These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
/*
|
1994-05-25 09:21:21 +00:00
|
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
|
|
* All rights reserved.
|
1994-05-24 10:09:53 +00:00
|
|
|
*
|
|
|
|
* This code is derived from software contributed to Berkeley by
|
|
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
2000-03-27 20:41:17 +00:00
|
|
|
* must display the following acknowledgement:
|
1994-05-24 10:09:53 +00:00
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1994-05-25 09:21:21 +00:00
|
|
|
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
|
1999-08-28 01:08:13 +00:00
|
|
|
* $FreeBSD$
|
1994-05-25 09:21:21 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
1994-05-24 10:09:53 +00:00
|
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*
|
1994-05-24 10:09:53 +00:00
|
|
|
* Permission to use, copy, modify and distribute this software and
|
|
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
|
|
* notice and this permission notice appear in all copies of the
|
|
|
|
* software, derivative works or modified versions, and any portions
|
|
|
|
* thereof, and that both notices appear in supporting documentation.
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*
|
|
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
1994-05-24 10:09:53 +00:00
|
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*
|
1994-05-24 10:09:53 +00:00
|
|
|
* Carnegie Mellon requests users of this software to return to
|
|
|
|
*
|
|
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
|
|
* School of Computer Science
|
|
|
|
* Carnegie Mellon University
|
|
|
|
* Pittsburgh PA 15213-3890
|
|
|
|
*
|
|
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
|
|
* rights to redistribute these changes.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Resident memory management module.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
2001-05-01 08:13:21 +00:00
|
|
|
#include <sys/lock.h>
|
1996-01-27 00:13:33 +00:00
|
|
|
#include <sys/malloc.h>
|
2001-05-22 07:01:11 +00:00
|
|
|
#include <sys/mutex.h>
|
1994-05-25 09:21:21 +00:00
|
|
|
#include <sys/proc.h>
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <sys/vmmeter.h>
|
1997-12-29 00:25:11 +00:00
|
|
|
#include <sys/vnode.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
#include <vm/vm.h>
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <vm/vm_param.h>
|
1995-03-16 18:17:34 +00:00
|
|
|
#include <vm/vm_kern.h>
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <vm/vm_object.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <vm/vm_page.h>
|
|
|
|
#include <vm/vm_pageout.h>
|
1999-01-21 08:29:12 +00:00
|
|
|
#include <vm/vm_pager.h>
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <vm/vm_extern.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1996-09-14 11:54:59 +00:00
|
|
|
static void vm_page_queue_init __P((void));
|
This mega-commit is meant to fix numerous interrelated problems. There
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
|
|
|
static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
|
1996-09-08 20:44:49 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Associated with page of user-allocatable memory is a
|
|
|
|
* page structure.
|
|
|
|
*/
|
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
static struct vm_page **vm_page_buckets; /* Array of buckets */
|
1995-12-14 09:55:16 +00:00
|
|
|
static int vm_page_bucket_count; /* How big is array? */
|
1995-11-20 12:20:02 +00:00
|
|
|
static int vm_page_hash_mask; /* Mask for hash function */
|
1998-02-05 03:32:49 +00:00
|
|
|
static volatile int vm_page_bucket_generation;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1999-10-30 07:37:14 +00:00
|
|
|
struct vpgqueues vm_page_queues[PQ_COUNT];
|
1996-09-08 20:44:49 +00:00
|
|
|
|
|
|
|
static void
|
|
|
|
vm_page_queue_init(void) {
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for(i=0;i<PQ_L2_SIZE;i++) {
|
|
|
|
vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
|
|
|
|
}
|
|
|
|
vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
|
|
|
|
|
|
|
|
vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
|
|
|
|
for(i=0;i<PQ_L2_SIZE;i++) {
|
|
|
|
vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
|
|
|
|
}
|
1999-10-30 07:37:14 +00:00
|
|
|
for(i=0;i<PQ_COUNT;i++) {
|
|
|
|
TAILQ_INIT(&vm_page_queues[i].pl);
|
1996-09-08 20:44:49 +00:00
|
|
|
}
|
|
|
|
}
|
1996-01-19 04:00:31 +00:00
|
|
|
|
1996-11-17 02:38:31 +00:00
|
|
|
vm_page_t vm_page_array = 0;
|
2000-05-21 12:50:18 +00:00
|
|
|
int vm_page_array_size = 0;
|
1996-11-17 02:38:31 +00:00
|
|
|
long first_page = 0;
|
|
|
|
int vm_page_zero_count = 0;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1998-04-15 17:47:40 +00:00
|
|
|
static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
|
1996-06-05 03:31:49 +00:00
|
|
|
static void vm_page_free_wakeup __P((void));
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* vm_set_page_size:
|
|
|
|
*
|
|
|
|
* Sets the page size, perhaps based upon the memory
|
|
|
|
* size. Must be called before any use of page-size
|
|
|
|
* dependent functions.
