1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/sys/kern/subr_sleepqueue.c

1171 lines
31 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Implementation of sleep queues used to hold queue of threads blocked on
* a wait channel. Sleep queues different from turnstiles in that wait
* channels are not owned by anyone, so there is no priority propagation.
* Sleep queues can also provide a timeout and can also be interrupted by
* signals. That said, there are several similarities between the turnstile
* and sleep queue implementations. (Note: turnstiles were implemented
* first.) For example, both use a hash table of the same size where each
* bucket is referred to as a "chain" that contains both a spin lock and
* a linked list of queues. An individual queue is located by using a hash
* to pick a chain, locking the chain, and then walking the chain searching
* for the queue. This means that a wait channel object does not need to
* embed it's queue head just as locks do not embed their turnstile queue
* head. Threads also carry around a sleep queue that they lend to the
* wait channel when blocking. Just as in turnstiles, the queue includes
* a free list of the sleep queues of other threads blocked on the same
* wait channel in the case of multiple waiters.
*
* Some additional functionality provided by sleep queues include the
* ability to set a timeout. The timeout is managed using a per-thread
* callout that resumes a thread if it is asleep. A thread may also
* catch signals while it is asleep (aka an interruptible sleep). The
* signal code uses sleepq_abort() to interrupt a sleeping thread. Finally,
* sleep queues also provide some extra assertions. One is not allowed to
* mix the sleep/wakeup and cv APIs for a given wait channel. Also, one
* must consistently use the same lock to synchronize with a wait channel,
* though this check is currently only a warning for sleep/wakeup due to
* pre-existing abuse of that API. The same lock must also be held when
* awakening threads, though that is currently only enforced for condition
* variables.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_sleepqueue_profiling.h"
#include "opt_ddb.h"
2007-06-12 23:27:31 +00:00
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/sleepqueue.h>
#include <sys/sysctl.h>
#include <vm/uma.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
/*
* Constants for the hash table of sleep queue chains. These constants are
* the same ones that 4BSD (and possibly earlier versions of BSD) used.
* Basically, we ignore the lower 8 bits of the address since most wait
* channel pointers are aligned and only look at the next 7 bits for the
* hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly.
*/
#define SC_TABLESIZE 128 /* Must be power of 2. */
#define SC_MASK (SC_TABLESIZE - 1)
#define SC_SHIFT 8
#define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
#define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)]
#define NR_SLEEPQS 2
/*
* There two different lists of sleep queues. Both lists are connected
* via the sq_hash entries. The first list is the sleep queue chain list
* that a sleep queue is on when it is attached to a wait channel. The
* second list is the free list hung off of a sleep queue that is attached
* to a wait channel.
*
* Each sleep queue also contains the wait channel it is attached to, the
* list of threads blocked on that wait channel, flags specific to the
* wait channel, and the lock used to synchronize with a wait channel.
* The flags are used to catch mismatches between the various consumers
* of the sleep queue API (e.g. sleep/wakeup and condition variables).
* The lock pointer is only used when invariants are enabled for various
* debugging checks.
*
* Locking key:
* c - sleep queue chain lock
*/
struct sleepqueue {
TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */
LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */
void *sq_wchan; /* (c) Wait channel. */
#ifdef INVARIANTS
int sq_type; /* (c) Queue type. */
struct lock_object *sq_lock; /* (c) Associated lock. */
#endif
};
struct sleepqueue_chain {
LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */
struct mtx sc_lock; /* Spin lock for this chain. */
#ifdef SLEEPQUEUE_PROFILING
u_int sc_depth; /* Length of sc_queues. */
u_int sc_max_depth; /* Max length of sc_queues. */
#endif
};
#ifdef SLEEPQUEUE_PROFILING
u_int sleepq_max_depth;
SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
"sleepq chain stats");
SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
0, "maxmimum depth achieved of a single chain");
static void sleepq_profile(const char *wmesg);
static int prof_enabled;
#endif
static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
static uma_zone_t sleepq_zone;
/*
* Prototypes for non-exported routines.
*/
static int sleepq_catch_signals(void *wchan, int pri);
static int sleepq_check_signals(void);
static int sleepq_check_timeout(void);
#ifdef INVARIANTS
static void sleepq_dtor(void *mem, int size, void *arg);
#endif
static int sleepq_init(void *mem, int size, int flags);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
int pri);
static void sleepq_switch(void *wchan, int pri);
static void sleepq_timeout(void *arg);
/*
* Early initialization of sleep queues that is called from the sleepinit()
* SYSINIT.
