mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-08 13:28:05 +00:00
698 lines
16 KiB
C
698 lines
16 KiB
C
|
/*-
|
||
|
* Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice unmodified, this list of conditions, and the following
|
||
|
* disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* $FreeBSD$
|
||
|
*/
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/systm.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/ktr.h>
|
||
|
#include <sys/lock.h>
|
||
|
#include <sys/mutex.h>
|
||
|
#include <sys/proc.h>
|
||
|
#include <sys/sched.h>
|
||
|
#include <sys/smp.h>
|
||
|
#include <sys/sx.h>
|
||
|
#include <sys/sysctl.h>
|
||
|
#include <sys/sysproto.h>
|
||
|
#include <sys/vmmeter.h>
|
||
|
#ifdef DDB
|
||
|
#include <ddb/ddb.h>
|
||
|
#endif
|
||
|
#ifdef KTRACE
|
||
|
#include <sys/uio.h>
|
||
|
#include <sys/ktrace.h>
|
||
|
#endif
|
||
|
|
||
|
#include <machine/cpu.h>
|
||
|
|
||
|
/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
|
||
|
/* XXX This is bogus compatability crap for ps */
|
||
|
static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
|
||
|
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
|
||
|
|
||
|
static void sched_setup(void *dummy);
|
||
|
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
|
||
|
|
||
|
/*
|
||
|
* These datastructures are allocated within their parent datastructure but
|
||
|
* are scheduler specific.
|
||
|
*/
|
||
|
|
||
|
struct ke_sched {
|
||
|
int ske_slice;
|
||
|
struct runq *ske_runq;
|
||
|
/* The following variables are only used for pctcpu calculation */
|
||
|
int ske_ltick; /* Last tick that we were running on */
|
||
|
int ske_ftick; /* First tick that we were running on */
|
||
|
int ske_ticks; /* Tick count */
|
||
|
};
|
||
|
#define ke_slice ke_sched->ske_slice
|
||
|
#define ke_runq ke_sched->ske_runq
|
||
|
#define ke_ltick ke_sched->ske_ltick
|
||
|
#define ke_ftick ke_sched->ske_ftick
|
||
|
#define ke_ticks ke_sched->ske_ticks
|
||
|
|
||
|
struct kg_sched {
|
||
|
int skg_slptime;
|
||
|
};
|
||
|
#define kg_slptime kg_sched->skg_slptime
|
||
|
|
||
|
struct td_sched {
|
||
|
int std_slptime;
|
||
|
};
|
||
|
#define td_slptime td_sched->std_slptime
|
||
|
|
||
|
struct ke_sched ke_sched;
|
||
|
struct kg_sched kg_sched;
|
||
|
struct td_sched td_sched;
|
||
|
|
||
|
struct ke_sched *kse0_sched = &ke_sched;
|
||
|
struct kg_sched *ksegrp0_sched = &kg_sched;
|
||
|
struct p_sched *proc0_sched = NULL;
|
||
|
struct td_sched *thread0_sched = &td_sched;
|
||
|
|
||
|
/*
|
||
|
* This priority range has 20 priorities on either end that are reachable
|
||
|
* only through nice values.
|
||
|
*/
|
||
|
#define SCHED_PRI_NRESV 40
|
||
|
#define SCHED_PRI_RANGE ((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) - \
|
||
|
SCHED_PRI_NRESV)
|
||
|
|
||
|
/*
|
||
|
* These determine how sleep time effects the priority of a process.
|
||
|
*
|
||
|
* SLP_MAX: Maximum amount of accrued sleep time.
|
||
|
* SLP_SCALE: Scale the number of ticks slept across the dynamic priority
|
||
|
* range.
|
||
|
* SLP_TOPRI: Convert a number of ticks slept into a priority value.
|
||
|
* SLP_DECAY: Reduce the sleep time to 50% for every granted slice.
|
||
|
*/
|
||
|
#define SCHED_SLP_MAX (hz * 2)
|
||
|
#define SCHED_SLP_SCALE(slp) (((slp) * SCHED_PRI_RANGE) / SCHED_SLP_MAX)
|
||
|
#define SCHED_SLP_TOPRI(slp) (SCHED_PRI_RANGE - SCHED_SLP_SCALE((slp)) + \
|
||
|
SCHED_PRI_NRESV / 2)
|
||
|
#define SCHED_SLP_DECAY(slp) ((slp) / 2) /* XXX Multiple kses break */
|
||
|
|
||
|
/*
|
||
|
* These parameters and macros determine the size of the time slice that is
|
||
|
* granted to each thread.