|
|
|
|
*/
|
1995-05-30 08:16:23 +00:00
|
|
|
void
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
vm_set_page_size()
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
if (cnt.v_page_size == 0)
|
1999-06-20 04:55:29 +00:00
|
|
|
cnt.v_page_size = PAGE_SIZE;
|
1999-06-22 07:18:20 +00:00
|
|
|
if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
|
1994-05-24 10:09:53 +00:00
|
|
|
panic("vm_set_page_size: page size not a power of two");
|
|
|
|
}
|
|
|
|
|
2000-05-21 12:50:18 +00:00
|
|
|
/*
|
|
|
|
* vm_add_new_page:
|
|
|
|
*
|
|
|
|
* Add a new page to the freelist for use by the system.
|
|
|
|
* Must be called at splhigh().
|
2001-05-19 01:28:09 +00:00
|
|
|
* Must be called with the vm_mtx held.
|
2000-05-21 12:50:18 +00:00
|
|
|
*/
|
|
|
|
vm_page_t
|
|
|
|
vm_add_new_page(pa)
|
|
|
|
vm_offset_t pa;
|
|
|
|
{
|
|
|
|
vm_page_t m;
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
2000-05-21 12:50:18 +00:00
|
|
|
++cnt.v_page_count;
|
|
|
|
++cnt.v_free_count;
|
|
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
|
|
m->phys_addr = pa;
|
|
|
|
m->flags = 0;
|
|
|
|
m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
|
|
|
|
m->queue = m->pc + PQ_FREE;
|
2000-12-18 20:12:13 +00:00
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
|
2000-05-21 12:50:18 +00:00
|
|
|
vm_page_queues[m->queue].lcnt++;
|
|
|
|
return (m);
|
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* vm_page_startup:
|
|
|
|
*
|
|
|
|
* Initializes the resident memory module.
|
|
|
|
*
|
|
|
|
* Allocates memory for the page cells, and
|
|
|
|
* for the object/offset-to-page hash table headers.
|
|
|
|
* Each page cell is initialized and placed on the free list.
|
|
|
|
*/
|
1994-05-25 09:21:21 +00:00
|
|
|
|
|
|
|
vm_offset_t
|
|
|
|
vm_page_startup(starta, enda, vaddr)
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
register vm_offset_t starta;
|
|
|
|
vm_offset_t enda;
|
2001-03-07 05:29:21 +00:00
|
|
|
vm_offset_t vaddr;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
register vm_offset_t mapped;
|
1999-01-21 08:29:12 +00:00
|
|
|
register struct vm_page **bucket;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
vm_size_t npages, page_range;
|
2001-03-01 19:21:24 +00:00
|
|
|
register vm_offset_t new_end;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
int i;
|
|
|
|
vm_offset_t pa;
|
1994-05-25 09:21:21 +00:00
|
|
|
int nblocks;
|
2001-03-01 19:21:24 +00:00
|
|
|
vm_offset_t last_pa;
|
1994-05-25 09:21:21 +00:00
|
|
|
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
/* the biggest memory array is the second group of pages */
|
2001-03-01 19:21:24 +00:00
|
|
|
vm_offset_t end;
|
1994-05-25 09:21:21 +00:00
|
|
|
vm_offset_t biggestone, biggestsize;
|
|
|
|
|
|
|
|
vm_offset_t total;
|
|
|
|
|
|
|
|
total = 0;
|
|
|
|
biggestsize = 0;
|
|
|
|
biggestone = 0;
|
|
|
|
nblocks = 0;
|
|
|
|
vaddr = round_page(vaddr);
|
|
|
|
|
|
|
|
for (i = 0; phys_avail[i + 1]; i += 2) {
|
|
|
|
phys_avail[i] = round_page(phys_avail[i]);
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
|
1994-05-25 09:21:21 +00:00
|
|
|
}
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1994-05-25 09:21:21 +00:00
|
|
|
for (i = 0; phys_avail[i + 1]; i += 2) {
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
int size = phys_avail[i + 1] - phys_avail[i];
|
|
|
|
|
1994-05-25 09:21:21 +00:00
|
|
|
if (size > biggestsize) {
|
|
|
|
biggestone = i;
|
|
|
|
biggestsize = size;
|
|
|
|
}
|
|
|
|
++nblocks;
|
|
|
|
total += size;
|
|
|
|
}
|
|
|
|
|
2001-03-01 19:21:24 +00:00
|
|
|
end = phys_avail[biggestone+1];
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Initialize the queue headers for the free queue, the active queue
|
|
|
|
* and the inactive queue.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1996-09-08 20:44:49 +00:00
|
|
|
vm_page_queue_init();
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Allocate (and initialize) the hash table buckets.