*/
void
init_sleepqueues(void)
{
#ifdef SLEEPQUEUE_PROFILING
struct sysctl_oid *chain_oid;
char chain_name[10];
#endif
int i;
for (i = 0; i < SC_TABLESIZE; i++) {
LIST_INIT(&sleepq_chains[i].sc_queues);
mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
MTX_SPIN | MTX_RECURSE);
#ifdef SLEEPQUEUE_PROFILING
snprintf(chain_name, sizeof(chain_name), "%d", i);
chain_oid = SYSCTL_ADD_NODE(NULL,
SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
"depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
"max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
NULL);
#endif
}
sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
#ifdef INVARIANTS
NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
#else
NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
#endif
thread0.td_sleepqueue = sleepq_alloc();
}
/*
* Get a sleep queue for a new thread.
*/
struct sleepqueue *
sleepq_alloc(void)
{
return (uma_zalloc(sleepq_zone, M_WAITOK));
}
/*
* Free a sleep queue when a thread is destroyed.
*/
void
sleepq_free(struct sleepqueue *sq)
{
uma_zfree(sleepq_zone, sq);
}
/*
* Lock the sleep queue chain associated with the specified wait channel.
*/
void
sleepq_lock(void *wchan)
{
struct sleepqueue_chain *sc;
sc = SC_LOOKUP(wchan);
mtx_lock_spin(&sc->sc_lock);
}
/*
* Look up the sleep queue associated with a given wait channel in the hash
* table locking the associated sleep queue chain. If no queue is found in
* the table, NULL is returned.
*/
struct sleepqueue *
sleepq_lookup(void *wchan)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
if (sq->sq_wchan == wchan)
return (sq);
return (NULL);
}
/*
* Unlock the sleep queue chain associated with a given wait channel.
*/
void
sleepq_release(void *wchan)
{
struct sleepqueue_chain *sc;
sc = SC_LOOKUP(wchan);
mtx_unlock_spin(&sc->sc_lock);
}
/*
* Places the current thread on the sleep queue for the specified wait
* channel. If INVARIANTS is enabled, then it associates the passed in
* lock with the sleepq to make sure it is held when that sleep queue is
* woken up.
*/
void
sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
int queue)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
struct thread *td;
td = curthread;
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
MPASS(td->td_sleepqueue != NULL);
MPASS(wchan != NULL);
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
/* If this thread is not allowed to sleep, die a horrible death. */
KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
("Trying sleep, but thread marked as sleeping prohibited"));
/* Look up the sleep queue associated with the wait channel 'wchan'. */
sq = sleepq_lookup(wchan);
/*
* If the wait channel does not already have a sleep queue, use
* this thread's sleep queue. Otherwise, insert the current thread
* into the sleep queue already in use by this wait channel.
*/
if (sq == NULL) {
#ifdef INVARIANTS
int i;
sq = td->td_sleepqueue;
for (i = 0; i < NR_SLEEPQS; i++)
KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
("thread's sleep queue %d is not empty", i));
KASSERT(LIST_EMPTY(&sq->sq_free),
("thread's sleep queue has a non-empty free list"));
KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
sq->sq_lock = lock;
sq->sq_type = flags & SLEEPQ_TYPE;
#endif
#ifdef SLEEPQUEUE_PROFILING
sc->sc_depth++;
if (sc->sc_depth > sc->sc_max_depth) {
sc->sc_max_depth = sc->sc_depth;
if (sc->sc_max_depth > sleepq_max_depth)
sleepq_max_depth = sc->sc_max_depth;
}
#endif
sq = td->td_sleepqueue;
LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
sq->sq_wchan = wchan;
} else {
MPASS(wchan == sq->sq_wchan);
MPASS(lock == sq->sq_lock);
MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
}
thread_lock(td);
TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
td->td_sleepqueue = NULL;
td->td_sqqueue = queue;
td->td_wchan = wchan;
td->td_wmesg = wmesg;
if (flags & SLEEPQ_INTERRUPTIBLE) {
Now that the return value semantics of cv's for multithreaded processes have been unified with that of msleep(9), further refine the sleepq interface and consolidate some duplicated code: - Move the pre-sleep checks for theaded processes into a thread_sleep_check() function in kern_thread.c. - Move all handling of TDF_SINTR to be internal to subr_sleepqueue.c. Specifically, if a thread is awakened by something other than a signal while checking for signals before going to sleep, clear TDF_SINTR in sleepq_catch_signals(). This removes a sched_lock lock/unlock combo in that edge case during an interruptible sleep. Also, fix sleepq_check_signals() to properly handle the condition if TDF_SINTR is clear rather than requiring the callers of the sleepq API to notice this edge case and call a non-_sig variant of sleepq_wait(). - Clarify the flags arguments to sleepq_add(), sleepq_signal() and sleepq_broadcast() by creating an explicit submask for sleepq types. Also, add an explicit SLEEPQ_MSLEEP type rather than a magic number of 0. Also, add a SLEEPQ_INTERRUPTIBLE flag for use with sleepq_add() and move the setting of TDF_SINTR to sleepq_add() if this flag is set rather than sleepq_catch_signals(). Note that it is the caller's responsibility to ensure that sleepq_catch_signals() is called if and only if this flag is passed to the preceeding sleepq_add(). Note that this also removes a sched_lock lock/unlock pair from sleepq_catch_signals(). It also ensures that for an interruptible sleep, TDF_SINTR is always set when TD_ON_SLEEPQ() is true.