|
||
|
*
|
||
|
* SLICE_MIN: Minimum time slice granted, in units of ticks.
|
||
|
* SLICE_MAX: Maximum time slice granted.
|
||
|
* SLICE_RANGE: Range of available time slices scaled by hz.
|
||
|
* SLICE_SCALE: The number slices granted per unit of pri or slp.
|
||
|
* PRI_TOSLICE: Compute a slice size that is proportional to the priority.
|
||
|
* SLP_TOSLICE: Compute a slice size that is inversely proportional to the
|
||
|
* amount of time slept. (smaller slices for interactive ksegs)
|
||
|
* PRI_COMP: This determines what fraction of the actual slice comes from
|
||
|
* the slice size computed from the priority.
|
||
|
* SLP_COMP: This determines what component of the actual slice comes from
|
||
|
* the slize size computed from the sleep time.
|
||
|
*/
|
||
|
#define SCHED_SLICE_MIN (hz / 100)
|
||
|
#define SCHED_SLICE_MAX (hz / 10)
|
||
|
#define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
|
||
|
#define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max))
|
||
|
#define SCHED_PRI_TOSLICE(pri) \
|
||
|
(SCHED_SLICE_MAX - SCHED_SLICE_SCALE((pri), SCHED_PRI_RANGE))
|
||
|
#define SCHED_SLP_TOSLICE(slp) \
|
||
|
(SCHED_SLICE_MAX - SCHED_SLICE_SCALE((slp), SCHED_SLP_MAX))
|
||
|
#define SCHED_SLP_COMP(slice) (((slice) / 5) * 3) /* 60% */
|
||
|
#define SCHED_PRI_COMP(slice) (((slice) / 5) * 2) /* 40% */
|
||
|
|
||
|
/*
|
||
|
* This macro determines whether or not the kse belongs on the current or
|
||
|
* next run queue.
|
||
|
*/
|
||
|
#define SCHED_CURR(kg) ((kg)->kg_slptime > (hz / 4) || \
|
||
|
(kg)->kg_pri_class != PRI_TIMESHARE)
|
||
|
|
||
|
/*
|
||
|
* Cpu percentage computation macros and defines.
|
||
|
*
|
||
|
* SCHED_CPU_TIME: Number of seconds to average the cpu usage across.
|
||
|
* SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across.
|
||
|
*/
|
||
|
|
||
|
#define SCHED_CPU_TIME 60
|
||
|
#define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
|
||
|
|
||
|
/*
|
||
|
* kseq - pair of runqs per processor
|
||
|
*/
|
||
|
|
||
|
struct kseq {
|
||
|
struct runq ksq_runqs[2];
|
||
|
struct runq *ksq_curr;
|
||
|
struct runq *ksq_next;
|
||
|
int ksq_load; /* Total runnable */
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* One kse queue per processor.
|
||
|
*/
|
||
|
struct kseq kseq_cpu[MAXCPU];
|
||
|
|
||
|
static int sched_slice(struct ksegrp *kg);
|
||
|
static int sched_priority(struct ksegrp *kg);
|
||
|
void sched_pctcpu_update(struct kse *ke);
|
||
|
int sched_pickcpu(void);
|
||
|
|
||
|
static void
|
||
|
sched_setup(void *dummy)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
mtx_lock_spin(&sched_lock);
|
||
|
/* init kseqs */
|
||
|
for (i = 0; i < MAXCPU; i++) {
|
||
|
kseq_cpu[i].ksq_load = 0;
|
||
|
kseq_cpu[i].ksq_curr = &kseq_cpu[i].ksq_runqs[0];
|
||
|
kseq_cpu[i].ksq_next = &kseq_cpu[i].ksq_runqs[1];
|
||
|
runq_init(kseq_cpu[i].ksq_curr);
|
||
|
runq_init(kseq_cpu[i].ksq_next);
|
||
|
}
|
||
|
/* CPU0 has proc0 */
|
||
|
kseq_cpu[0].ksq_load++;
|
||
|
mtx_unlock_spin(&sched_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Scale the scheduling priority according to the "interactivity" of this
|
||
|
* process.