|
1995-05-30 08:16:23 +00:00
|
|
|
*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* The number of buckets MUST BE a power of 2, and the actual value is
|
|
|
|
* the next power of 2 greater than the number of physical pages in
|
1999-01-21 08:29:12 +00:00
|
|
|
* the system.
|
|
|
|
*
|
|
|
|
* We make the hash table approximately 2x the number of pages to
|
|
|
|
* reduce the chain length. This is about the same size using the
|
|
|
|
* singly-linked list as the 1x hash table we were using before
|
|
|
|
* using TAILQ but the chain length will be smaller.
|
1995-05-30 08:16:23 +00:00
|
|
|
*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Note: This computation can be tweaked if desired.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
if (vm_page_bucket_count == 0) {
|
1996-05-18 03:38:05 +00:00
|
|
|
vm_page_bucket_count = 1;
|
1994-05-25 09:21:21 +00:00
|
|
|
while (vm_page_bucket_count < atop(total))
|
1994-05-24 10:09:53 +00:00
|
|
|
vm_page_bucket_count <<= 1;
|
|
|
|
}
|
1999-01-21 08:29:12 +00:00
|
|
|
vm_page_bucket_count <<= 1;
|
1994-05-24 10:09:53 +00:00
|
|
|
vm_page_hash_mask = vm_page_bucket_count - 1;
|
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Validate these addresses.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
2001-03-01 19:21:24 +00:00
|
|
|
new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
|
|
|
|
new_end = trunc_page(new_end);
|
2001-03-07 05:29:21 +00:00
|
|
|
mapped = pmap_map(&vaddr, new_end, end,
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
VM_PROT_READ | VM_PROT_WRITE);
|
2001-03-07 05:29:21 +00:00
|
|
|
bzero((caddr_t) mapped, end - new_end);
|
1994-05-25 09:21:21 +00:00
|
|
|
|
2001-03-07 05:29:21 +00:00
|
|
|
vm_page_buckets = (struct vm_page **)mapped;
|
|
|
|
bucket = vm_page_buckets;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
for (i = 0; i < vm_page_bucket_count; i++) {
|
1999-01-21 08:29:12 +00:00
|
|
|
*bucket = NULL;
|
1994-05-24 10:09:53 +00:00
|
|
|
bucket++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Compute the number of pages of memory that will be available for
|
|
|
|
* use (taking into account the overhead of a page structure per
|
|
|
|
* page).
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1994-05-25 09:21:21 +00:00
|
|
|
first_page = phys_avail[0] / PAGE_SIZE;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1999-06-22 07:18:20 +00:00
|
|
|
page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
npages = (total - (page_range * sizeof(struct vm_page)) -
|
2001-03-01 19:21:24 +00:00
|
|
|
(end - new_end)) / PAGE_SIZE;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
2001-03-01 19:21:24 +00:00
|
|
|
end = new_end;
|
2001-03-07 05:29:21 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Initialize the mem entry structures now, and put them in the free
|
|
|
|
* queue.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
2001-03-01 19:21:24 +00:00
|
|
|
new_end = trunc_page(end - page_range * sizeof(struct vm_page));
|
2001-03-07 05:29:21 +00:00
|
|
|
mapped = pmap_map(&vaddr, new_end, end,
|
2001-03-01 19:21:24 +00:00
|
|
|
VM_PROT_READ | VM_PROT_WRITE);
|
2001-03-07 05:29:21 +00:00
|
|
|
vm_page_array = (vm_page_t) mapped;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Clear all of the page structures
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
|
|
|
|
vm_page_array_size = page_range;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1999-03-19 05:21:03 +00:00
|
|
|
/*
|
|
|
|
* Construct the free queue(s) in descending order (by physical
|
|
|
|
* address) so that the first 16MB of physical memory is allocated
|
|
|
|
* last rather than first. On large-memory machines, this avoids
|
|
|
|
* the exhaustion of low physical memory before isa_dmainit has run.