2004-08-19 11:31:42 +00:00
td->td_flags |= TDF_SINTR;
td->td_flags &= ~TDF_SLEEPABORT;
}
thread_unlock(td);
}
/*
* Sets a timeout that will remove the current thread from the specified
* sleep queue after timo ticks if the thread has not already been awakened.
*/
void
sleepq_set_timeout(void *wchan, int timo)
{
struct sleepqueue_chain *sc;
struct thread *td;
td = curthread;
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
MPASS(TD_ON_SLEEPQ(td));
MPASS(td->td_sleepqueue == NULL);
MPASS(wchan != NULL);
callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
}
/*
* Marks the pending sleep of the current thread as interruptible and
* makes an initial check for pending signals before putting a thread
* to sleep. Enters and exits with the thread lock held. Thread lock
* may have transitioned from the sleepq lock to a run lock.
*/
static int
sleepq_catch_signals(void *wchan, int pri)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
struct thread *td;
struct proc *p;
struct sigacts *ps;
int sig, ret;
td = curthread;
p = curproc;
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
MPASS(wchan != NULL);
/*
* See if there are any pending signals for this thread. If not
* we can switch immediately. Otherwise do the signal processing
* directly.
*/
thread_lock(td);
if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
sleepq_switch(wchan, pri);
return (0);
}
thread_unlock(td);
mtx_unlock_spin(&sc->sc_lock);
CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
(void *)td, (long)p->p_pid, td->td_name);
PROC_LOCK(p);
ps = p->p_sigacts;
mtx_lock(&ps->ps_mtx);
sig = cursig(td);
if (sig == 0) {
mtx_unlock(&ps->ps_mtx);
ret = thread_suspend_check(1);
MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
} else {
if (SIGISMEMBER(ps->ps_sigintr, sig))
ret = EINTR;
else
ret = ERESTART;
mtx_unlock(&ps->ps_mtx);
}
mtx_lock_spin(&sc->sc_lock);
thread_lock(td);
PROC_UNLOCK(p);
if (ret == 0) {
sleepq_switch(wchan, pri);
return (0);
}
2006-02-23 03:42:17 +00:00
/*
* There were pending signals and this thread is still
* on the sleep queue, remove it from the sleep queue.
*/
if (TD_ON_SLEEPQ(td)) {
sq = sleepq_lookup(wchan);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
if (sleepq_resume_thread(sq, td, 0)) {
#ifdef INVARIANTS
/*
* This thread hasn't gone to sleep yet, so it
* should not be swapped out.
*/
panic("not waking up swapper");
#endif
}
}
mtx_unlock_spin(&sc->sc_lock);
MPASS(td->td_lock != &sc->sc_lock);
return (ret);
}
/*
* Switches to another thread if we are still asleep on a sleep queue.
* Returns with thread lock.
*/
static void
sleepq_switch(void *wchan, int pri)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
struct thread *td;
td = curthread;
sc = SC_LOOKUP(wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
THREAD_LOCK_ASSERT(td, MA_OWNED);
/*
* If we have a sleep queue, then we've already been woken up, so
* just return.
*/
if (td->td_sleepqueue != NULL) {
mtx_unlock_spin(&sc->sc_lock);
return;
}
/*
* If TDF_TIMEOUT is set, then our sleep has been timed out
* already but we are still on the sleep queue, so dequeue the
* thread and return.
*/
if (td->td_flags & TDF_TIMEOUT) {
MPASS(TD_ON_SLEEPQ(td));
sq = sleepq_lookup(wchan);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
if (sleepq_resume_thread(sq, td, 0)) {
#ifdef INVARIANTS
/*
* This thread hasn't gone to sleep yet, so it
* should not be swapped out.
*/
panic("not waking up swapper");
#endif
}
mtx_unlock_spin(&sc->sc_lock);
return;
}
#ifdef SLEEPQUEUE_PROFILING
if (prof_enabled)
sleepq_profile(td->td_wmesg);
#endif
MPASS(td->td_sleepqueue == NULL);
sched_sleep(td, pri);
thread_lock_set(td, &sc->sc_lock);
TD_SET_SLEEPING(td);
mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
}
/*
* Check to see if we timed out.
