;
cnt -= segsize;
}
return;
}
/*
* Load firmware image into the NIC. Check that the firmware revision
* is acceptable and see if we want the firmware for the Tigon 1 or
* Tigon 2.
*/
static void ti_loadfw(sc)
struct ti_softc *sc;
{
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
tigonFwReleaseFix != TI_FIRMWARE_FIX) {
printf("ti%d: firmware revision mismatch; want "
"%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tigonFwReleaseMajor,
tigonFwReleaseMinor, tigonFwReleaseFix);
return;
}
ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
(caddr_t)tigonFwText);
ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
(caddr_t)tigonFwData);
ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
(caddr_t)tigonFwRodata);
ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
break;
case TI_HWREV_TIGON_II:
if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
printf("ti%d: firmware revision mismatch; want "
"%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
tigon2FwReleaseMinor, tigon2FwReleaseFix);
return;
}
ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
(caddr_t)tigon2FwText);
ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
(caddr_t)tigon2FwData);
ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
(caddr_t)tigon2FwRodata);
ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
break;
default:
printf("ti%d: can't load firmware: unknown hardware rev\n",
sc->ti_unit);
break;
}
return;
}
/*
* Send the NIC a command via the command ring.
*/
static void ti_cmd(sc, cmd)
struct ti_softc *sc;
struct ti_cmd_desc *cmd;
{
u_int32_t index;
if (sc->ti_rdata->ti_cmd_ring == NULL)
return;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
return;
}
/*
* Send the NIC an extended command. The 'len' parameter specifies the
* number of command slots to include after the initial command.
*/
static void ti_cmd_ext(sc, cmd, arg, len)
struct ti_softc *sc;
struct ti_cmd_desc *cmd;
caddr_t arg;
int len;
{
u_int32_t index;
register int i;
if (sc->ti_rdata->ti_cmd_ring == NULL)
return;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
for (i = 0; i < len; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
*(u_int32_t *)(&arg[i * 4]));
TI_INC(index, TI_CMD_RING_CNT);
}
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
return;
}
/*
* Handle events that have triggered interrupts.
*/
static void ti_handle_events(sc)
struct ti_softc *sc;
{
struct ti_event_desc *e;
if (sc->ti_rdata->ti_event_ring == NULL)
return;
while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
switch(e->ti_event) {
case TI_EV_LINKSTAT_CHANGED:
sc->ti_linkstat = e->ti_code;
if (e->ti_code == TI_EV_CODE_LINK_UP)
printf("ti%d: 10/100 link up\n", sc->ti_unit);
else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
printf("ti%d: gigabit link up\n", sc->ti_unit);
else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
printf("ti%d: link down\n", sc->ti_unit);
break;
case TI_EV_ERROR:
if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
printf("ti%d: invalid command\n", sc->ti_unit);
else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
printf("ti%d: unknown command\n", sc->ti_unit);
else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
printf("ti%d: bad config data\n", sc->ti_unit);
break;
case TI_EV_FIRMWARE_UP:
ti_init2(sc);
break;
case TI_EV_STATS_UPDATED:
ti_stats_update(sc);
break;
case TI_EV_RESET_JUMBO_RING:
case TI_EV_MCAST_UPDATED:
/* Who cares. */
break;
default:
printf("ti%d: unknown event: %d\n",
sc->ti_unit, e->ti_event);
break;
}
/* Advance the consumer index. */
TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
}
return;
}
/*
* Memory management for the jumbo receive ring is a pain in the
* butt. We need to allocate at least 9018 bytes of space per frame,
* _and_ it has to be contiguous (unless you use the extended
* jumbo descriptor format). Using malloc() all the time won't
* work: malloc() allocates memory in powers of two, which means we
* would end up wasting a considerable amount of space by allocating
* 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
* to do our own memory management.
*
* The driver needs to allocate a contiguous chunk of memory at boot
* time. We then chop this up ourselves into 9K pieces and use them
* as external mbuf storage.
*
* One issue here is how much memory to allocate. The jumbo ring has
* 256 slots in it, but at 9K per slot than can consume over 2MB of
* RAM. This is a bit much, especially considering we also need
* RAM for the standard ring and mini ring (on the Tigon 2). To
* save space, we only actually allocate enough memory for 64 slots
* by default, which works out to between 500 and 600K. This can
* be tuned by changing a #define in if_tireg.h.
*/
static int ti_alloc_jumbo_mem(sc)
struct ti_softc *sc;
{
caddr_t ptr;
register int i;
struct ti_jpool_entry *entry;
/* Grab a big chunk o' storage. */
sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->ti_cdata.ti_jumbo_buf == NULL) {
printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
return(ENOBUFS);
}
SLIST_INIT(&sc->ti_jfree_listhead);
SLIST_INIT(&sc->ti_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array. Note that we play an evil trick here by using
* the first few bytes in the buffer to hold the the address
* of the softc structure for this interface. This is because
* ti_jfree() needs it, but it is called by the mbuf management
* code which will not pass it to us explicitly.