|
|
|
|
*/
|
1994-05-25 09:21:21 +00:00
|
|
|
cnt.v_page_count = 0;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
cnt.v_free_count = 0;
|
1994-05-25 09:21:21 +00:00
|
|
|
for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
|
2001-03-01 19:21:24 +00:00
|
|
|
pa = phys_avail[i];
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
if (i == biggestone)
|
2001-03-01 19:21:24 +00:00
|
|
|
last_pa = new_end;
|
1994-05-25 09:21:21 +00:00
|
|
|
else
|
2001-03-01 19:21:24 +00:00
|
|
|
last_pa = phys_avail[i + 1];
|
|
|
|
while (pa < last_pa && npages-- > 0) {
|
2000-05-21 12:50:18 +00:00
|
|
|
vm_add_new_page(pa);
|
1994-05-25 09:21:21 +00:00
|
|
|
pa += PAGE_SIZE;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
}
|
2001-03-07 05:29:21 +00:00
|
|
|
return (vaddr);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_page_hash:
|
|
|
|
*
|
|
|
|
* Distributes the object/offset key pair among hash buckets.
|
|
|
|
*
|
|
|
|
* NOTE: This macro depends on vm_page_bucket_count being a power of 2.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
1999-01-21 08:29:12 +00:00
|
|
|
*
|
|
|
|
* We try to randomize the hash based on the object to spread the pages
|
|
|
|
* out in the hash table without it costing us too much.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
1998-04-15 17:47:40 +00:00
|
|
|
static __inline int
|
1995-12-11 04:58:34 +00:00
|
|
|
vm_page_hash(object, pindex)
|
|
|
|
vm_object_t object;
|
|
|
|
vm_pindex_t pindex;
|
1994-05-25 09:21:21 +00:00
|
|
|
{
|
1999-01-21 08:29:12 +00:00
|
|
|
int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
|
|
|
|
|
|
|
|
return(i & vm_page_hash_mask);
|
1994-05-25 09:21:21 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_page_insert: [ internal use only ]
|
|
|
|
*
|
1998-12-23 01:52:47 +00:00
|
|
|
* Inserts the given mem entry into the object and object list.
|
|
|
|
*
|
|
|
|
* The pagetables are not updated but will presumably fault the page
|
|
|
|
* in if necessary, or if a kernel page the caller will at some point
|
|
|
|
* enter the page into the kernel's pmap. We are not allowed to block
|
|
|
|
* here so we *can't* do this anyway.
|
1994-05-24 10:09:53 +00:00
|
|
|
*
|
1995-03-01 23:30:04 +00:00
|
|
|
* The object and page must be locked, and must be splhigh.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1996-09-08 20:44:49 +00:00
|
|
|
void
|
1996-01-19 04:00:31 +00:00
|
|
|
vm_page_insert(m, object, pindex)
|
|
|
|
register vm_page_t m;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
register vm_object_t object;
|
1995-12-11 04:58:34 +00:00
|
|
|
register vm_pindex_t pindex;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1999-01-21 08:29:12 +00:00
|
|
|
register struct vm_page **bucket;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1998-10-21 14:46:42 +00:00
|
|
|
if (m->object != NULL)
|
1994-05-24 10:09:53 +00:00
|
|
|
panic("vm_page_insert: already inserted");
|
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Record the object/offset pair in this page
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1996-01-19 04:00:31 +00:00
|
|
|
m->object = object;
|
|
|
|
m->pindex = pindex;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Insert it into the object_object/offset hash table
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1995-12-11 04:58:34 +00:00
|
|
|
bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
|
1999-01-21 08:29:12 +00:00
|
|
|
m->hnext = *bucket;
|
|
|
|
*bucket = m;
|
VM level code cleanups.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
|
|
|
vm_page_bucket_generation++;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Now link into the object's list of backed pages.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1996-01-19 04:00:31 +00:00
|
|
|
TAILQ_INSERT_TAIL(&object->memq, m, listq);
|
1999-07-31 04:19:49 +00:00
|
|
|
object->generation++;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
1999-01-21 08:29:12 +00:00
|
|
|
* show that the object has one more resident page.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
object->resident_page_count++;
|
1999-02-24 21:26:26 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Since we are inserting a new and possibly dirty page,
|
|
|
|
* update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
|
|
|
|
*/
|
|
|
|
if (m->flags & PG_WRITEABLE)
|
|
|
|
vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
1999-01-21 08:29:12 +00:00
|
|
|
* vm_page_remove:
|
1994-05-24 10:09:53 +00:00
|
|
|
* NOTE: used by device pager as well -wfj
|
|
|
|
*
|
|
|
|
* Removes the given mem entry from the object/offset-page
|
1999-01-21 08:29:12 +00:00
|
|
|
* table and the object page list, but do not invalidate/terminate
|
|
|
|
* the backing store.