|
||
|
*/
|
||
|
static int
|
||
|
sched_priority(struct ksegrp *kg)
|
||
|
{
|
||
|
int pri;
|
||
|
|
||
|
if (kg->kg_pri_class != PRI_TIMESHARE)
|
||
|
return (kg->kg_user_pri);
|
||
|
|
||
|
pri = SCHED_SLP_TOPRI(kg->kg_slptime);
|
||
|
CTR2(KTR_RUNQ, "sched_priority: slptime: %d\tpri: %d",
|
||
|
kg->kg_slptime, pri);
|
||
|
|
||
|
pri += PRI_MIN_TIMESHARE;
|
||
|
pri += kg->kg_nice;
|
||
|
|
||
|
if (pri > PRI_MAX_TIMESHARE)
|
||
|
pri = PRI_MAX_TIMESHARE;
|
||
|
else if (pri < PRI_MIN_TIMESHARE)
|
||
|
pri = PRI_MIN_TIMESHARE;
|
||
|
|
||
|
kg->kg_user_pri = pri;
|
||
|
|
||
|
return (kg->kg_user_pri);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate a time slice based on the process priority.
|
||
|
*/
|
||
|
static int
|
||
|
sched_slice(struct ksegrp *kg)
|
||
|
{
|
||
|
int pslice;
|
||
|
int sslice;
|
||
|
int slice;
|
||
|
int pri;
|
||
|
|
||
|
pri = kg->kg_user_pri;
|
||
|
pri -= PRI_MIN_TIMESHARE;
|
||
|
pslice = SCHED_PRI_TOSLICE(pri);
|
||
|
sslice = SCHED_SLP_TOSLICE(kg->kg_slptime);
|
||
|
slice = SCHED_SLP_COMP(sslice) + SCHED_PRI_COMP(pslice);
|
||
|
kg->kg_slptime = SCHED_SLP_DECAY(kg->kg_slptime);
|
||
|
|
||
|
CTR4(KTR_RUNQ,
|
||
|
"sched_slice: pri: %d\tsslice: %d\tpslice: %d\tslice: %d",
|
||
|
pri, sslice, pslice, slice);
|
||
|
|
||
|
if (slice < SCHED_SLICE_MIN)
|
||
|
slice = SCHED_SLICE_MIN;
|
||
|
else if (slice > SCHED_SLICE_MAX)
|
||
|
slice = SCHED_SLICE_MAX;
|
||
|
|
||
|
return (slice);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
sched_rr_interval(void)
|
||
|
{
|
||
|
return (SCHED_SLICE_MAX);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_pctcpu_update(struct kse *ke)
|
||
|
{
|
||
|
/*
|
||
|
* Adjust counters and watermark for pctcpu calc.
|
||
|
*/
|
||
|
ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
|
||
|
SCHED_CPU_TICKS;
|
||
|
ke->ke_ltick = ticks;
|
||
|
ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
|
||
|
}
|
||
|
|
||
|
#ifdef SMP
|
||
|
int
|
||
|
sched_pickcpu(void)
|
||
|
{
|
||
|
int cpu;
|
||
|
int load;
|
||
|
int i;
|
||
|
|
||
|
if (!smp_started)
|
||
|
return (0);
|
||
|
|
||
|
cpu = PCPU_GET(cpuid);
|
||
|
load = kseq_cpu[cpu].ksq_load;
|
||
|
|
||
|
for (i = 0; i < mp_maxid; i++) {
|
||
|
if (CPU_ABSENT(i))
|
||
|
continue;
|
||
|
if (kseq_cpu[i].ksq_load < load) {
|
||
|
cpu = i;
|
||
|
load = kseq_cpu[i].ksq_load;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
|
||
|
return (cpu);
|
||
|
}
|
||
|
#else
|
||
|
int
|
||
|
sched_pickcpu(void)
|
||
|
{
|
||
|
return (0);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void
|
||
|
sched_prio(struct thread *td, u_char prio)
|
||
|
{
|
||
|
struct kse *ke;
|
||
|
struct runq *rq;
|
||
|
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
ke = td->td_kse;
|
||
|
td->td_priority = prio;
|
||
|
|
||
|
if (TD_ON_RUNQ(td)) {
|
||
|
rq = ke->ke_runq;
|
||
|
|
||
|
runq_remove(rq, ke);
|
||
|
runq_add(rq, ke);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_switchout(struct thread *td)
|
||
|
{
|
||
|
struct kse *ke;
|
||
|
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
|
||
|
ke = td->td_kse;
|
||
|
|
||
|
td->td_last_kse = ke;
|
||
|
td->td_lastcpu = ke->ke_oncpu;
|
||
|
ke->ke_flags &= ~KEF_NEEDRESCHED;
|
||
|
|
||
|
if (TD_IS_RUNNING(td)) {
|
||
|
setrunqueue(td);
|
||
|
return;
|
||
|
} else
|
||
|
td->td_kse->ke_runq = NULL;
|
||
|
|
||
|
/*
|
||
|
* We will not be on the run queue. So we must be
|
||
|
* sleeping or similar.