*/
ptr = sc->ti_cdata.ti_jumbo_buf;
for (i = 0; i < TI_JSLOTS; i++) {
u_int64_t **aptr;
aptr = (u_int64_t **)ptr;
aptr[0] = (u_int64_t *)sc;
ptr += sizeof(u_int64_t);
sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
ptr += (TI_JLEN - sizeof(u_int64_t));
entry = malloc(sizeof(struct ti_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
M_DEVBUF);
sc->ti_cdata.ti_jumbo_buf = NULL;
printf("ti%d: no memory for jumbo "
"buffer queue!\n", sc->ti_unit);
return(ENOBUFS);
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
}
return(0);
}
/*
* Allocate a jumbo buffer.
*/
static void *ti_jalloc(sc)
struct ti_softc *sc;
{
struct ti_jpool_entry *entry;
entry = SLIST_FIRST(&sc->ti_jfree_listhead);
if (entry == NULL) {
printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
return(NULL);
}
SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
}
/*
* Release a jumbo buffer.
*/
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
static void ti_jfree(buf, args)
caddr_t buf;
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
void *args;
{
struct ti_softc *sc;
u_int64_t **aptr;
int i;
struct ti_jpool_entry *entry;
/* Extract the softc struct pointer. */
aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
sc = (struct ti_softc *)(aptr[0]);
if (sc == NULL)
panic("ti_jfree: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((vm_offset_t)aptr
- (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
if ((i < 0) || (i >= TI_JSLOTS))
panic("ti_jfree: asked to free buffer that we don't manage!");
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
if (entry == NULL)
panic("ti_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
return;
}
/*
* Intialize a standard receive ring descriptor.
*/
static int ti_newbuf_std(sc, i, m)
struct ti_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("ti%d: mbuf allocation failed "
"-- packet dropped!\n", sc->ti_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("ti%d: cluster allocation failed "
"-- packet dropped!\n", sc->ti_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
sc->ti_cdata.ti_rx_std_chain[i] = m_new;
r = &sc->ti_rdata->ti_rx_std_ring[i];
TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = 0;
if (sc->arpcom.ac_if.if_hwassist)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_len = m_new->m_len;
r->ti_idx = i;
return(0);
}
/*
* Intialize a mini receive ring descriptor. This only applies to
* the Tigon 2.
*/
static int ti_newbuf_mini(sc, i, m)
struct ti_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("ti%d: mbuf allocation failed "
"-- packet dropped!\n", sc->ti_unit);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MHLEN;
} else {
m_new = m;
m_new->m_data = m_new->m_pktdat;
m_new->m_len = m_new->m_pkthdr.len = MHLEN;
}
m_adj(m_new, ETHER_ALIGN);
r = &sc->ti_rdata->ti_rx_mini_ring[i];
sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = TI_BDFLAG_MINI_RING;
if (sc->arpcom.ac_if.if_hwassist)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_len = m_new->m_len;
r->ti_idx = i;
return(0);
}
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int ti_newbuf_jumbo(sc, i, m)
struct ti_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
if (m == NULL) {
caddr_t *buf = NULL;
/* Allocate the mbuf. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("ti%d: mbuf allocation failed "
"-- packet dropped!\n", sc->ti_unit);
return(ENOBUFS);
}
/* Allocate the jumbo buffer */
buf = ti_jalloc(sc);
if (buf == NULL) {
m_freem(m_new);
printf("ti%d: jumbo allocation failed "
"-- packet dropped!\n", sc->ti_unit);
return(ENOBUFS);
}
/* Attach the buffer to the mbuf. */
Replace the mbuf external reference counting code with something that should be better. The old code counted references to mbuf clusters by using the offset of the cluster from the start of memory allocated for mbufs and clusters as an index into an array of chars, which did the reference counting. If the external storage was not a cluster then reference counting had to be done by the code using that external storage. NetBSD's system of linked lists of mbufs was cosidered, but Alfred felt it would have locking issues when the kernel was made more SMP friendly. The system implimented uses a pool of unions to track external storage. The union contains an int for counting the references and a pointer for forming a free list. The reference counts are incremented and decremented atomically and so should be SMP friendly. This system can track reference counts for any sort of external storage. Access to the reference counting stuff is now through macros defined in mbuf.h, so it should be easier to make changes to the system in the future. The possibility of storing the reference count in one of the referencing mbufs was considered, but was rejected 'cos it would often leave extra mbufs allocated. Storing the reference count in the cluster was also considered, but because the external storage may not be a cluster this isn't an option. The size of the pool of reference counters is available in the stats provided by "netstat -m". PR: 19866 Submitted by: Bosko Milekic <bmilekic@dsuper.net> Reviewed by: alfred (glanced at by others on -net)