|
1994-05-24 10:09:53 +00:00
|
|
|
*
|
1995-03-01 23:30:04 +00:00
|
|
|
* The object and page must be locked, and at splhigh.
|
1999-01-21 08:29:12 +00:00
|
|
|
* The underlying pmap entry (if any) is NOT removed here.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1999-02-15 06:52:14 +00:00
|
|
|
void
|
1996-01-19 04:00:31 +00:00
|
|
|
vm_page_remove(m)
|
1999-01-21 08:29:12 +00:00
|
|
|
vm_page_t m;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1998-02-05 03:32:49 +00:00
|
|
|
vm_object_t object;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1998-10-21 14:46:42 +00:00
|
|
|
if (m->object == NULL)
|
1999-02-15 06:52:14 +00:00
|
|
|
return;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1998-01-31 11:56:53 +00:00
|
|
|
if ((m->flags & PG_BUSY) == 0) {
|
|
|
|
panic("vm_page_remove: page not busy");
|
|
|
|
}
|
1999-01-21 08:29:12 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Basically destroy the page.
|
|
|
|
*/
|
|
|
|
|
|
|
|
vm_page_wakeup(m);
|
1998-01-31 11:56:53 +00:00
|
|
|
|
1998-02-05 03:32:49 +00:00
|
|
|
object = m->object;
|
1996-09-28 03:33:40 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
1999-01-21 08:29:12 +00:00
|
|
|
* Remove from the object_object/offset hash table. The object
|
|
|
|
* must be on the hash queue, we will panic if it isn't
|
|
|
|
*
|
|
|
|
* Note: we must NULL-out m->hnext to prevent loops in detached
|
|
|
|
* buffers with vm_page_lookup().
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1999-02-15 06:52:14 +00:00
|
|
|
{
|
|
|
|
struct vm_page **bucket;
|
|
|
|
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
|
|
|
|
while (*bucket != m) {
|
|
|
|
if (*bucket == NULL)
|
|
|
|
panic("vm_page_remove(): page not found in hash");
|
|
|
|
bucket = &(*bucket)->hnext;
|
|
|
|
}
|
|
|
|
*bucket = m->hnext;
|
|
|
|
m->hnext = NULL;
|
|
|
|
vm_page_bucket_generation++;
|
1999-01-21 08:29:12 +00:00
|
|
|
}
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Now remove from the object's list of backed pages.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1998-02-05 03:32:49 +00:00
|
|
|
TAILQ_REMOVE(&object->memq, m, listq);
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* And show that the object has one fewer resident page.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1998-02-05 03:32:49 +00:00
|
|
|
object->resident_page_count--;
|
|
|
|
object->generation++;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1998-10-21 14:46:42 +00:00
|
|
|
m->object = NULL;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_page_lookup:
|
|
|
|
*
|
|
|
|
* Returns the page associated with the object/offset
|
|
|
|
* pair specified; if none is found, NULL is returned.
|
|
|
|
*
|
1999-01-21 08:29:12 +00:00
|
|
|
* NOTE: the code below does not lock. It will operate properly if
|
|
|
|
* an interrupt makes a change, but the generation algorithm will not
|
|
|
|
* operate properly in an SMP environment where both cpu's are able to run
|
2000-03-26 15:20:23 +00:00
|
|
|
* kernel code simultaneously.