|
||
|
*/
|
||
|
if (td->td_proc->p_flag & P_KSES)
|
||
|
kse_reassign(ke);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_switchin(struct thread *td)
|
||
|
{
|
||
|
/* struct kse *ke = td->td_kse; */
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
|
||
|
td->td_kse->ke_oncpu = PCPU_GET(cpuid); /* XXX */
|
||
|
if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
|
||
|
td->td_priority != td->td_ksegrp->kg_user_pri)
|
||
|
curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
|
||
|
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_nice(struct ksegrp *kg, int nice)
|
||
|
{
|
||
|
struct thread *td;
|
||
|
|
||
|
kg->kg_nice = nice;
|
||
|
sched_priority(kg);
|
||
|
FOREACH_THREAD_IN_GROUP(kg, td) {
|
||
|
td->td_kse->ke_flags |= KEF_NEEDRESCHED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_sleep(struct thread *td, u_char prio)
|
||
|
{
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
|
||
|
td->td_slptime = ticks;
|
||
|
td->td_priority = prio;
|
||
|
|
||
|
/*
|
||
|
* If this is an interactive task clear its queue so it moves back
|
||
|
* on to curr when it wakes up. Otherwise let it stay on the queue
|
||
|
* that it was assigned to.
|
||
|
*/
|
||
|
if (SCHED_CURR(td->td_kse->ke_ksegrp))
|
||
|
td->td_kse->ke_runq = NULL;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_wakeup(struct thread *td)
|
||
|
{
|
||
|
struct ksegrp *kg;
|
||
|
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
|
||
|
/*
|
||
|
* Let the kseg know how long we slept for. This is because process
|
||
|
* interactivity behavior is modeled in the kseg.
|
||
|
*/
|
||
|
kg = td->td_ksegrp;
|
||
|
|
||
|
if (td->td_slptime) {
|
||
|
kg->kg_slptime += ticks - td->td_slptime;
|
||
|
if (kg->kg_slptime > SCHED_SLP_MAX)
|
||
|
kg->kg_slptime = SCHED_SLP_MAX;
|
||
|
td->td_priority = sched_priority(kg);
|
||
|
}
|
||
|
td->td_slptime = 0;
|
||
|
setrunqueue(td);
|
||
|
if (td->td_priority < curthread->td_priority)
|
||
|
curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Penalize the parent for creating a new child and initialize the child's
|
||
|
* priority.
|
||
|
*/
|
||
|
void
|
||
|
sched_fork(struct ksegrp *kg, struct ksegrp *child)
|
||
|
{
|
||
|
struct kse *ckse;
|
||
|
struct kse *pkse;
|
||
|
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
ckse = FIRST_KSE_IN_KSEGRP(child);
|
||
|
pkse = FIRST_KSE_IN_KSEGRP(kg);
|
||
|
|
||
|
/* XXX Need something better here */
|
||
|
child->kg_slptime = kg->kg_slptime;
|
||
|
child->kg_user_pri = kg->kg_user_pri;
|
||
|
|
||
|
ckse->ke_slice = pkse->ke_slice;
|
||
|
ckse->ke_oncpu = sched_pickcpu();
|
||
|
ckse->ke_runq = NULL;
|
||
|
/*
|
||
|
* Claim that we've been running for one second for statistical
|
||
|
* purposes.
|
||
|
*/
|
||
|
ckse->ke_ticks = 0;
|
||
|
ckse->ke_ltick = ticks;
|
||
|
ckse->ke_ftick = ticks - hz;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return some of the child's priority and interactivity to the parent.