2000-08-19 08:32:59 +00:00
m_new->m_data = (void *) buf;
m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree, NULL);
} else {
m_new = m;
m_new->m_data = m_new->m_ext.ext_buf;
m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
}
m_adj(m_new, ETHER_ALIGN);
/* Set up the descriptor. */
r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
r->ti_flags = TI_BDFLAG_JUMBO_RING;
if (sc->arpcom.ac_if.if_hwassist)
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
r->ti_len = m_new->m_len;
r->ti_idx = i;
return(0);
}
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
static int ti_init_rx_ring_std(sc)
struct ti_softc *sc;
{
register int i;
struct ti_cmd_desc cmd;
for (i = 0; i < TI_SSLOTS; i++) {
if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
TI_UPDATE_STDPROD(sc, i - 1);
sc->ti_std = i - 1;
return(0);
}
static void ti_free_rx_ring_std(sc)
struct ti_softc *sc;
{
register int i;
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
sc->ti_cdata.ti_rx_std_chain[i] = NULL;
}
bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
sizeof(struct ti_rx_desc));
}
return;
}
static int ti_init_rx_ring_jumbo(sc)
struct ti_softc *sc;
{
register int i;
struct ti_cmd_desc cmd;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
TI_UPDATE_JUMBOPROD(sc, i - 1);
sc->ti_jumbo = i - 1;
return(0);
}
static void ti_free_rx_ring_jumbo(sc)
struct ti_softc *sc;
{
register int i;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
}
bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
sizeof(struct ti_rx_desc));
}
return;
}
static int ti_init_rx_ring_mini(sc)
struct ti_softc *sc;
{
register int i;
for (i = 0; i < TI_MSLOTS; i++) {
if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
TI_UPDATE_MINIPROD(sc, i - 1);
sc->ti_mini = i - 1;
return(0);
}
static void ti_free_rx_ring_mini(sc)
struct ti_softc *sc;
{
register int i;
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
}
bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
sizeof(struct ti_rx_desc));
}
return;
}
static void ti_free_tx_ring(sc)
struct ti_softc *sc;
{
register int i;
if (sc->ti_rdata->ti_tx_ring == NULL)
return;
for (i = 0; i < TI_TX_RING_CNT; i++) {
if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_tx_chain[i]);
sc->ti_cdata.ti_tx_chain[i] = NULL;
}
bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
sizeof(struct ti_tx_desc));
}
return;
}
static int ti_init_tx_ring(sc)
struct ti_softc *sc;
{
sc->ti_txcnt = 0;
sc->ti_tx_saved_considx = 0;
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
return(0);
}
/*
* The Tigon 2 firmware has a new way to add/delete multicast addresses,
* but we have to support the old way too so that Tigon 1 cards will
* work.
*/
void ti_add_mcast(sc, addr)
struct ti_softc *sc;
struct ether_addr *addr;
{
struct ti_cmd_desc cmd;
u_int16_t *m;
u_int32_t ext[2] = {0, 0};
m = (u_int16_t *)&addr->octet[0];
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
printf("ti%d: unknown hwrev\n", sc->ti_unit);
break;
}
return;
}
void ti_del_mcast(sc, addr)
struct ti_softc *sc;
struct ether_addr *addr;
{
struct ti_cmd_desc cmd;
u_int16_t *m;
u_int32_t ext[2] = {0, 0};
m = (u_int16_t *)&addr->octet[0];
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
printf("ti%d: unknown hwrev\n", sc->ti_unit);
break;
}
return;
}
/*
* Configure the Tigon's multicast address filter.
*
* The actual multicast table management is a bit of a pain, thanks to
* slight brain damage on the part of both Alteon and us. With our
* multicast code, we are only alerted when the multicast address table
* changes and at that point we only have the current list of addresses:
* we only know the current state, not the previous state, so we don't
* actually know what addresses were removed or added. The firmware has
* state, but we can't get our grubby mits on it, and there is no 'delete
* all multicast addresses' command. Hence, we have to maintain our own
* state so we know what addresses have been programmed into the NIC at
* any given time.
