1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-11-28 08:02:54 +00:00
freebsd/sys/net80211/_ieee80211.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

634 lines
26 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _NET80211__IEEE80211_H_
#define _NET80211__IEEE80211_H_
/*
* 802.11 implementation definitions.
*
* NB: this file is used by applications.
*/
/*
* PHY type; mostly used to identify FH phys.
*/
enum ieee80211_phytype {
IEEE80211_T_DS, /* direct sequence spread spectrum */
IEEE80211_T_FH, /* frequency hopping */
IEEE80211_T_OFDM, /* frequency division multiplexing */
IEEE80211_T_TURBO, /* high rate OFDM, aka turbo mode */
IEEE80211_T_HT, /* high throughput */
IEEE80211_T_OFDM_HALF, /* 1/2 rate OFDM */
IEEE80211_T_OFDM_QUARTER, /* 1/4 rate OFDM */
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
IEEE80211_T_VHT, /* VHT PHY */
};
#define IEEE80211_T_CCK IEEE80211_T_DS /* more common nomenclature */
/*
* PHY mode; this is not really a mode as multi-mode devices
* have multiple PHY's. Mode is mostly used as a shorthand
* for constraining which channels to consider in setting up
* operation. Modes used to be used more extensively when
* channels were identified as IEEE channel numbers.
*/
enum ieee80211_phymode {
IEEE80211_MODE_AUTO = 0, /* autoselect */
IEEE80211_MODE_11A = 1, /* 5GHz, OFDM */
IEEE80211_MODE_11B = 2, /* 2GHz, CCK */
IEEE80211_MODE_11G = 3, /* 2GHz, OFDM */
IEEE80211_MODE_FH = 4, /* 2GHz, GFSK */
IEEE80211_MODE_TURBO_A = 5, /* 5GHz, OFDM, 2x clock */
IEEE80211_MODE_TURBO_G = 6, /* 2GHz, OFDM, 2x clock */
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
IEEE80211_MODE_STURBO_A = 7, /* 5GHz, OFDM, 2x clock, static */
IEEE80211_MODE_11NA = 8, /* 5GHz, w/ HT */
IEEE80211_MODE_11NG = 9, /* 2GHz, w/ HT */
IEEE80211_MODE_HALF = 10, /* OFDM, 1/2x clock */
IEEE80211_MODE_QUARTER = 11, /* OFDM, 1/4x clock */
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
IEEE80211_MODE_VHT_2GHZ = 12, /* 2GHz, VHT */
IEEE80211_MODE_VHT_5GHZ = 13, /* 5GHz, VHT */
};
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
#define IEEE80211_MODE_MAX (IEEE80211_MODE_VHT_5GHZ+1)
#define IEEE80211_MODE_BYTES howmany(IEEE80211_MODE_MAX, NBBY)
/*
* Operating mode. Devices do not necessarily support
* all modes; they indicate which are supported in their
* capabilities.
*/
enum ieee80211_opmode {
IEEE80211_M_IBSS = 0, /* IBSS (adhoc) station */
IEEE80211_M_STA = 1, /* infrastructure station */
IEEE80211_M_WDS = 2, /* WDS link */
IEEE80211_M_AHDEMO = 3, /* Old lucent compatible adhoc demo */
IEEE80211_M_HOSTAP = 4, /* Software Access Point */
IEEE80211_M_MONITOR = 5, /* Monitor mode */
Implementation of the upcoming Wireless Mesh standard, 802.11s, on the net80211 wireless stack. This work is based on the March 2009 D3.0 draft standard. This standard is expected to become final next year. This includes two main net80211 modules, ieee80211_mesh.c which deals with peer link management, link metric calculation, routing table control and mesh configuration and ieee80211_hwmp.c which deals with the actually routing process on the mesh network. HWMP is the mandatory routing protocol on by the mesh standard, but others, such as RA-OLSR, can be implemented. Authentication and encryption are not implemented. There are several scripts under tools/tools/net80211/scripts that can be used to test different mesh network topologies and they also teach you how to setup a mesh vap (for the impatient: ifconfig wlan0 create wlandev ... wlanmode mesh). A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled by default on GENERIC kernels for i386, amd64, sparc64 and pc98. Drivers that support mesh networks right now are: ath, ral and mwl. More information at: http://wiki.freebsd.org/WifiMesh Please note that this work is experimental. Also, please note that bridging a mesh vap with another network interface is not yet supported. Many thanks to the FreeBSD Foundation for sponsoring this project and to Sam Leffler for his support. Also, I would like to thank Gateworks Corporation for sending me a Cambria board which was used during the development of this project. Reviewed by: sam Approved by: re (kensmith) Obtained from: projects/mesh11s
2009-07-11 15:02:45 +00:00
IEEE80211_M_MBSS = 6, /* MBSS (Mesh Point) link */
};
Implementation of the upcoming Wireless Mesh standard, 802.11s, on the net80211 wireless stack. This work is based on the March 2009 D3.0 draft standard. This standard is expected to become final next year. This includes two main net80211 modules, ieee80211_mesh.c which deals with peer link management, link metric calculation, routing table control and mesh configuration and ieee80211_hwmp.c which deals with the actually routing process on the mesh network. HWMP is the mandatory routing protocol on by the mesh standard, but others, such as RA-OLSR, can be implemented. Authentication and encryption are not implemented. There are several scripts under tools/tools/net80211/scripts that can be used to test different mesh network topologies and they also teach you how to setup a mesh vap (for the impatient: ifconfig wlan0 create wlandev ... wlanmode mesh). A new build option is available: IEEE80211_SUPPORT_MESH and it's enabled by default on GENERIC kernels for i386, amd64, sparc64 and pc98. Drivers that support mesh networks right now are: ath, ral and mwl. More information at: http://wiki.freebsd.org/WifiMesh Please note that this work is experimental. Also, please note that bridging a mesh vap with another network interface is not yet supported. Many thanks to the FreeBSD Foundation for sponsoring this project and to Sam Leffler for his support. Also, I would like to thank Gateworks Corporation for sending me a Cambria board which was used during the development of this project. Reviewed by: sam Approved by: re (kensmith) Obtained from: projects/mesh11s
2009-07-11 15:02:45 +00:00
#define IEEE80211_OPMODE_MAX (IEEE80211_M_MBSS+1)
/*
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
* 802.11g/802.11n protection mode.