*/
static int
sleepq_check_timeout(void)
{
struct thread *td;
td = curthread;
THREAD_LOCK_ASSERT(td, MA_OWNED);
/*
* If TDF_TIMEOUT is set, we timed out.
*/
if (td->td_flags & TDF_TIMEOUT) {
td->td_flags &= ~TDF_TIMEOUT;
return (EWOULDBLOCK);
}
/*
* If TDF_TIMOFAIL is set, the timeout ran after we had
* already been woken up.
*/
if (td->td_flags & TDF_TIMOFAIL)
td->td_flags &= ~TDF_TIMOFAIL;
/*
* If callout_stop() fails, then the timeout is running on
* another CPU, so synchronize with it to avoid having it
* accidentally wake up a subsequent sleep.
*/
else if (callout_stop(&td->td_slpcallout) == 0) {
td->td_flags |= TDF_TIMEOUT;
TD_SET_SLEEPING(td);
mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
}
return (0);
}
/*
* Check to see if we were awoken by a signal.
*/
static int
sleepq_check_signals(void)
{
struct thread *td;
td = curthread;
THREAD_LOCK_ASSERT(td, MA_OWNED);
/* We are no longer in an interruptible sleep. */
if (td->td_flags & TDF_SINTR)
td->td_flags &= ~TDF_SINTR;
if (td->td_flags & TDF_SLEEPABORT) {
td->td_flags &= ~TDF_SLEEPABORT;
return (td->td_intrval);
}
return (0);
}
/*
* Block the current thread until it is awakened from its sleep queue.
*/
void
sleepq_wait(void *wchan, int pri)
{
struct thread *td;
td = curthread;
MPASS(!(td->td_flags & TDF_SINTR));
thread_lock(td);
sleepq_switch(wchan, pri);
thread_unlock(td);
}
/*
* Block the current thread until it is awakened from its sleep queue
* or it is interrupted by a signal.
*/
int
sleepq_wait_sig(void *wchan, int pri)
{
int rcatch;
int rval;
rcatch = sleepq_catch_signals(wchan, pri);
rval = sleepq_check_signals();
thread_unlock(curthread);
if (rcatch)
return (rcatch);
return (rval);
}
/*
* Block the current thread until it is awakened from its sleep queue
* or it times out while waiting.
*/
int
sleepq_timedwait(void *wchan, int pri)
{
struct thread *td;
int rval;
td = curthread;
MPASS(!(td->td_flags & TDF_SINTR));
thread_lock(td);
sleepq_switch(wchan, pri);
rval = sleepq_check_timeout();
thread_unlock(td);
return (rval);
}
/*
* Block the current thread until it is awakened from its sleep queue,
* it is interrupted by a signal, or it times out waiting to be awakened.
*/
int
sleepq_timedwait_sig(void *wchan, int pri)
{
int rcatch, rvalt, rvals;
rcatch = sleepq_catch_signals(wchan, pri);
rvalt = sleepq_check_timeout();
rvals = sleepq_check_signals();
thread_unlock(curthread);
if (rcatch)
return (rcatch);
if (rvals)
return (rvals);
return (rvalt);
}
/*
* Removes a thread from a sleep queue and makes it
* runnable.
*/
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
static int
sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
{
struct sleepqueue_chain *sc;
MPASS(td != NULL);
MPASS(sq->sq_wchan != NULL);
MPASS(td->td_wchan == sq->sq_wchan);
MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
THREAD_LOCK_ASSERT(td, MA_OWNED);
sc = SC_LOOKUP(sq->sq_wchan);
mtx_assert(&sc->sc_lock, MA_OWNED);
/* Remove the thread from the queue. */
TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
/*
* Get a sleep queue for this thread. If this is the last waiter,
* use the queue itself and take it out of the chain, otherwise,
* remove a queue from the free list.
*/
if (LIST_EMPTY(&sq->sq_free)) {
td->td_sleepqueue = sq;
#ifdef INVARIANTS
sq->sq_wchan = NULL;
#endif
#ifdef SLEEPQUEUE_PROFILING
sc->sc_depth--;
#endif
} else
td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
LIST_REMOVE(td->td_sleepqueue, sq_hash);
td->td_wmesg = NULL;
td->td_wchan = NULL;
td->td_flags &= ~TDF_SINTR;
CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
(void *)td, (long)td->td_proc->p_pid, td->td_name);
/* Adjust priority if requested. */
MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
if (pri != 0 && td->td_priority > pri)
sched_prio(td, pri);
/*
* Note that thread td might not be sleeping if it is running
* sleepq_catch_signals() on another CPU or is blocked on its
* proc lock to check signals. There's no need to mark the
* thread runnable in that case.