*/
static void ti_setmulti(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
struct ti_cmd_desc cmd;
struct ti_mc_entry *mc;
u_int32_t intrs;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI) {
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
return;
} else {
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
}
/* Disable interrupts. */
intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/* First, zot all the existing filters. */
while (sc->ti_mc_listhead.slh_first != NULL) {
mc = sc->ti_mc_listhead.slh_first;
ti_del_mcast(sc, &mc->mc_addr);
SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
free(mc, M_DEVBUF);
}
/* Now program new ones. */
for (ifma = ifp->if_multiaddrs.lh_first;
ifma != NULL; ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
(char *)&mc->mc_addr, ETHER_ADDR_LEN);
SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
ti_add_mcast(sc, &mc->mc_addr);
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
return;
}
/*
* Check to see if the BIOS has configured us for a 64 bit slot when
* we aren't actually in one. If we detect this condition, we can work
* around it on the Tigon 2 by setting a bit in the PCI state register,
* but for the Tigon 1 we must give up and abort the interface attach.
*/
static int ti_64bitslot_war(sc)
struct ti_softc *sc;
{
if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
CSR_WRITE_4(sc, 0x600, 0);
CSR_WRITE_4(sc, 0x604, 0);
CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
if (sc->ti_hwrev == TI_HWREV_TIGON)
return(EINVAL);
else {
TI_SETBIT(sc, TI_PCI_STATE,
TI_PCISTATE_32BIT_BUS);
return(0);
}
}
}
return(0);
}
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int ti_chipinit(sc)
struct ti_softc *sc;
{
u_int32_t cacheline;
u_int32_t pci_writemax = 0;
/* Initialize link to down state. */
sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
/* Set endianness before we access any non-PCI registers. */
#if BYTE_ORDER == BIG_ENDIAN
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
#else
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
#endif
/* Check the ROM failed bit to see if self-tests passed. */
if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
return(ENODEV);
}
/* Halt the CPU. */
TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
/* Figure out the hardware revision. */
switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
case TI_REV_TIGON_I:
sc->ti_hwrev = TI_HWREV_TIGON;
break;
case TI_REV_TIGON_II:
sc->ti_hwrev = TI_HWREV_TIGON_II;
break;
default:
printf("ti%d: unsupported chip revision\n", sc->ti_unit);
return(ENODEV);
}
/* Do special setup for Tigon 2. */
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
}
/* Set up the PCI state register. */
CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
}
/* Clear the read/write max DMA parameters. */
TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
TI_PCISTATE_READ_MAXDMA));
/* Get cache line size. */
cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
/*
* If the system has set enabled the PCI memory write
* and invalidate command in the command register, set
* the write max parameter accordingly. This is necessary
* to use MWI with the Tigon 2.
*/
if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
switch(cacheline) {
case 1:
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
/* Disable PCI memory write and invalidate. */
if (bootverbose)
printf("ti%d: cache line size %d not "
"supported; disabling PCI MWI\n",
sc->ti_unit, cacheline);
CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
break;
}
}
#ifdef __brokenalpha__
/*
* From the Alteon sample driver:
* Must insure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
#else
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
#endif
/* This sets the min dma param all the way up (0xff). */
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
/* Configure DMA variables. */
#if BYTE_ORDER == BIG_ENDIAN
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
TI_OPMODE_DONT_FRAG_JUMBO);
#else
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
#endif
/*
* Only allow 1 DMA channel to be active at a time.
* I don't think this is a good idea, but without it
* the firmware racks up lots of nicDmaReadRingFull
* errors. This is not compatible with hardware checksums.
*/
if (sc->arpcom.ac_if.if_hwassist == 0)
TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
/* Recommended settings from Tigon manual. */
CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
if (ti_64bitslot_war(sc)) {
printf("ti%d: bios thinks we're in a 64 bit slot, "
"but we aren't", sc->ti_unit);
return(EINVAL);
}
return(0);
}
/*
* Initialize the general information block and firmware, and
* start the CPU(s) running.
*/
static int ti_gibinit(sc)
struct ti_softc *sc;
{
struct ti_rcb *rcb;
int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Disable interrupts for now. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/* Tell the chip where to find the general information block. */
CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
/* Load the firmware into SRAM. */
ti_loadfw(sc);
/* Set up the contents of the general info and ring control blocks. */
/* Set up the event ring and producer pointer. */
rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
rcb->ti_flags = 0;
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
vtophys(&sc->ti_ev_prodidx);
sc->ti_ev_prodidx.ti_idx = 0;
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
sc->ti_ev_saved_considx = 0;
/* Set up the command ring and producer mailbox. */
rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
sc->ti_rdata->ti_cmd_ring =
(struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
rcb->ti_flags = 0;
rcb->ti_max_len = 0;
for (i = 0; i < TI_CMD_RING_CNT; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
}
CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
sc->ti_cmd_saved_prodidx = 0;
/*
* Assign the address of the stats refresh buffer.
* We re-use the current stats buffer for this to
* conserve memory.