*/
enum ieee80211_protmode {
IEEE80211_PROT_NONE = 0, /* no protection */
IEEE80211_PROT_CTSONLY = 1, /* CTS to self */
IEEE80211_PROT_RTSCTS = 2, /* RTS-CTS */
};
/*
* Authentication mode. The open and shared key authentication
* modes are implemented within the 802.11 layer. 802.1x and
* WPA/802.11i are implemented in user mode by setting the
* 802.11 layer into IEEE80211_AUTH_8021X and deferring
* authentication to user space programs.
*/
enum ieee80211_authmode {
IEEE80211_AUTH_NONE = 0,
IEEE80211_AUTH_OPEN = 1, /* open */
IEEE80211_AUTH_SHARED = 2, /* shared-key */
IEEE80211_AUTH_8021X = 3, /* 802.1x */
IEEE80211_AUTH_AUTO = 4, /* auto-select/accept */
/* NB: these are used only for ioctls */
IEEE80211_AUTH_WPA = 5, /* WPA/RSN w/ 802.1x/PSK */
};
/*
* Roaming mode is effectively who controls the operation
* of the 802.11 state machine when operating as a station.
* State transitions are controlled either by the driver
* (typically when management frames are processed by the
* hardware/firmware), the host (auto/normal operation of
* the 802.11 layer), or explicitly through ioctl requests
* when applications like wpa_supplicant want control.
*/
enum ieee80211_roamingmode {
IEEE80211_ROAMING_DEVICE= 0, /* driver/hardware control */
IEEE80211_ROAMING_AUTO = 1, /* 802.11 layer control */
IEEE80211_ROAMING_MANUAL= 2, /* application control */
};
/*
* Channels are specified by frequency and attributes.
*/
struct ieee80211_channel {
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
uint32_t ic_flags; /* see below */
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
uint16_t ic_freq; /* primary centre frequency in MHz */
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
uint8_t ic_ieee; /* IEEE channel number */
int8_t ic_maxregpower; /* maximum regulatory tx power in dBm */
int8_t ic_maxpower; /* maximum tx power in .5 dBm */
int8_t ic_minpower; /* minimum tx power in .5 dBm */
uint8_t ic_state; /* dynamic state */
uint8_t ic_extieee; /* HT40 extension channel number */
int8_t ic_maxantgain; /* maximum antenna gain in .5 dBm */
uint8_t ic_pad;
uint16_t ic_devdata; /* opaque device/driver data */
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
uint8_t ic_vht_ch_freq1; /* VHT primary freq1 IEEE value */
uint8_t ic_vht_ch_freq2; /* VHT secondary 80MHz freq2 IEEE value */
uint16_t ic_freq2; /* VHT secondary 80MHz freq2 MHz */
};
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
/*
* Note: for VHT operation we will need significantly more than
* IEEE80211_CHAN_MAX channels because of the combinations of
* VHT20, VHT40, VHT80, VHT160, and VHT80+80.