*/
if (TD_IS_SLEEPING(td)) {
TD_CLR_SLEEPING(td);
return (setrunnable(td));
}
return (0);
}
#ifdef INVARIANTS
/*
* UMA zone item deallocator.
*/
static void
sleepq_dtor(void *mem, int size, void *arg)
{
struct sleepqueue *sq;
int i;
sq = mem;
for (i = 0; i < NR_SLEEPQS; i++)
MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
}
#endif
/*
* UMA zone item initializer.
*/
static int
sleepq_init(void *mem, int size, int flags)
{
struct sleepqueue *sq;
int i;
bzero(mem, size);
sq = mem;
for (i = 0; i < NR_SLEEPQS; i++)
TAILQ_INIT(&sq->sq_blocked[i]);
LIST_INIT(&sq->sq_free);
return (0);
}
/*
* Find the highest priority thread sleeping on a wait channel and resume it.
*/
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
int
sleepq_signal(void *wchan, int flags, int pri, int queue)
{
struct sleepqueue *sq;
struct thread *td, *besttd;
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
int wakeup_swapper;
CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
sq = sleepq_lookup(wchan);
if (sq == NULL)
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
return (0);
Now that the return value semantics of cv's for multithreaded processes have been unified with that of msleep(9), further refine the sleepq interface and consolidate some duplicated code: - Move the pre-sleep checks for theaded processes into a thread_sleep_check() function in kern_thread.c. - Move all handling of TDF_SINTR to be internal to subr_sleepqueue.c. Specifically, if a thread is awakened by something other than a signal while checking for signals before going to sleep, clear TDF_SINTR in sleepq_catch_signals(). This removes a sched_lock lock/unlock combo in that edge case during an interruptible sleep. Also, fix sleepq_check_signals() to properly handle the condition if TDF_SINTR is clear rather than requiring the callers of the sleepq API to notice this edge case and call a non-_sig variant of sleepq_wait(). - Clarify the flags arguments to sleepq_add(), sleepq_signal() and sleepq_broadcast() by creating an explicit submask for sleepq types. Also, add an explicit SLEEPQ_MSLEEP type rather than a magic number of 0. Also, add a SLEEPQ_INTERRUPTIBLE flag for use with sleepq_add() and move the setting of TDF_SINTR to sleepq_add() if this flag is set rather than sleepq_catch_signals(). Note that it is the caller's responsibility to ensure that sleepq_catch_signals() is called if and only if this flag is passed to the preceeding sleepq_add(). Note that this also removes a sched_lock lock/unlock pair from sleepq_catch_signals(). It also ensures that for an interruptible sleep, TDF_SINTR is always set when TD_ON_SLEEPQ() is true.
2004-08-19 11:31:42 +00:00
KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
("%s: mismatch between sleep/wakeup and cv_*", __func__));
/*
* Find the highest priority thread on the queue. If there is a
* tie, use the thread that first appears in the queue as it has
* been sleeping the longest since threads are always added to
* the tail of sleep queues.
*/
besttd = NULL;
TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
if (besttd == NULL || td->td_priority < besttd->td_priority)
besttd = td;
}
MPASS(besttd != NULL);
thread_lock(besttd);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
thread_unlock(besttd);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
return (wakeup_swapper);
}
/*
* Resume all threads sleeping on a specified wait channel.
*/
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
int
sleepq_broadcast(void *wchan, int flags, int pri, int queue)
{
struct sleepqueue *sq;
struct thread *td, *tdn;
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
int wakeup_swapper;
CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
MPASS((queue >= 0) && (queue < NR_SLEEPQS));
sq = sleepq_lookup(wchan);
if (sq == NULL)
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
return (0);
Now that the return value semantics of cv's for multithreaded processes have been unified with that of msleep(9), further refine the sleepq interface and consolidate some duplicated code: - Move the pre-sleep checks for theaded processes into a thread_sleep_check() function in kern_thread.c. - Move all handling of TDF_SINTR to be internal to subr_sleepqueue.c. Specifically, if a thread is awakened by something other than a signal while checking for signals before going to sleep, clear TDF_SINTR in sleepq_catch_signals(). This removes a sched_lock lock/unlock combo in that edge case during an interruptible sleep. Also, fix sleepq_check_signals() to properly handle the condition if TDF_SINTR is clear rather than requiring the callers of the sleepq API to notice this edge case and call a non-_sig variant of sleepq_wait(). - Clarify the flags arguments to sleepq_add(), sleepq_signal() and sleepq_broadcast() by creating an explicit submask for sleepq types. Also, add an explicit SLEEPQ_MSLEEP type rather than a magic number of 0. Also, add a SLEEPQ_INTERRUPTIBLE flag for use with sleepq_add() and move the setting of TDF_SINTR to sleepq_add() if this flag is set rather than sleepq_catch_signals(). Note that it is the caller's responsibility to ensure that sleepq_catch_signals() is called if and only if this flag is passed to the preceeding sleepq_add(). Note that this also removes a sched_lock lock/unlock pair from sleepq_catch_signals(). It also ensures that for an interruptible sleep, TDF_SINTR is always set when TD_ON_SLEEPQ() is true.