*/
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
vtophys(&sc->ti_rdata->ti_info.ti_stats);
/* Set up the standard receive ring. */
rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
rcb->ti_max_len = TI_FRAMELEN;
rcb->ti_flags = 0;
if (sc->arpcom.ac_if.if_hwassist)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
#if NVLAN > 0
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
#endif
/* Set up the jumbo receive ring. */
rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) =
vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
rcb->ti_max_len = TI_JUMBO_FRAMELEN;
rcb->ti_flags = 0;
if (sc->arpcom.ac_if.if_hwassist)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
#if NVLAN > 0
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
#endif
/*
* Set up the mini ring. Only activated on the
* Tigon 2 but the slot in the config block is
* still there on the Tigon 1.
*/
rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) =
vtophys(&sc->ti_rdata->ti_rx_mini_ring);
rcb->ti_max_len = MHLEN - ETHER_ALIGN;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
else
rcb->ti_flags = 0;
if (sc->arpcom.ac_if.if_hwassist)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
#if NVLAN > 0
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
#endif
/*
* Set up the receive return ring.
*/
rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) =
vtophys(&sc->ti_rdata->ti_rx_return_ring);
rcb->ti_flags = 0;
rcb->ti_max_len = TI_RETURN_RING_CNT;
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
vtophys(&sc->ti_return_prodidx);
/*
* Set up the tx ring. Note: for the Tigon 2, we have the option
* of putting the transmit ring in the host's address space and
* letting the chip DMA it instead of leaving the ring in the NIC's
* memory and accessing it through the shared memory region. We
* do this for the Tigon 2, but it doesn't work on the Tigon 1,
* so we have to revert to the shared memory scheme if we detect
* a Tigon 1 chip.
*/
CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
if (sc->ti_hwrev == TI_HWREV_TIGON) {
sc->ti_rdata->ti_tx_ring_nic =
(struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
}
bzero((char *)sc->ti_rdata->ti_tx_ring,
TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = 0;
else
rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
#if NVLAN > 0
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
#endif
if (sc->arpcom.ac_if.if_hwassist)
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
rcb->ti_max_len = TI_TX_RING_CNT;
if (sc->ti_hwrev == TI_HWREV_TIGON)
TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
else
TI_HOSTADDR(rcb->ti_hostaddr) =
vtophys(&sc->ti_rdata->ti_tx_ring);
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
vtophys(&sc->ti_tx_considx);
/* Set up tuneables */
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
(sc->ti_rx_coal_ticks / 10));
else
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
/* Turn interrupts on. */
CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
/* Start CPU. */
TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
return(0);
}
/*
* Probe for a Tigon chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match.
*/
static int ti_probe(dev)
device_t dev;
{
struct ti_type *t;
t = ti_devs;
while(t->ti_name != NULL) {
if ((pci_get_vendor(dev) == t->ti_vid) &&
(pci_get_device(dev) == t->ti_did)) {
device_set_desc(dev, t->ti_name);
return(0);
}
t++;
}
return(ENXIO);
}
static int ti_attach(dev)
device_t dev;
{
u_int32_t command;
struct ifnet *ifp;
struct ti_softc *sc;
int unit, error = 0, rid;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct ti_softc));
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCIR_COMMAND, 4);
command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, command, 4);
command = pci_read_config(dev, PCIR_COMMAND, 4);
if (!(command & PCIM_CMD_MEMEN)) {
printf("ti%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
rid = TI_PCI_LOMEM;
sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
if (sc->ti_res == NULL) {
printf ("ti%d: couldn't map memory\n", unit);
error = ENXIO;
goto fail;
}
sc->ti_btag = rman_get_bustag(sc->ti_res);
sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
/* Allocate interrupt */
rid = 0;
sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->ti_irq == NULL) {
printf("ti%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
ti_intr, sc, &sc->ti_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
bus_release_resource(dev, SYS_RES_MEMORY,
TI_PCI_LOMEM, sc->ti_res);
printf("ti%d: couldn't set up irq\n", unit);
goto fail;
}
mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_DEF);
TI_LOCK(sc);
sc->ti_unit = unit;
if (ti_chipinit(sc)) {
printf("ti%d: chip initialization failed\n", sc->ti_unit);
bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
bus_release_resource(dev, SYS_RES_MEMORY,
TI_PCI_LOMEM, sc->ti_res);
error = ENXIO;
goto fail;
}
/* Zero out the NIC's on-board SRAM. */
ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
/* Init again -- zeroing memory may have clobbered some registers. */
if (ti_chipinit(sc)) {
printf("ti%d: chip initialization failed\n", sc->ti_unit);
bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
bus_release_resource(dev, SYS_RES_MEMORY,
TI_PCI_LOMEM, sc->ti_res);
error = ENXIO;
goto fail;
}
/*
* Get station address from the EEPROM. Note: the manual states
* that the MAC address is at offset 0x8c, however the data is
* stored as two longwords (since that's how it's loaded into
* the NIC). This means the MAC address is actually preceeded
* by two zero bytes. We need to skip over those.