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
*/
#define IEEE80211_CHAN_MAX 1024
#define IEEE80211_CHAN_BYTES howmany(IEEE80211_CHAN_MAX, NBBY)
#define IEEE80211_CHAN_ANY 0xffff /* token for ``any channel'' */
#define IEEE80211_CHAN_ANYC \
((struct ieee80211_channel *) IEEE80211_CHAN_ANY)
/* channel attributes */
#define IEEE80211_CHAN_PRIV0 0x00000001 /* driver private bit 0 */
#define IEEE80211_CHAN_PRIV1 0x00000002 /* driver private bit 1 */
#define IEEE80211_CHAN_PRIV2 0x00000004 /* driver private bit 2 */
#define IEEE80211_CHAN_PRIV3 0x00000008 /* driver private bit 3 */
#define IEEE80211_CHAN_TURBO 0x00000010 /* Turbo channel */
#define IEEE80211_CHAN_CCK 0x00000020 /* CCK channel */
#define IEEE80211_CHAN_OFDM 0x00000040 /* OFDM channel */
#define IEEE80211_CHAN_2GHZ 0x00000080 /* 2 GHz spectrum channel. */
#define IEEE80211_CHAN_5GHZ 0x00000100 /* 5 GHz spectrum channel */
#define IEEE80211_CHAN_PASSIVE 0x00000200 /* Only passive scan allowed */
#define IEEE80211_CHAN_DYN 0x00000400 /* Dynamic CCK-OFDM channel */
#define IEEE80211_CHAN_GFSK 0x00000800 /* GFSK channel (FHSS PHY) */
#define IEEE80211_CHAN_GSM 0x00001000 /* 900 MHz spectrum channel */
#define IEEE80211_CHAN_STURBO 0x00002000 /* 11a static turbo channel only */
#define IEEE80211_CHAN_HALF 0x00004000 /* Half rate channel */
#define IEEE80211_CHAN_QUARTER 0x00008000 /* Quarter rate channel */
#define IEEE80211_CHAN_HT20 0x00010000 /* HT 20 channel */
#define IEEE80211_CHAN_HT40U 0x00020000 /* HT 40 channel w/ ext above */
#define IEEE80211_CHAN_HT40D 0x00040000 /* HT 40 channel w/ ext below */
#define IEEE80211_CHAN_DFS 0x00080000 /* DFS required */
#define IEEE80211_CHAN_4MSXMIT 0x00100000 /* 4ms limit on frame length */
#define IEEE80211_CHAN_NOADHOC 0x00200000 /* adhoc mode not allowed */
#define IEEE80211_CHAN_NOHOSTAP 0x00400000 /* hostap mode not allowed */
#define IEEE80211_CHAN_11D 0x00800000 /* 802.11d required */
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
#define IEEE80211_CHAN_VHT20 0x01000000 /* VHT20 channel */
#define IEEE80211_CHAN_VHT40U 0x02000000 /* VHT40 channel, ext above */
#define IEEE80211_CHAN_VHT40D 0x04000000 /* VHT40 channel, ext below */
#define IEEE80211_CHAN_VHT80 0x08000000 /* VHT80 channel */
#define IEEE80211_CHAN_VHT160 0x10000000 /* VHT160 channel */
#define IEEE80211_CHAN_VHT80P80 0x20000000 /* VHT80+80 channel */
/* XXX note: 0x80000000 is used in src/sbin/ifconfig/ifieee80211.c :( */
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#define IEEE80211_CHAN_HT40 (IEEE80211_CHAN_HT40U | IEEE80211_CHAN_HT40D)
#define IEEE80211_CHAN_HT (IEEE80211_CHAN_HT20 | IEEE80211_CHAN_HT40)
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
#define IEEE80211_CHAN_VHT40 (IEEE80211_CHAN_VHT40U | IEEE80211_CHAN_VHT40D)
#define IEEE80211_CHAN_VHT (IEEE80211_CHAN_VHT20 | IEEE80211_CHAN_VHT40 \
| IEEE80211_CHAN_VHT80 | IEEE80211_CHAN_VHT160 \
| IEEE80211_CHAN_VHT80P80)
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
#define IEEE80211_CHAN_BITS \
"\20\1PRIV0\2PRIV2\3PRIV3\4PRIV4\5TURBO\6CCK\7OFDM\0102GHZ\0115GHZ" \
"\12PASSIVE\13DYN\14GFSK\15GSM\16STURBO\17HALF\20QUARTER\21HT20" \
"\22HT40U\23HT40D\24DFS\0254MSXMIT\26NOADHOC\27NOHOSTAP\03011D" \
"\031VHT20\032VHT40U\033VHT40D\034VHT80\035VHT160\036VHT80P80"
/*
* Useful combinations of channel characteristics.
*/
#define IEEE80211_CHAN_FHSS \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
#define IEEE80211_CHAN_A \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_B \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
#define IEEE80211_CHAN_PUREG \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_G \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#define IEEE80211_CHAN_108A \
(IEEE80211_CHAN_A | IEEE80211_CHAN_TURBO)
#define IEEE80211_CHAN_108G \
(IEEE80211_CHAN_PUREG | IEEE80211_CHAN_TURBO)
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#define IEEE80211_CHAN_ST \
(IEEE80211_CHAN_108A | IEEE80211_CHAN_STURBO)
#define IEEE80211_CHAN_ALL \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_GFSK | \
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | \
IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER | \
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)
#define IEEE80211_CHAN_ALLTURBO \
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
(IEEE80211_CHAN_ALL | IEEE80211_CHAN_TURBO | IEEE80211_CHAN_STURBO)
#define IEEE80211_IS_CHAN_FHSS(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS)
#define IEEE80211_IS_CHAN_A(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)
#define IEEE80211_IS_CHAN_B(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)
#define IEEE80211_IS_CHAN_PUREG(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG)
#define IEEE80211_IS_CHAN_G(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)
#define IEEE80211_IS_CHAN_ANYG(_c) \
(IEEE80211_IS_CHAN_PUREG(_c) || IEEE80211_IS_CHAN_G(_c))
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#define IEEE80211_IS_CHAN_ST(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST)
#define IEEE80211_IS_CHAN_108A(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A)
#define IEEE80211_IS_CHAN_108G(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G)
#define IEEE80211_IS_CHAN_2GHZ(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_2GHZ) != 0)
#define IEEE80211_IS_CHAN_5GHZ(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_5GHZ) != 0)
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#define IEEE80211_IS_CHAN_PASSIVE(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_PASSIVE) != 0)
#define IEEE80211_IS_CHAN_OFDM(_c) \
(((_c)->ic_flags & (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN)) != 0)
#define IEEE80211_IS_CHAN_CCK(_c) \
(((_c)->ic_flags & (IEEE80211_CHAN_CCK | IEEE80211_CHAN_DYN)) != 0)
#define IEEE80211_IS_CHAN_DYN(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_DYN) == IEEE80211_CHAN_DYN)