|
2001-05-19 01:28:09 +00:00
|
|
|
* NOTE: under the giant vm lock we should be ok, there should be
|
|
|
|
* no reason to check vm_page_bucket_generation
|
1999-01-21 08:29:12 +00:00
|
|
|
*
|
1994-05-24 10:09:53 +00:00
|
|
|
* The object must be locked. No side effects.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
1999-01-21 08:29:12 +00:00
|
|
|
* This is a critical path routine
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1995-05-30 08:16:23 +00:00
|
|
|
vm_page_t
|
1995-12-11 04:58:34 +00:00
|
|
|
vm_page_lookup(object, pindex)
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
register vm_object_t object;
|
1995-12-11 04:58:34 +00:00
|
|
|
register vm_pindex_t pindex;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1996-01-19 04:00:31 +00:00
|
|
|
register vm_page_t m;
|
1999-01-21 08:29:12 +00:00
|
|
|
register struct vm_page **bucket;
|
1998-02-05 03:32:49 +00:00
|
|
|
int generation;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* Search the hash table for this object/offset pair
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
1998-02-05 03:32:49 +00:00
|
|
|
retry:
|
|
|
|
generation = vm_page_bucket_generation;
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
|
1999-01-21 08:29:12 +00:00
|
|
|
for (m = *bucket; m != NULL; m = m->hnext) {
|
1996-01-19 04:00:31 +00:00
|
|
|
if ((m->object == object) && (m->pindex == pindex)) {
|
1998-02-05 03:32:49 +00:00
|
|
|
if (vm_page_bucket_generation != generation)
|
|
|
|
goto retry;
|
1996-01-19 04:00:31 +00:00
|
|
|
return (m);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
}
|
1998-02-05 03:32:49 +00:00
|
|
|
if (vm_page_bucket_generation != generation)
|
|
|
|
goto retry;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
return (NULL);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_page_rename:
|
|
|
|
*
|
|
|
|
* Move the given memory entry from its
|
|
|
|
* current object to the specified target object/offset.
|
|
|
|
*
|
|
|
|
* The object must be locked.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
|
|
|
*
|
|
|
|
* Note: this routine will raise itself to splvm(), the caller need not.
|
1999-01-21 08:29:12 +00:00
|
|
|
*
|
|
|
|
* Note: swap associated with the page must be invalidated by the move. We
|
|
|
|
* have to do this for several reasons: (1) we aren't freeing the
|
|
|
|
* page, (2) we are dirtying the page, (3) the VM system is probably
|
|
|
|
* moving the page from object A to B, and will then later move
|
|
|
|
* the backing store from A to B and we can't have a conflict.
|
|
|
|
*
|
|
|
|
* Note: we *always* dirty the page. It is necessary both for the
|
|
|
|
* fact that we moved it, and because we may be invalidating
|
1999-01-24 06:00:31 +00:00
|
|
|
* swap. If the page is on the cache, we have to deactivate it
|
|
|
|
* or vm_page_dirty() will panic. Dirty pages are not allowed
|
|
|
|
* on the cache.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
1998-12-23 01:52:47 +00:00
|
|
|
|
1995-05-30 08:16:23 +00:00
|
|
|
void
|
1996-01-19 04:00:31 +00:00
|
|
|
vm_page_rename(m, new_object, new_pindex)
|
|
|
|
register vm_page_t m;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
register vm_object_t new_object;
|
1995-12-11 04:58:34 +00:00
|
|
|
vm_pindex_t new_pindex;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
int s;
|
|
|
|
|
1996-05-18 03:38:05 +00:00
|
|
|
s = splvm();
|
1996-01-19 04:00:31 +00:00
|
|
|
vm_page_remove(m);
|
|
|
|
vm_page_insert(m, new_object, new_pindex);
|
1999-01-24 06:00:31 +00:00
|
|
|
if (m->queue - m->pc == PQ_CACHE)
|
|
|
|
vm_page_deactivate(m);
|
|
|
|
vm_page_dirty(m);
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
splx(s);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1996-07-30 03:08:57 +00:00
|
|
|
/*
|
1998-12-23 01:52:47 +00:00
|
|
|
* vm_page_unqueue_nowakeup:
|
|
|
|
*
|
|
|
|
* vm_page_unqueue() without any wakeup
|
|
|
|
*
|
|
|
|
* This routine must be called at splhigh().
|
|
|
|
* This routine may not block.