*/
if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
printf("ti%d: failed to read station address\n", unit);
bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
bus_release_resource(dev, SYS_RES_MEMORY,
TI_PCI_LOMEM, sc->ti_res);
error = ENXIO;
goto fail;
}
/*
* A Tigon chip was detected. Inform the world.
*/
printf("ti%d: Ethernet address: %6D\n", unit,
sc->arpcom.ac_enaddr, ":");
/* Allocate the general information block and ring buffers. */
sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->ti_rdata == NULL) {
bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
bus_release_resource(dev, SYS_RES_MEMORY,
TI_PCI_LOMEM, sc->ti_res);
error = ENXIO;
printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
goto fail;
}
bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
/* Try to allocate memory for jumbo buffers. */
if (ti_alloc_jumbo_mem(sc)) {
printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
bus_release_resource(dev, SYS_RES_MEMORY,
TI_PCI_LOMEM, sc->ti_res);
contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
M_DEVBUF);
error = ENXIO;
goto fail;
}
/*
* We really need a better way to tell a 1000baseTX card
* from a 1000baseSX one, since in theory there could be
* OEMed 1000baseTX cards from lame vendors who aren't
* clever enough to change the PCI ID. For the moment
* though, the AceNIC is the only copper card available.
*/
if (pci_get_vendor(dev) == ALT_VENDORID &&
pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
sc->ti_copper = 1;
/* Ok, it's not the only copper card available. */
if (pci_get_vendor(dev) == NG_VENDORID &&
pci_get_device(dev) == NG_DEVICEID_GA620T)
sc->ti_copper = 1;
/* Set default tuneable values. */
sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
sc->ti_rx_max_coal_bds = 64;
sc->ti_tx_max_coal_bds = 128;
sc->ti_tx_buf_ratio = 21;
/* Set up ifnet structure */
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = sc->ti_unit;
ifp->if_name = "ti";
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ti_ioctl;
ifp->if_output = ether_output;
ifp->if_start = ti_start;
ifp->if_watchdog = ti_watchdog;
ifp->if_init = ti_init;
ifp->if_mtu = ETHERMTU;
ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
/* Set up ifmedia support. */
ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
if (sc->ti_copper) {
/*
* Copper cards allow manual 10/100 mode selection,
* but not manual 1000baseTX mode selection. Why?
* Becuase currently there's no way to specify the
* master/slave setting through the firmware interface,
* so Alteon decided to just bag it and handle it
* via autonegotiation.
*/
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
} else {
/* Fiber cards don't support 10/100 modes. */
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
}
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
TI_UNLOCK(sc);
return(0);
fail:
TI_UNLOCK(sc);
mtx_destroy(&sc->ti_mtx);
return(error);
}
static int ti_detach(dev)
device_t dev;
{
struct ti_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
TI_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
ti_stop(sc);
bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
ifmedia_removeall(&sc->ifmedia);
TI_UNLOCK(sc);
mtx_destroy(&sc->ti_mtx);
return(0);
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle three possibilities here:
* 1) the frame is from the mini receive ring (can only happen)
* on Tigon 2 boards)
* 2) the frame is from the jumbo recieve ring
* 3) the frame is from the standard receive ring
*/
static void ti_rxeof(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
struct ti_cmd_desc cmd;
ifp = &sc->arpcom.ac_if;
while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
struct ti_rx_desc *cur_rx;
u_int32_t rxidx;
struct ether_header *eh;
struct mbuf *m = NULL;
#if NVLAN > 0
u_int16_t vlan_tag = 0;
int have_tag = 0;
#endif
cur_rx =
&sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
rxidx = cur_rx->ti_idx;
TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
#if NVLAN > 0
if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
have_tag = 1;
vlan_tag = cur_rx->ti_vlan_tag;
}
#endif
if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
continue;
}
if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
continue;
}
} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_mini(sc, sc->ti_mini, m);
continue;
}
if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_mini(sc, sc->ti_mini, m);
continue;
}
} else {
TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_std_chain[rxidx];
sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_std(sc, sc->ti_std, m);
continue;
}
if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_std(sc, sc->ti_std, m);
continue;
}
}
m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
if (ifp->if_hwassist) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
CSUM_DATA_VALID;
if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
}
#if NVLAN > 0
/*
* If we received a packet with a vlan tag, pass it
* to vlan_input() instead of ether_input().