#define IEEE80211_IS_CHAN_GFSK(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_GFSK) != 0)
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#define IEEE80211_IS_CHAN_TURBO(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_TURBO) != 0)
#define IEEE80211_IS_CHAN_STURBO(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_STURBO) != 0)
#define IEEE80211_IS_CHAN_DTURBO(_c) \
(((_c)->ic_flags & \
(IEEE80211_CHAN_TURBO | IEEE80211_CHAN_STURBO)) == IEEE80211_CHAN_TURBO)
#define IEEE80211_IS_CHAN_HALF(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_HALF) != 0)
#define IEEE80211_IS_CHAN_QUARTER(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_QUARTER) != 0)
#define IEEE80211_IS_CHAN_FULL(_c) \
(((_c)->ic_flags & (IEEE80211_CHAN_QUARTER | IEEE80211_CHAN_HALF)) == 0)
#define IEEE80211_IS_CHAN_GSM(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_GSM) != 0)
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
#define IEEE80211_IS_CHAN_HT(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_HT) != 0)
#define IEEE80211_IS_CHAN_HT20(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_HT20) != 0)
#define IEEE80211_IS_CHAN_HT40(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_HT40) != 0)
#define IEEE80211_IS_CHAN_HT40U(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_HT40U) != 0)
#define IEEE80211_IS_CHAN_HT40D(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_HT40D) != 0)
#define IEEE80211_IS_CHAN_HTA(_c) \
(IEEE80211_IS_CHAN_5GHZ(_c) && \
((_c)->ic_flags & IEEE80211_CHAN_HT) != 0)
#define IEEE80211_IS_CHAN_HTG(_c) \
(IEEE80211_IS_CHAN_2GHZ(_c) && \
((_c)->ic_flags & IEEE80211_CHAN_HT) != 0)
#define IEEE80211_IS_CHAN_DFS(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_DFS) != 0)
#define IEEE80211_IS_CHAN_NOADHOC(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_NOADHOC) != 0)
#define IEEE80211_IS_CHAN_NOHOSTAP(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_NOHOSTAP) != 0)
#define IEEE80211_IS_CHAN_11D(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_11D) != 0)
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
#define IEEE80211_IS_CHAN_VHT(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_VHT) != 0)
#define IEEE80211_IS_CHAN_VHT_2GHZ(_c) \
(IEEE80211_IS_CHAN_2GHZ(_c) && \
((_c)->ic_flags & IEEE80211_CHAN_VHT) != 0)
#define IEEE80211_IS_CHAN_VHT_5GHZ(_c) \
(IEEE80211_IS_CHAN_5GHZ(_c) && \
((_c)->ic_flags & IEEE80211_CHAN_VHT) != 0)
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
#define IEEE80211_IS_CHAN_VHT20(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_VHT20) != 0)
#define IEEE80211_IS_CHAN_VHT40(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_VHT40) != 0)
#define IEEE80211_IS_CHAN_VHT40U(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_VHT40U) != 0)
#define IEEE80211_IS_CHAN_VHT40D(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_VHT40D) != 0)
#define IEEE80211_IS_CHAN_VHTA(_c) \
(IEEE80211_IS_CHAN_5GHZ(_c) && \
((_c)->ic_flags & IEEE80211_CHAN_VHT) != 0)
#define IEEE80211_IS_CHAN_VHTG(_c) \
(IEEE80211_IS_CHAN_2GHZ(_c) && \
((_c)->ic_flags & IEEE80211_CHAN_VHT) != 0)
#define IEEE80211_IS_CHAN_VHT80(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_VHT80) != 0)
#define IEEE80211_IS_CHAN_VHT160(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_VHT160) != 0)
#define IEEE80211_IS_CHAN_VHT80P80(_c) \
(((_c)->ic_flags & IEEE80211_CHAN_VHT80P80) != 0)
[net80211] start laying down the foundation for 11ac support. This is a work in progress and some of this stuff may change; but hopefully I'm laying down enough stuff and space in fields to allow it to grow without another major recompile. We'll see! * Add a net80211 PHY type for VHT 2G and VHT 5G. Note - yes, VHT is supposed to be for 5GHZ, however some vendors (*cough* most of them) support some subset of VHT rate support in 2GHz. No - not 80MHz wide channels, but at least some MCS8-9 support, maybe some beamforming, and maybe some longer A-MPDU aggregates. I don't want to even think about MU-MIMO on 2GHz. * Add an ifmedia placeholder type for VHT rates. * Add channel flags for VHT, VHT20/40U/40D/80/80+80/160 * Add channel macros for the above * Add ieee80211_channel fields for the VHT information and flags, along with some padding (so this struct definitely grows.) * Add a phy type flag for VHT - 'v' * Bump the number of channels to a much higher amount - until we get something like the linux mac80211 chanctx abstraction (where the stack provides a current channel configuration via callbacks, versus the driver ever checking ic->ic_curchan or similar) we'll have to populate VHT+HT combinations. Eg, there'll likely be a full set of duplicate VHT20/40 channels to match HT channels. There will also be a full set of duplicate VHT80 channels - note that for VHT80, its assumed you're doing VHT40 as a base, so we don't need a duplicate of VHT80 + 20MHz only primary channels, only a duplicate of all the VHT40 combinations. I don't want to think about VHT80+80 or VHT160 for now - and I won't, as the current device I'm doing 11ac bringup on (QCA9880) only does VHT80. I'll likely revisit the channel configuration and scanning related stuff after I get VHT20/40 up. * Add vht flags and the basic MCS rate setup to ieee80211com, ieee80211vap and ieee80211_node in preparation for 11ac configuration. There is zero code that uses this right now. * Whilst here, add some more placeholders in case I need to extend out things by some uint32_t flag sized fields. Hopefully I won't! What I haven't yet done: * any of the code that uses this * any of the beamforming related fields * any of the MU-MIMO fields required for STA/AP operation * any of the IE fields in beacon frame / probe request/response handling and the calculations required for shifting beacon contents around when the TIM grows/shrinks This will require a full rebuild of net80211 related programs - ifconfig, hostapd, wpa_supplicant.