2004-08-19 11:31:42 +00:00
KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
("%s: mismatch between sleep/wakeup and cv_*", __func__));
/* Resume all blocked threads on the sleep queue. */
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
wakeup_swapper = 0;
TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
thread_lock(td);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
if (sleepq_resume_thread(sq, td, pri))
wakeup_swapper = 1;
thread_unlock(td);
}
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
return (wakeup_swapper);
}
/*
* Time sleeping threads out. When the timeout expires, the thread is
* removed from the sleep queue and made runnable if it is still asleep.
*/
static void
sleepq_timeout(void *arg)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
struct thread *td;
void *wchan;
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
int wakeup_swapper;
td = arg;
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
wakeup_swapper = 0;
CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
/*
* First, see if the thread is asleep and get the wait channel if
* it is.
*/
thread_lock(td);
if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
wchan = td->td_wchan;
sc = SC_LOOKUP(wchan);
THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
sq = sleepq_lookup(wchan);
MPASS(sq != NULL);
td->td_flags |= TDF_TIMEOUT;
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
wakeup_swapper = sleepq_resume_thread(sq, td, 0);
thread_unlock(td);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
if (wakeup_swapper)
kick_proc0();
return;
}
/*
* If the thread is on the SLEEPQ but isn't sleeping yet, it
* can either be on another CPU in between sleepq_add() and
* one of the sleepq_*wait*() routines or it can be in
* sleepq_catch_signals().
*/
if (TD_ON_SLEEPQ(td)) {
Fix a bug where a thread that hit the race where the sleep timeout fires while the thread does not hold the thread lock would stop blocking for subsequent interruptible sleeps and would always immediately fail the sleep with EWOULDBLOCK instead (even sleeps that didn't have a timeout). Some background: - KSE has a facility for allowing one thread to interrupt another thread. During this process, the target thread aborts any interruptible sleeps much as if the target thread had a pending signal. Once the target thread acknowledges the interrupt, normal sleep handling resumes. KSE manages this via the TDF_INTERRUPTED flag. Specifically, it sets the flag when it sends an interrupt to another thread and clears it when the interrupt is acknowledged. (Note that this is purely a software interrupt sort of thing and has no relation to hardware interrupts or kernel interrupt threads.) - The old code for handling the sleep timeout race handled the race by setting the TDF_INTERRUPT flag and faking a KSE-style thread interrupt to the thread in the process of going to sleep. It probably should have just checked the TDF_TIMEOUT flag in sleepq_catch_signals() instead. - The bug was that the sleepq code would set TDF_INTERRUPT but it was never cleared. The sleepq code couldn't safely clear it in case there actually was a real KSE thread interrupt pending for the target thread (in fact, the sleepq timeout actually stomped on said pending interrupt). Thus, any future interruptible sleeps (*sleep(.. PCATCH ..) or cv_*wait_sig()) would see the TDF_INTERRUPT flag set and immediately fail with EWOULDBLOCK. The flag could be cleared if the thread belonged to a KSE process and another thread posted an interrupt to the original thread. However, in the more common case of a non-KSE process, the thread would pretty much stop sleeping. - Fix the bug by just setting TDF_TIMEOUT in the sleepq timeout code and not messing with TDF_INTERRUPT and td_intrval. With yesterday's fix to fix sleepq_switch() to check TDF_TIMEOUT, this is now sufficient. MFC after: 3 days
2008-01-25 19:44:46 +00:00
td->td_flags |= TDF_TIMEOUT;
thread_unlock(td);
return;
}
/*
* Now check for the edge cases. First, if TDF_TIMEOUT is set,
* then the other thread has already yielded to us, so clear
* the flag and resume it. If TDF_TIMEOUT is not set, then the
* we know that the other thread is not on a sleep queue, but it
* hasn't resumed execution yet. In that case, set TDF_TIMOFAIL
* to let it know that the timeout has already run and doesn't
* need to be canceled.