*/
if (have_tag) {
vlan_input_tag(eh, m, vlan_tag);
have_tag = vlan_tag = 0;
continue;
}
#endif
ether_input(ifp, eh, m);
}
/* Only necessary on the Tigon 1. */
if (sc->ti_hwrev == TI_HWREV_TIGON)
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
sc->ti_rx_saved_considx);
TI_UPDATE_STDPROD(sc, sc->ti_std);
TI_UPDATE_MINIPROD(sc, sc->ti_mini);
TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
return;
}
static void ti_txeof(sc)
struct ti_softc *sc;
{
struct ti_tx_desc *cur_tx = NULL;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
u_int32_t idx = 0;
idx = sc->ti_tx_saved_considx;
if (sc->ti_hwrev == TI_HWREV_TIGON) {
if (idx > 383)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 6144);
else if (idx > 255)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 4096);
else if (idx > 127)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 2048);
else
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE);
cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
} else
cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
if (cur_tx->ti_flags & TI_BDFLAG_END)
ifp->if_opackets++;
if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
m_freem(sc->ti_cdata.ti_tx_chain[idx]);
sc->ti_cdata.ti_tx_chain[idx] = NULL;
}
sc->ti_txcnt--;
TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
ifp->if_timer = 0;
}
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static void ti_intr(xsc)
void *xsc;
{
struct ti_softc *sc;
struct ifnet *ifp;
sc = xsc;
TI_LOCK(sc);
ifp = &sc->arpcom.ac_if;
#ifdef notdef
/* Avoid this for now -- checking this register is expensive. */
/* Make sure this is really our interrupt. */
if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
TI_UNLOCK(sc);
return;
}
#endif
/* Ack interrupt and stop others from occuring. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
if (ifp->if_flags & IFF_RUNNING) {
/* Check RX return ring producer/consumer */
ti_rxeof(sc);
/* Check TX ring producer/consumer */
ti_txeof(sc);
}
ti_handle_events(sc);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
ti_start(ifp);
TI_UNLOCK(sc);
return;
}
static void ti_stats_update(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_collisions +=
(sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
ifp->if_collisions;
return;
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int ti_encap(sc, m_head, txidx)
struct ti_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct ti_tx_desc *f = NULL;
struct mbuf *m;
u_int32_t frag, cur, cnt = 0;
u_int16_t csum_flags = 0;
#if NVLAN > 0
struct ifvlan *ifv = NULL;
if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
m_head->m_pkthdr.rcvif != NULL &&
m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
ifv = m_head->m_pkthdr.rcvif->if_softc;
#endif
m = m_head;
cur = frag = *txidx;
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= TI_BDFLAG_IP_CKSUM;
if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
if (m_head->m_flags & M_LASTFRAG)
csum_flags |= TI_BDFLAG_IP_FRAG_END;
else if (m_head->m_flags & M_FRAG)
csum_flags |= TI_BDFLAG_IP_FRAG;
}
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (sc->ti_hwrev == TI_HWREV_TIGON) {
if (frag > 383)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 6144);
else if (frag > 255)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 4096);
else if (frag > 127)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 2048);
else
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE);
f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
} else
f = &sc->ti_rdata->ti_tx_ring[frag];
if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
break;
TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
f->ti_len = m->m_len;
f->ti_flags = csum_flags;
#if NVLAN > 0
if (ifv != NULL) {
f->ti_flags |= TI_BDFLAG_VLAN_TAG;
f->ti_vlan_tag = ifv->ifv_tag;
} else {
f->ti_vlan_tag = 0;
}
#endif
/*
* Sanity check: avoid coming within 16 descriptors
* of the end of the ring.
*/
if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
return(ENOBUFS);
cur = frag;
TI_INC(frag, TI_TX_RING_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
if (frag == sc->ti_tx_saved_considx)
return(ENOBUFS);
if (sc->ti_hwrev == TI_HWREV_TIGON)
sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
TI_BDFLAG_END;
else
sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
sc->ti_cdata.ti_tx_chain[cur] = m_head;
sc->ti_txcnt += cnt;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void ti_start(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t prodidx = 0;
sc = ifp->if_softc;
TI_LOCK(sc);
prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* XXX
* safety overkill. If this is a fragmented packet chain
* with delayed TCP/UDP checksums, then only encapsulate
* it if we have enough descriptors to handle the entire
* chain at once.