2016-12-16 04:43:31 +00:00
#define IEEE80211_CHAN2IEEE(_c) (_c)->ic_ieee
/* dynamic state */
#define IEEE80211_CHANSTATE_RADAR 0x01 /* radar detected */
#define IEEE80211_CHANSTATE_CACDONE 0x02 /* CAC completed */
#define IEEE80211_CHANSTATE_CWINT 0x04 /* interference detected */
#define IEEE80211_CHANSTATE_NORADAR 0x10 /* post notify on radar clear */
#define IEEE80211_IS_CHAN_RADAR(_c) \
(((_c)->ic_state & IEEE80211_CHANSTATE_RADAR) != 0)
#define IEEE80211_IS_CHAN_CACDONE(_c) \
(((_c)->ic_state & IEEE80211_CHANSTATE_CACDONE) != 0)
#define IEEE80211_IS_CHAN_CWINT(_c) \
(((_c)->ic_state & IEEE80211_CHANSTATE_CWINT) != 0)
/* ni_chan encoding for FH phy */
#define IEEE80211_FH_CHANMOD 80
#define IEEE80211_FH_CHAN(set,pat) (((set)-1)*IEEE80211_FH_CHANMOD+(pat))
#define IEEE80211_FH_CHANSET(chan) ((chan)/IEEE80211_FH_CHANMOD+1)
#define IEEE80211_FH_CHANPAT(chan) ((chan)%IEEE80211_FH_CHANMOD)
#define IEEE80211_TID_SIZE (WME_NUM_TID+1) /* WME TID's +1 for non-QoS */
#define IEEE80211_NONQOS_TID WME_NUM_TID /* index for non-QoS sta */
/*
* The 802.11 spec says at most 2007 stations may be
* associated at once. For most AP's this is way more
* than is feasible so we use a default of 128. This
* number may be overridden by the driver and/or by
* user configuration but may not be less than IEEE80211_AID_MIN.
*/
#define IEEE80211_AID_DEF 128
#define IEEE80211_AID_MIN 16
/*
* 802.11 rate set.
*/
#define IEEE80211_RATE_SIZE 8 /* 802.11 standard */
#define IEEE80211_RATE_MAXSIZE 15 /* max rates we'll handle */
struct ieee80211_rateset {
uint8_t rs_nrates;
uint8_t rs_rates[IEEE80211_RATE_MAXSIZE];
};
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* 802.11n variant of ieee80211_rateset. Instead of
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
* legacy rates the entries are MCS rates. We define
* the structure such that it can be used interchangeably
* with an ieee80211_rateset (modulo structure size).
*/
#define IEEE80211_HTRATE_MAXSIZE 77
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
struct ieee80211_htrateset {
uint8_t rs_nrates;
uint8_t rs_rates[IEEE80211_HTRATE_MAXSIZE];
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
};
#define IEEE80211_RATE_MCS 0x80
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
/*
* Per-mode transmit parameters/controls visible to user space.
* These can be used to set fixed transmit rate for all operating
* modes or on a per-client basis according to the capabilities
* of the client (e.g. an 11b client associated to an 11g ap).
*
* MCS are distinguished from legacy rates by or'ing in 0x80.
*/
struct ieee80211_txparam {
uint8_t ucastrate; /* ucast data rate (legacy/MCS|0x80) */
uint8_t mgmtrate; /* mgmt frame rate (legacy/MCS|0x80) */
uint8_t mcastrate; /* multicast rate (legacy/MCS|0x80) */
uint8_t maxretry; /* max unicast data retry count */
};
/*
* Per-mode roaming state visible to user space. There are two
* thresholds that control whether roaming is considered; when
* either is exceeded the 802.11 layer will check the scan cache
* for another AP. If the cache is stale then a scan may be
* triggered.
*/
struct ieee80211_roamparam {
int8_t rssi; /* rssi thresh (.5 dBm) */
uint8_t rate; /* tx rate thresh (.5 Mb/s or MCS) */
uint16_t pad; /* reserve */
};
/*
* Regulatory Information.
*/
struct ieee80211_regdomain {
uint16_t regdomain; /* SKU */
uint16_t country; /* ISO country code */
uint8_t location; /* I (indoor), O (outdoor), other */
uint8_t ecm; /* Extended Channel Mode */
char isocc[2]; /* country code string */
short pad[2];
};
/*
* MIMO antenna/radio state.
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
*/
#define IEEE80211_MAX_CHAINS 4
/*
* This is the number of sub-channels for a channel.