|
1996-07-30 03:08:57 +00:00
|
|
|
*/
|
1998-12-23 01:52:47 +00:00
|
|
|
|
1996-09-08 20:44:49 +00:00
|
|
|
void
|
1996-07-30 03:08:57 +00:00
|
|
|
vm_page_unqueue_nowakeup(m)
|
|
|
|
vm_page_t m;
|
|
|
|
{
|
|
|
|
int queue = m->queue;
|
1996-09-28 03:33:40 +00:00
|
|
|
struct vpgqueues *pq;
|
1996-07-30 03:08:57 +00:00
|
|
|
if (queue != PQ_NONE) {
|
1996-09-28 03:33:40 +00:00
|
|
|
pq = &vm_page_queues[queue];
|
1996-07-30 03:08:57 +00:00
|
|
|
m->queue = PQ_NONE;
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_REMOVE(&pq->pl, m, pageq);
|
1998-01-31 11:56:53 +00:00
|
|
|
(*pq->cnt)--;
|
1999-07-31 18:31:00 +00:00
|
|
|
pq->lcnt--;
|
1996-07-30 03:08:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1995-03-01 23:30:04 +00:00
|
|
|
/*
|
1998-12-23 01:52:47 +00:00
|
|
|
* vm_page_unqueue:
|
|
|
|
*
|
|
|
|
* Remove a page from its queue.
|
|
|
|
*
|
|
|
|
* This routine must be called at splhigh().
|
|
|
|
* This routine may not block.
|
1995-03-01 23:30:04 +00:00
|
|
|
*/
|
1998-12-23 01:52:47 +00:00
|
|
|
|
1996-09-08 20:44:49 +00:00
|
|
|
void
|
1996-07-30 03:08:57 +00:00
|
|
|
vm_page_unqueue(m)
|
1996-06-05 03:31:49 +00:00
|
|
|
vm_page_t m;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
{
|
1996-01-19 04:00:31 +00:00
|
|
|
int queue = m->queue;
|
1996-09-28 03:33:40 +00:00
|
|
|
struct vpgqueues *pq;
|
2001-05-19 01:28:09 +00:00
|
|
|
|
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1996-06-05 03:31:49 +00:00
|
|
|
if (queue != PQ_NONE) {
|
|
|
|
m->queue = PQ_NONE;
|
1996-09-28 03:33:40 +00:00
|
|
|
pq = &vm_page_queues[queue];
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_REMOVE(&pq->pl, m, pageq);
|
1998-01-31 11:56:53 +00:00
|
|
|
(*pq->cnt)--;
|
1999-07-31 18:31:00 +00:00
|
|
|
pq->lcnt--;
|
1997-05-01 14:36:01 +00:00
|
|
|
if ((queue - m->pc) == PQ_CACHE) {
|
1999-09-17 04:56:40 +00:00
|
|
|
if (vm_paging_needed())
|
1996-06-05 03:31:49 +00:00
|
|
|
pagedaemon_wakeup();
|
|
|
|
}
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1999-02-07 20:45:15 +00:00
|
|
|
#if PQ_L2_SIZE > 1
|
|
|
|
|
1996-09-08 20:44:49 +00:00
|
|
|
/*
|
1998-12-23 01:52:47 +00:00
|
|
|
* vm_page_list_find:
|
|
|
|
*
|
|
|
|
* Find a page on the specified queue with color optimization.
|
|
|
|
*
|
1999-01-21 08:29:12 +00:00
|
|
|
* The page coloring optimization attempts to locate a page
|
|
|
|
* that does not overload other nearby pages in the object in
|
2000-03-26 15:20:23 +00:00
|
|
|
* the cpu's L1 or L2 caches. We need this optimization because
|
1999-01-21 08:29:12 +00:00
|
|
|
* cpu caches tend to be physical caches, while object spaces tend
|
|
|
|
* to be virtual.
|
|
|
|
*
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine must be called at splvm().
|
|
|
|
* This routine may not block.