|
||
|
*/
|
||
|
void
|
||
|
sched_exit(struct ksegrp *kg, struct ksegrp *child)
|
||
|
{
|
||
|
struct kseq *kseq;
|
||
|
struct kse *ke;
|
||
|
|
||
|
/* XXX Need something better here */
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
kg->kg_slptime = child->kg_slptime;
|
||
|
sched_priority(kg);
|
||
|
|
||
|
/*
|
||
|
* We drop the load here so that the running process leaves us with a
|
||
|
* load of at least one.
|
||
|
*/
|
||
|
ke = FIRST_KSE_IN_KSEGRP(kg);
|
||
|
kseq = &kseq_cpu[ke->ke_oncpu];
|
||
|
kseq->ksq_load--;
|
||
|
}
|
||
|
|
||
|
int sched_clock_switches;
|
||
|
|
||
|
void
|
||
|
sched_clock(struct thread *td)
|
||
|
{
|
||
|
struct kse *ke;
|
||
|
struct kse *nke;
|
||
|
struct ksegrp *kg;
|
||
|
struct kseq *kseq;
|
||
|
int cpu;
|
||
|
|
||
|
cpu = PCPU_GET(cpuid);
|
||
|
kseq = &kseq_cpu[cpu];
|
||
|
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
KASSERT((td != NULL), ("schedclock: null thread pointer"));
|
||
|
ke = td->td_kse;
|
||
|
kg = td->td_ksegrp;
|
||
|
|
||
|
nke = runq_choose(kseq->ksq_curr);
|
||
|
|
||
|
if (td->td_kse->ke_flags & KEF_IDLEKSE) {
|
||
|
#if 0
|
||
|
if (nke && nke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
|
||
|
printf("Idle running with %s on the runq!\n",
|
||
|
nke->ke_proc->p_comm);
|
||
|
Debugger("stop");
|
||
|
}
|
||
|
#endif
|
||
|
return;
|
||
|
}
|
||
|
if (nke && nke->ke_thread &&
|
||
|
nke->ke_thread->td_priority < td->td_priority) {
|
||
|
sched_clock_switches++;
|
||
|
ke->ke_flags |= KEF_NEEDRESCHED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We used a tick, decrease our total sleep time. This decreases our
|
||
|
* "interactivity".
|
||
|
*/
|
||
|
if (kg->kg_slptime)
|
||
|
kg->kg_slptime--;
|
||
|
/*
|
||
|
* We used up one time slice.
|
||
|
*/
|
||
|
ke->ke_slice--;
|
||
|
/*
|
||
|
* We're out of time, recompute priorities and requeue
|
||
|
*/
|
||
|
if (ke->ke_slice == 0) {
|
||
|
struct kseq *kseq;
|
||
|
|
||
|
kseq = &kseq_cpu[ke->ke_oncpu];
|
||
|
|
||
|
td->td_priority = sched_priority(kg);
|
||
|
ke->ke_slice = sched_slice(kg);
|
||
|
ke->ke_flags |= KEF_NEEDRESCHED;
|
||
|
ke->ke_runq = NULL;
|
||
|
}
|
||
|
ke->ke_ticks += 10000;
|
||
|
ke->ke_ltick = ticks;
|
||
|
/* Go up to one second beyond our max and then trim back down */
|
||
|
if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
|
||
|
sched_pctcpu_update(ke);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
sched_runnable(void)
|
||
|
{
|
||
|
struct kseq *kseq;
|
||
|
int cpu;
|
||
|
|
||
|
cpu = PCPU_GET(cpuid);
|
||
|
kseq = &kseq_cpu[cpu];
|
||
|
|
||
|
if (runq_check(kseq->ksq_curr) == 0)
|
||
|
return (runq_check(kseq->ksq_next));
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_userret(struct thread *td)
|
||
|
{
|
||
|
struct ksegrp *kg;
|
||
|
|
||
|
kg = td->td_ksegrp;
|
||
|
|
||
|
if (td->td_priority != kg->kg_user_pri) {
|
||
|
mtx_lock_spin(&sched_lock);
|
||
|
td->td_priority = kg->kg_user_pri;
|
||
|
mtx_unlock_spin(&sched_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct kse *