* 0 - pri20
* 1 - sec20 (HT40, VHT40)
* 2 - sec40 (VHT80)
* 3 - sec80 (VHT80+80, VHT160)
*/
#define IEEE80211_MAX_CHAIN_PRISEC 4
#define IEEE80211_MAX_EVM_DWORDS 16 /* 16 pilots, 4 chains */
#define IEEE80211_MAX_EVM_PILOTS 16 /* 468 subcarriers, 16 pilots */
struct ieee80211_mimo_chan_info {
int8_t rssi[IEEE80211_MAX_CHAIN_PRISEC];
int8_t noise[IEEE80211_MAX_CHAIN_PRISEC];
};
struct ieee80211_mimo_info {
struct ieee80211_mimo_chan_info ch[IEEE80211_MAX_CHAINS];
uint32_t evm[IEEE80211_MAX_EVM_DWORDS];
Update 802.11 wireless support: o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
2007-06-11 03:36:55 +00:00
};
/*
* ic_caps/iv_caps: device driver capabilities
*/
/* 0x2e available */
#define IEEE80211_C_STA 0x00000001 /* CAPABILITY: STA available */
#define IEEE80211_C_8023ENCAP 0x00000002 /* CAPABILITY: 802.3 encap */
#define IEEE80211_C_FF 0x00000040 /* CAPABILITY: ATH FF avail */
#define IEEE80211_C_TURBOP 0x00000080 /* CAPABILITY: ATH Turbo avail*/
#define IEEE80211_C_IBSS 0x00000100 /* CAPABILITY: IBSS available */
#define IEEE80211_C_PMGT 0x00000200 /* CAPABILITY: Power mgmt */
#define IEEE80211_C_HOSTAP 0x00000400 /* CAPABILITY: HOSTAP avail */
#define IEEE80211_C_AHDEMO 0x00000800 /* CAPABILITY: Old Adhoc Demo */
#define IEEE80211_C_SWRETRY 0x00001000 /* CAPABILITY: sw tx retry */
#define IEEE80211_C_TXPMGT 0x00002000 /* CAPABILITY: tx power mgmt */
#define IEEE80211_C_SHSLOT 0x00004000 /* CAPABILITY: short slottime */
#define IEEE80211_C_SHPREAMBLE 0x00008000 /* CAPABILITY: short preamble */
#define IEEE80211_C_MONITOR 0x00010000 /* CAPABILITY: monitor mode */
#define IEEE80211_C_DFS 0x00020000 /* CAPABILITY: DFS/radar avail*/
#define IEEE80211_C_MBSS 0x00040000 /* CAPABILITY: MBSS available */
#define IEEE80211_C_SWSLEEP 0x00080000 /* CAPABILITY: do sleep here */
#define IEEE80211_C_SWAMSDUTX 0x00100000 /* CAPABILITY: software A-MSDU TX */
#define IEEE80211_C_UAPSD 0x00200000 /* CAPABILITY: U-APSD */
/* 0x7c0000 available */
#define IEEE80211_C_WPA1 0x00800000 /* CAPABILITY: WPA1 avail */
#define IEEE80211_C_WPA2 0x01000000 /* CAPABILITY: WPA2 avail */
#define IEEE80211_C_WPA 0x01800000 /* CAPABILITY: WPA1+WPA2 avail*/
#define IEEE80211_C_BURST 0x02000000 /* CAPABILITY: frame bursting */
#define IEEE80211_C_WME 0x04000000 /* CAPABILITY: WME avail */
#define IEEE80211_C_WDS 0x08000000 /* CAPABILITY: 4-addr support */
/* 0x10000000 reserved */
#define IEEE80211_C_BGSCAN 0x20000000 /* CAPABILITY: bg scanning */
#define IEEE80211_C_TXFRAG 0x40000000 /* CAPABILITY: tx fragments */
#define IEEE80211_C_TDMA 0x80000000 /* CAPABILITY: TDMA avail */
/* XXX protection/barker? */
#define IEEE80211_C_OPMODE \
(IEEE80211_C_STA | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP | \
IEEE80211_C_AHDEMO | IEEE80211_C_MONITOR | IEEE80211_C_WDS | \
IEEE80211_C_TDMA | IEEE80211_C_MBSS)
#define IEEE80211_C_BITS \
"\20\1STA\002803ENCAP\7FF\10TURBOP\11IBSS\12PMGT" \
"\13HOSTAP\14AHDEMO\15SWRETRY\16TXPMGT\17SHSLOT\20SHPREAMBLE" \
"\21MONITOR\22DFS\23MBSS\30WPA1\31WPA2\32BURST\33WME\34WDS\36BGSCAN" \
"\37TXFRAG\40TDMA"
/*
* ic_htcaps/iv_htcaps: HT-specific device/driver capabilities
*
* NB: the low 16-bits are the 802.11 definitions, the upper
* 16-bits are used to define s/w/driver capabilities.