*/
if (td->td_flags & TDF_TIMEOUT) {
MPASS(TD_IS_SLEEPING(td));
td->td_flags &= ~TDF_TIMEOUT;
TD_CLR_SLEEPING(td);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
wakeup_swapper = setrunnable(td);
} else
td->td_flags |= TDF_TIMOFAIL;
thread_unlock(td);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
if (wakeup_swapper)
kick_proc0();
}
/*
* Resumes a specific thread from the sleep queue associated with a specific
* wait channel if it is on that queue.
*/
void
sleepq_remove(struct thread *td, void *wchan)
{
struct sleepqueue *sq;
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
int wakeup_swapper;
/*
* Look up the sleep queue for this wait channel, then re-check
* that the thread is asleep on that channel, if it is not, then
* bail.
*/
MPASS(wchan != NULL);
sleepq_lock(wchan);
sq = sleepq_lookup(wchan);
/*
* We can not lock the thread here as it may be sleeping on a
* different sleepq. However, holding the sleepq lock for this
* wchan can guarantee that we do not miss a wakeup for this
* channel. The asserts below will catch any false positives.
*/
if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
sleepq_release(wchan);
return;
}
/* Thread is asleep on sleep queue sq, so wake it up. */
thread_lock(td);
MPASS(sq != NULL);
MPASS(td->td_wchan == wchan);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
wakeup_swapper = sleepq_resume_thread(sq, td, 0);
thread_unlock(td);
sleepq_release(wchan);
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
if (wakeup_swapper)
kick_proc0();
}
/*
* Abort a thread as if an interrupt had occurred. Only abort
* interruptible waits (unfortunately it isn't safe to abort others).
*/
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
int
sleepq_abort(struct thread *td, int intrval)
{
struct sleepqueue *sq;
void *wchan;
THREAD_LOCK_ASSERT(td, MA_OWNED);
MPASS(TD_ON_SLEEPQ(td));
MPASS(td->td_flags & TDF_SINTR);
MPASS(intrval == EINTR || intrval == ERESTART);
/*
* If the TDF_TIMEOUT flag is set, just leave. A
* timeout is scheduled anyhow.
*/
if (td->td_flags & TDF_TIMEOUT)
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
return (0);
CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
(void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
td->td_intrval = intrval;
td->td_flags |= TDF_SLEEPABORT;
/*
* If the thread has not slept yet it will find the signal in
* sleepq_catch_signals() and call sleepq_resume_thread. Otherwise
* we have to do it here.
*/
if (!TD_IS_SLEEPING(td))
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
return (0);
wchan = td->td_wchan;
MPASS(wchan != NULL);
sq = sleepq_lookup(wchan);
MPASS(sq != NULL);
/* Thread is asleep on sleep queue sq, so wake it up. */
If a thread that is swapped out is made runnable, then the setrunnable() routine wakes up proc0 so that proc0 can swap the thread back in. Historically, this has been done by waking up proc0 directly from setrunnable() itself via a wakeup(). When waking up a sleeping thread that was swapped out (the usual case when waking proc0 since only sleeping threads are eligible to be swapped out), this resulted in a bit of recursion (e.g. wakeup() -> setrunnable() -> wakeup()). With sleep queues having separate locks in 6.x and later, this caused a spin lock LOR (sleepq lock -> sched_lock/thread lock -> sleepq lock). An attempt was made to fix this in 7.0 by making the proc0 wakeup use the ithread mechanism for doing the wakeup. However, this required grabbing proc0's thread lock to perform the wakeup. If proc0 was asleep elsewhere in the kernel (e.g. waiting for disk I/O), then this degenerated into the same LOR since the thread lock would be some other sleepq lock. Fix this by deferring the wakeup of the swapper until after the sleepq lock held by the upper layer has been locked. The setrunnable() routine now returns a boolean value to indicate whether or not proc0 needs to be woken up. The end result is that consumers of the sleepq API such as *sleep/wakeup, condition variables, sx locks, and lockmgr, have to wakeup proc0 if they get a non-zero return value from sleepq_abort(), sleepq_broadcast(), or sleepq_signal(). Discussed with: jeff Glanced at by: sam Tested by: Jurgen Weber jurgen - ish com au MFC after: 2 weeks
2008-08-05 20:02:31 +00:00
return (sleepq_resume_thread(sq, td, 0));
}
#ifdef SLEEPQUEUE_PROFILING
#define SLEEPQ_PROF_LOCATIONS 1024
#define SLEEPQ_SBUFSIZE (40 * 512)
struct sleepq_prof {