|
||
|
sched_choose(void)
|
||
|
{
|
||
|
struct kseq *kseq;
|
||
|
struct kse *ke;
|
||
|
struct runq *swap;
|
||
|
int cpu;
|
||
|
|
||
|
cpu = PCPU_GET(cpuid);
|
||
|
kseq = &kseq_cpu[cpu];
|
||
|
|
||
|
if ((ke = runq_choose(kseq->ksq_curr)) == NULL) {
|
||
|
swap = kseq->ksq_curr;
|
||
|
kseq->ksq_curr = kseq->ksq_next;
|
||
|
kseq->ksq_next = swap;
|
||
|
ke = runq_choose(kseq->ksq_curr);
|
||
|
}
|
||
|
if (ke) {
|
||
|
runq_remove(ke->ke_runq, ke);
|
||
|
ke->ke_state = KES_THREAD;
|
||
|
}
|
||
|
|
||
|
return (ke);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_add(struct kse *ke)
|
||
|
{
|
||
|
struct kseq *kseq;
|
||
|
int cpu;
|
||
|
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
|
||
|
KASSERT((ke->ke_thread->td_kse != NULL),
|
||
|
("runq_add: No KSE on thread"));
|
||
|
KASSERT(ke->ke_state != KES_ONRUNQ,
|
||
|
("runq_add: kse %p (%s) already in run queue", ke,
|
||
|
ke->ke_proc->p_comm));
|
||
|
KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
|
||
|
("runq_add: process swapped out"));
|
||
|
|
||
|
/* cpu = PCPU_GET(cpuid); */
|
||
|
cpu = ke->ke_oncpu;
|
||
|
kseq = &kseq_cpu[cpu];
|
||
|
kseq->ksq_load++;
|
||
|
|
||
|
if (ke->ke_runq == NULL) {
|
||
|
if (SCHED_CURR(ke->ke_ksegrp))
|
||
|
ke->ke_runq = kseq->ksq_curr;
|
||
|
else
|
||
|
ke->ke_runq = kseq->ksq_next;
|
||
|
}
|
||
|
ke->ke_ksegrp->kg_runq_kses++;
|
||
|
ke->ke_state = KES_ONRUNQ;
|
||
|
|
||
|
runq_add(ke->ke_runq, ke);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sched_rem(struct kse *ke)
|
||
|
{
|
||
|
struct kseq *kseq;
|
||
|
|
||
|
mtx_assert(&sched_lock, MA_OWNED);
|
||
|
/* KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); */
|
||
|
|
||
|
kseq = &kseq_cpu[ke->ke_oncpu];
|
||
|
kseq->ksq_load--;
|
||
|
|
||
|
runq_remove(ke->ke_runq, ke);
|
||
|
ke->ke_runq = NULL;
|
||
|
ke->ke_state = KES_THREAD;
|
||
|
ke->ke_ksegrp->kg_runq_kses--;
|
||
|
}
|
||
|
|
||
|
fixpt_t
|
||
|
sched_pctcpu(struct kse *ke)
|
||
|
{
|
||
|
fixpt_t pctcpu;
|
||
|
|
||
|
pctcpu = 0;
|
||
|
|
||
|
if (ke->ke_ticks) {
|
||
|
int rtick;
|
||
|
|
||
|
/* Update to account for time potentially spent sleeping */
|
||
|
ke->ke_ltick = ticks;
|
||
|
sched_pctcpu_update(ke);
|
||
|
|
||
|
/* How many rtick per second ? */
|
||
|
rtick = ke->ke_ticks / (SCHED_CPU_TIME * 10000);
|
||
|
pctcpu = (FSCALE * ((FSCALE * rtick)/stathz)) >> FSHIFT;
|
||
|
}
|
||
|
|
||
|
ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
|
||
|
|
||
|
return (pctcpu);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
sched_sizeof_kse(void)
|
||
|
{
|
||
|
return (sizeof(struct kse) + sizeof(struct ke_sched));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
sched_sizeof_ksegrp(void)
|
||
|
{
|
||
|
return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
sched_sizeof_proc(void)
|
||
|
{
|
||
|
return (sizeof(struct proc));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
sched_sizeof_thread(void)
|
||
|
{
|
||
|
return (sizeof(struct thread) + sizeof(struct td_sched));
|
||
|
}
|