*/
#define IEEE80211_HTC_AMPDU 0x00010000 /* CAPABILITY: A-MPDU tx */
#define IEEE80211_HTC_AMSDU 0x00020000 /* CAPABILITY: A-MSDU tx */
/* NB: HT40 is implied by IEEE80211_HTCAP_CHWIDTH40 */
#define IEEE80211_HTC_HT 0x00040000 /* CAPABILITY: HT operation */
#define IEEE80211_HTC_SMPS 0x00080000 /* CAPABILITY: MIMO power save*/
#define IEEE80211_HTC_RIFS 0x00100000 /* CAPABILITY: RIFS support */
#define IEEE80211_HTC_RXUNEQUAL 0x00200000 /* CAPABILITY: RX unequal MCS */
#define IEEE80211_HTC_RXMCS32 0x00400000 /* CAPABILITY: MCS32 support */
#define IEEE80211_HTC_TXUNEQUAL 0x00800000 /* CAPABILITY: TX unequal MCS */
#define IEEE80211_HTC_TXMCS32 0x01000000 /* CAPABILITY: MCS32 support */
#define IEEE80211_HTC_TXLDPC 0x02000000 /* CAPABILITY: TX using LDPC */
[net80211] Add initial A-MSDU in A-MPDU negotation support. This is hopefully a big no-op unless you're running some extra patches to flip on A-MSDU options in a driver. 802.11n supports sending A-MSDU in A-MPDU. That lets you do things like pack small frames into an A-MSDU and stuff /those/ into an A-MPDU. It allows for much more efficient airtime because you're not wasting time sending small frames - which is still a problem when doing A-MPDU as there's still per-frame overhead and minimum A-MPDU density requirements. It, however, is optional for 802.11n. A lot of stuff doesn't advertise it (but does it, just wait!); and I know that ath10k does it and my ath(4) driver work supports it. Now, 802.11ac makes A-MSDU in A-MPDU something that can happen more frequently, because even though you can send very large A-MPDUs (like 1 megabyte and larger) you still have the small frame problem. So, 802.11ac NICs like ath10k and iwm will support A-MSDU in A-MPDU out of the box if it's enabled - and you can negotiate it. So, let's lay down the ground work to enable A-MSDU in A-MPDU. This will allow hardware like iwn(4) and ath(4) which supports software A-MSDU but hardware A-MPDU to be more efficient. Drivers that support A-MSDU in A-MPDU will set TX/RX htcap flags. Note this is separate from the software A-MSDU encap path; /that/ dictates whether net80211 is doing A-MSDU encapsulation or not. These HTC flags control negotiation, NOT encapsulation. Once this negotiation and driver bits are done, hardware like rtwn(4), run(4), and others will be able to use A-MSDU even without A-MPDU working; right now FF and A-MSDU aren't even attempted if you're an 11n node. It's a small hold-over from the initial A-MPDU work and I know how to fix it, but to flip it on properly I need to be able to negotiate or ignore A-MSDU in A-MPDU. Oh and the fun part - some 11ac APs I've tested will quite happily decap A-MSDU in A-MPDU even though they don't negotiate it when doing 802.11n. So hey, I know it works - I just want to properly handle things. :-) Tested: * AR9380, STA/AP mode
2020-06-05 07:38:10 +00:00
#define IEEE80211_HTC_RX_AMSDU_AMPDU 0x04000000 /* CAPABILITY: RX A-MSDU in A-MPDU */
#define IEEE80211_HTC_TX_AMSDU_AMPDU 0x08000000 /* CAPABILITY: TX A-MSDU in A-MPDU */
#define IEEE80211_C_HTCAP_BITS \
"\20\1LDPC\2CHWIDTH40\5GREENFIELD\6SHORTGI20\7SHORTGI40\10TXSTBC" \
[net80211] Add initial A-MSDU in A-MPDU negotation support. This is hopefully a big no-op unless you're running some extra patches to flip on A-MSDU options in a driver. 802.11n supports sending A-MSDU in A-MPDU. That lets you do things like pack small frames into an A-MSDU and stuff /those/ into an A-MPDU. It allows for much more efficient airtime because you're not wasting time sending small frames - which is still a problem when doing A-MPDU as there's still per-frame overhead and minimum A-MPDU density requirements. It, however, is optional for 802.11n. A lot of stuff doesn't advertise it (but does it, just wait!); and I know that ath10k does it and my ath(4) driver work supports it. Now, 802.11ac makes A-MSDU in A-MPDU something that can happen more frequently, because even though you can send very large A-MPDUs (like 1 megabyte and larger) you still have the small frame problem. So, 802.11ac NICs like ath10k and iwm will support A-MSDU in A-MPDU out of the box if it's enabled - and you can negotiate it. So, let's lay down the ground work to enable A-MSDU in A-MPDU. This will allow hardware like iwn(4) and ath(4) which supports software A-MSDU but hardware A-MPDU to be more efficient. Drivers that support A-MSDU in A-MPDU will set TX/RX htcap flags. Note this is separate from the software A-MSDU encap path; /that/ dictates whether net80211 is doing A-MSDU encapsulation or not. These HTC flags control negotiation, NOT encapsulation. Once this negotiation and driver bits are done, hardware like rtwn(4), run(4), and others will be able to use A-MSDU even without A-MPDU working; right now FF and A-MSDU aren't even attempted if you're an 11n node. It's a small hold-over from the initial A-MPDU work and I know how to fix it, but to flip it on properly I need to be able to negotiate or ignore A-MSDU in A-MPDU. Oh and the fun part - some 11ac APs I've tested will quite happily decap A-MSDU in A-MPDU even though they don't negotiate it when doing 802.11n. So hey, I know it works - I just want to properly handle things. :-) Tested: * AR9380, STA/AP mode
2020-06-05 07:38:10 +00:00
"\21AMPDU\22AMSDU\23HT\24SMPS\25RIFS\32TXLDPC\33RXAMSDUAMPDU" \
"\34TXAMSDUAMPDU"
/*
* RX status notification - which fields are valid.