* (paranoia -- may not actually be needed)
*/
if (m_head->m_flags & M_FIRSTFRAG &&
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
if ((TI_TX_RING_CNT - sc->ti_txcnt) <
m_head->m_pkthdr.csum_data + 16) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (ti_encap(sc, m_head, &prodidx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
}
/* Transmit */
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
TI_UNLOCK(sc);
return;
}
static void ti_init(xsc)
void *xsc;
{
struct ti_softc *sc = xsc;
/* Cancel pending I/O and flush buffers. */
ti_stop(sc);
TI_LOCK(sc);
/* Init the gen info block, ring control blocks and firmware. */
if (ti_gibinit(sc)) {
printf("ti%d: initialization failure\n", sc->ti_unit);
TI_UNLOCK(sc);
return;
}
TI_UNLOCK(sc);
return;
}
static void ti_init2(sc)
struct ti_softc *sc;
{
struct ti_cmd_desc cmd;
struct ifnet *ifp;
u_int16_t *m;
struct ifmedia *ifm;
int tmp;
ifp = &sc->arpcom.ac_if;
/* Specify MTU and interface index. */
CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN);
TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
/* Load our MAC address. */
m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
} else {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
}
/* Program multicast filter. */
ti_setmulti(sc);
/*
* If this is a Tigon 1, we should tell the
* firmware to use software packet filtering.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON) {
TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
}
/* Init RX ring. */
ti_init_rx_ring_std(sc);
/* Init jumbo RX ring. */
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
ti_init_rx_ring_jumbo(sc);
/*
* If this is a Tigon 2, we can also configure the
* mini ring.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON_II)
ti_init_rx_ring_mini(sc);
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
sc->ti_rx_saved_considx = 0;
/* Init TX ring. */
ti_init_tx_ring(sc);
/* Tell firmware we're alive. */
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
/* Enable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Make sure to set media properly. We have to do this
* here since we have to issue commands in order to set
* the link negotiation and we can't issue commands until
* the firmware is running.
*/
ifm = &sc->ifmedia;
tmp = ifm->ifm_media;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
ti_ifmedia_upd(ifp);
ifm->ifm_media = tmp;
return;
}
/*
* Set media options.
*/
static int ti_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
struct ifmedia *ifm;
struct ti_cmd_desc cmd;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
TI_LNK_AUTONEGENB|TI_LNK_ENB);
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_BOTH, 0);
break;
case IFM_1000_SX:
case IFM_1000_TX:
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
CSR_WRITE_4(sc, TI_GCR_LINK, 0);
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
break;
case IFM_100_FX:
case IFM_10_FL:
case IFM_100_TX:
case IFM_10_T:
CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
}
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_10_100, 0);
break;
}
return(0);
}
/*
* Report current media status.
*/
static void ti_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct ti_softc *sc;
u_int32_t media = 0;
sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
return;
ifmr->ifm_status |= IFM_ACTIVE;
if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
if (sc->ti_copper)
ifmr->ifm_active |= IFM_1000_TX;
else
ifmr->ifm_active |= IFM_1000_SX;
if (media & TI_GLNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
if (sc->ti_copper) {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_TX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_T;
} else {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_FX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_FL;
}
if (media & TI_LNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
if (media & TI_LNK_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
}
return;
}
static int ti_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ti_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
struct ti_cmd_desc cmd;
TI_LOCK(sc);
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu > TI_JUMBO_MTU)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
ti_init(sc);
}
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two.
*/
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->ti_if_flags & IFF_PROMISC)) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_ENB, 0);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->ti_if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_DIS, 0);
} else
ti_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING) {
ti_stop(sc);
}
}
sc->ti_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_flags & IFF_RUNNING) {
ti_setmulti(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
TI_UNLOCK(sc);
return(error);
}
static void ti_watchdog(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
sc = ifp->if_softc;
TI_LOCK(sc);
printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
ti_stop(sc);
ti_init(sc);
ifp->if_oerrors++;
TI_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void ti_stop(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
struct ti_cmd_desc cmd;
TI_LOCK(sc);
ifp = &sc->arpcom.ac_if;
/* Disable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/*
* Tell firmware we're shutting down.
*/
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
/* Halt and reinitialize. */
ti_chipinit(sc);
ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
ti_chipinit(sc);
/* Free the RX lists. */
ti_free_rx_ring_std(sc);
/* Free jumbo RX list. */
ti_free_rx_ring_jumbo(sc);
/* Free mini RX list. */
ti_free_rx_ring_mini(sc);
/* Free TX buffers. */
ti_free_tx_ring(sc);
sc->ti_ev_prodidx.ti_idx = 0;
sc->ti_return_prodidx.ti_idx = 0;
sc->ti_tx_considx.ti_idx = 0;
sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
TI_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void ti_shutdown(dev)
device_t dev;
{
struct ti_softc *sc;
sc = device_get_softc(dev);
TI_LOCK(sc);
ti_chipinit(sc);
TI_UNLOCK(sc);
return;
}