LIST_ENTRY(sleepq_prof) sp_link;
const char *sp_wmesg;
long sp_count;
};
LIST_HEAD(sqphead, sleepq_prof);
struct sqphead sleepq_prof_free;
struct sqphead sleepq_hash[SC_TABLESIZE];
static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
static struct mtx sleepq_prof_lock;
MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
static void
sleepq_profile(const char *wmesg)
{
struct sleepq_prof *sp;
mtx_lock_spin(&sleepq_prof_lock);
if (prof_enabled == 0)
goto unlock;
LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
if (sp->sp_wmesg == wmesg)
goto done;
sp = LIST_FIRST(&sleepq_prof_free);
if (sp == NULL)
goto unlock;
sp->sp_wmesg = wmesg;
LIST_REMOVE(sp, sp_link);
LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
done:
sp->sp_count++;
unlock:
mtx_unlock_spin(&sleepq_prof_lock);
return;
}
static void
sleepq_prof_reset(void)
{
struct sleepq_prof *sp;
int enabled;
int i;
mtx_lock_spin(&sleepq_prof_lock);
enabled = prof_enabled;
prof_enabled = 0;
for (i = 0; i < SC_TABLESIZE; i++)
LIST_INIT(&sleepq_hash[i]);
LIST_INIT(&sleepq_prof_free);
for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
sp = &sleepq_profent[i];
sp->sp_wmesg = NULL;
sp->sp_count = 0;
LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
}
prof_enabled = enabled;
mtx_unlock_spin(&sleepq_prof_lock);
}
static int
enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
{
int error, v;
v = prof_enabled;
error = sysctl_handle_int(oidp, &v, v, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == prof_enabled)
return (0);
if (v == 1)
sleepq_prof_reset();
mtx_lock_spin(&sleepq_prof_lock);
prof_enabled = !!v;
mtx_unlock_spin(&sleepq_prof_lock);
return (0);
}
static int
reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
{
int error, v;
v = 0;
error = sysctl_handle_int(oidp, &v, 0, req);
if (error)
return (error);
if (req->newptr == NULL)
return (error);
if (v == 0)
return (0);
sleepq_prof_reset();
return (0);
}
static int
dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
{
static int multiplier = 1;
struct sleepq_prof *sp;
struct sbuf *sb;
int enabled;
int error;
int i;
retry_sbufops:
sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN);
sbuf_printf(sb, "\nwmesg\tcount\n");
enabled = prof_enabled;
mtx_lock_spin(&sleepq_prof_lock);
prof_enabled = 0;
mtx_unlock_spin(&sleepq_prof_lock);
for (i = 0; i < SC_TABLESIZE; i++) {
LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
sbuf_printf(sb, "%s\t%ld\n",
sp->sp_wmesg, sp->sp_count);
if (sbuf_overflowed(sb)) {
sbuf_delete(sb);
multiplier++;
goto retry_sbufops;
}
}
}
mtx_lock_spin(&sleepq_prof_lock);
prof_enabled = enabled;
mtx_unlock_spin(&sleepq_prof_lock);
sbuf_finish(sb);
error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
sbuf_delete(sb);
return (error);
}
SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
NULL, 0, reset_sleepq_prof_stats, "I",
"Reset sleepqueue profiling statistics");
SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
#endif
#ifdef DDB
DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
{
struct sleepqueue_chain *sc;
struct sleepqueue *sq;
#ifdef INVARIANTS
struct lock_object *lock;
#endif
struct thread *td;
void *wchan;
int i;
if (!have_addr)
return;
/*
* First, see if there is an active sleep queue for the wait channel
* indicated by the address.
*/
wchan = (void *)addr;
sc = SC_LOOKUP(wchan);
LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
if (sq->sq_wchan == wchan)
goto found;
/*
* Second, see if there is an active sleep queue at the address
* indicated.
*/
for (i = 0; i < SC_TABLESIZE; i++)
LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
if (sq == (struct sleepqueue *)addr)
goto found;
}
db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
return;
found:
db_printf("Wait channel: %p\n", sq->sq_wchan);
#ifdef INVARIANTS
db_printf("Queue type: %d\n", sq->sq_type);
if (sq->sq_lock) {
lock = sq->sq_lock;
db_printf("Associated Interlock: %p - (%s) %s\n", lock,
LOCK_CLASS(lock)->lc_name, lock->lo_name);
}
#endif
db_printf("Blocked threads:\n");
for (i = 0; i < NR_SLEEPQS; i++) {
db_printf("\nQueue[%d]:\n", i);
if (TAILQ_EMPTY(&sq->sq_blocked[i]))
db_printf("\tempty\n");
else
TAILQ_FOREACH(td, &sq->sq_blocked[0],
td_slpq) {
db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
td->td_tid, td->td_proc->p_pid,
2008-07-28 18:33:43 +00:00
td->td_name);
}
}
}
/* Alias 'show sleepqueue' to 'show sleepq'. */
DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
#endif