*/
#define IEEE80211_R_NF 0x00000001 /* global NF value valid */
#define IEEE80211_R_RSSI 0x00000002 /* global RSSI value valid */
#define IEEE80211_R_C_CHAIN 0x00000004 /* RX chain count valid */
#define IEEE80211_R_C_NF 0x00000008 /* per-chain NF value valid */
#define IEEE80211_R_C_RSSI 0x00000010 /* per-chain RSSI value valid */
#define IEEE80211_R_C_EVM 0x00000020 /* per-chain EVM valid */
#define IEEE80211_R_C_HT40 0x00000040 /* RX'ed packet is 40mhz, pilots 4,5 valid */
#define IEEE80211_R_FREQ 0x00000080 /* Freq value populated, MHz */
#define IEEE80211_R_IEEE 0x00000100 /* IEEE value populated */
#define IEEE80211_R_BAND 0x00000200 /* Frequency band populated */
#define IEEE80211_R_TSF32 0x00004000 /* 32 bit TSF */
#define IEEE80211_R_TSF64 0x00008000 /* 64 bit TSF */
#define IEEE80211_R_TSF_START 0x00010000 /* TSF is sampled at start of frame */
#define IEEE80211_R_TSF_END 0x00020000 /* TSF is sampled at end of frame */
/*
* RX status notification - describe the packet.
*/
#define IEEE80211_RX_F_STBC 0x00000001
#define IEEE80211_RX_F_LDPC 0x00000002
#define IEEE80211_RX_F_AMSDU 0x00000004 /* This is the start of an decap AMSDU list */
#define IEEE80211_RX_F_AMSDU_MORE 0x00000008 /* This is another decap AMSDU frame in the batch */
#define IEEE80211_RX_F_AMPDU 0x00000010 /* This is the start of an decap AMPDU list */
#define IEEE80211_RX_F_AMPDU_MORE 0x00000020 /* This is another decap AMPDU frame in the batch */
#define IEEE80211_RX_F_FAIL_FCSCRC 0x00000040 /* Failed CRC/FCS */
#define IEEE80211_RX_F_FAIL_MIC 0x00000080 /* Failed MIC check */
#define IEEE80211_RX_F_DECRYPTED 0x00000100 /* Hardware decrypted */
#define IEEE80211_RX_F_IV_STRIP 0x00000200 /* Decrypted; IV stripped */
#define IEEE80211_RX_F_MMIC_STRIP 0x00000400 /* Decrypted; MMIC stripped */
#define IEEE80211_RX_F_SHORTGI 0x00000800 /* This is a short-GI frame */
#define IEEE80211_RX_F_CCK 0x00001000
#define IEEE80211_RX_F_OFDM 0x00002000
#define IEEE80211_RX_F_HT 0x00004000
#define IEEE80211_RX_F_VHT 0x00008000
/* Channel width */
#define IEEE80211_RX_FW_20MHZ 1
#define IEEE80211_RX_FW_40MHZ 2
#define IEEE80211_RX_FW_80MHZ 3
#define IEEE80211_RX_FW_160MHZ 4
/* PHY type */
#define IEEE80211_RX_FP_11B 1
#define IEEE80211_RX_FP_11G 2
#define IEEE80211_RX_FP_11A 3
#define IEEE80211_RX_FP_11NA 4
#define IEEE80211_RX_FP_11NG 5
struct ieee80211_rx_stats {
uint32_t r_flags; /* IEEE80211_R_* flags */
uint32_t c_pktflags; /* IEEE80211_RX_F_* flags */
uint64_t c_rx_tsf; /* 32 or 64 bit TSF */
/* All DWORD aligned */
int16_t c_nf_ctl[IEEE80211_MAX_CHAINS]; /* per-chain NF */
int16_t c_nf_ext[IEEE80211_MAX_CHAINS]; /* per-chain NF */
int16_t c_rssi_ctl[IEEE80211_MAX_CHAINS]; /* per-chain RSSI */
int16_t c_rssi_ext[IEEE80211_MAX_CHAINS]; /* per-chain RSSI */
/* 32 bits */
int8_t c_nf; /* global NF */
int8_t c_rssi; /* global RSSI */
uint8_t c_chain; /* number of RX chains involved */
uint8_t c_rate; /* legacy; 11n rate code; VHT MCS */
/* 32 bits */
uint16_t c_freq; /* Frequency, MHz */
uint8_t c_ieee; /* Channel */
uint8_t c_width; /* channel width, FW flags above */
/* 32 bits */
uint32_t c_band; /* Band; XXX we do not have a real band. */
/* Force alignment to DWORD */
union {
uint8_t evm[IEEE80211_MAX_CHAINS][IEEE80211_MAX_EVM_PILOTS];
/* per-chain, per-pilot EVM values */
uint32_t __aln[8];
} evm;
/* 32 bits */
uint8_t c_phytype; /* PHY type, FW flags above */
uint8_t c_vhtnss; /* VHT - number of spatial streams */
uint8_t c_pad2[2];
};
struct ieee80211_rx_params {
struct ieee80211_rx_stats params;
};
#endif /* _NET80211__IEEE80211_H_ */