|
1999-02-07 20:45:15 +00:00
|
|
|
*
|
|
|
|
* This routine may only be called from the vm_page_list_find() macro
|
|
|
|
* in vm_page.h
|
1996-09-08 20:44:49 +00:00
|
|
|
*/
|
|
|
|
vm_page_t
|
1999-02-07 20:45:15 +00:00
|
|
|
_vm_page_list_find(basequeue, index)
|
1996-09-08 20:44:49 +00:00
|
|
|
int basequeue, index;
|
|
|
|
{
|
1999-02-07 20:45:15 +00:00
|
|
|
int i;
|
|
|
|
vm_page_t m = NULL;
|
1997-11-06 08:35:50 +00:00
|
|
|
struct vpgqueues *pq;
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1997-11-06 08:35:50 +00:00
|
|
|
pq = &vm_page_queues[basequeue];
|
|
|
|
|
1999-02-07 20:45:15 +00:00
|
|
|
/*
|
|
|
|
* Note that for the first loop, index+i and index-i wind up at the
|
|
|
|
* same place. Even though this is not totally optimal, we've already
|
|
|
|
* blown it by missing the cache case so we do not care.
|
|
|
|
*/
|
1997-11-06 08:35:50 +00:00
|
|
|
|
1999-02-07 20:45:15 +00:00
|
|
|
for(i = PQ_L2_SIZE / 2; i > 0; --i) {
|
1999-10-30 07:37:14 +00:00
|
|
|
if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
|
1999-02-07 20:45:15 +00:00
|
|
|
break;
|
1996-09-08 20:44:49 +00:00
|
|
|
|
1999-10-30 07:37:14 +00:00
|
|
|
if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
|
1999-02-07 20:45:15 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
return(m);
|
1996-09-08 20:44:49 +00:00
|
|
|
}
|
|
|
|
|
1996-09-28 03:33:40 +00:00
|
|
|
#endif
|
|
|
|
|
This mega-commit is meant to fix numerous interrelated problems. There
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
|
|
|
/*
|
1998-12-23 01:52:47 +00:00
|
|
|
* vm_page_select_cache:
|
|
|
|
*
|
|
|
|
* Find a page on the cache queue with color optimization. As pages
|
|
|
|
* might be found, but not applicable, they are deactivated. This
|
|
|
|
* keeps us from using potentially busy cached pages.
|
|
|
|
*
|
|
|
|
* This routine must be called at splvm().
|
|
|
|
* This routine may not block.
|
This mega-commit is meant to fix numerous interrelated problems. There
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
|
|
|
*/
|
|
|
|
vm_page_t
|
|
|
|
vm_page_select_cache(object, pindex)
|
|
|
|
vm_object_t object;
|
|
|
|
vm_pindex_t pindex;
|
|
|
|
{
|
|
|
|
vm_page_t m;
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
This mega-commit is meant to fix numerous interrelated problems. There
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
|
|
|
while (TRUE) {
|
1999-02-07 20:45:15 +00:00
|
|
|
m = vm_page_list_find(
|
|
|
|
PQ_CACHE,
|
1999-02-08 00:37:36 +00:00
|
|
|
(pindex + object->pg_color) & PQ_L2_MASK,
|
|
|
|
FALSE
|
1999-02-07 20:45:15 +00:00
|
|
|
);
|
2000-05-29 22:40:54 +00:00
|
|
|
if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
|
This mega-commit is meant to fix numerous interrelated problems. There
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
|
|
|
m->hold_count || m->wire_count)) {
|
|
|
|
vm_page_deactivate(m);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1996-09-08 20:44:49 +00:00
|
|
|
/*
|
1998-12-23 01:52:47 +00:00
|
|
|
* vm_page_select_free:
|
|
|
|
*
|
1999-02-07 20:45:15 +00:00
|
|
|
* Find a free or zero page, with specified preference. We attempt to
|
|
|
|
* inline the nominal case and fall back to _vm_page_select_free()
|
|
|
|
* otherwise.
|
1998-12-23 01:52:47 +00:00
|
|
|
*
|
|
|
|
* This routine must be called at splvm().
|
|
|
|
* This routine may not block.
|
1996-09-08 20:44:49 +00:00
|
|
|
*/
|
1998-12-23 01:52:47 +00:00
|
|
|
|
1999-02-07 20:45:15 +00:00
|
|
|
static __inline vm_page_t
|
1999-02-08 00:37:36 +00:00
|
|
|
vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
|
1996-09-08 20:44:49 +00:00
|
|
|
{
|
1999-02-08 00:37:36 +00:00
|
|
|
vm_page_t m;
|
1997-11-06 08:35:50 +00:00
|
|
|
|
1999-02-08 00:37:36 +00:00
|
|
|
m = vm_page_list_find(
|
|
|
|
PQ_FREE,
|
|
|
|
(pindex + object->pg_color) & PQ_L2_MASK,
|
|
|
|
prefer_zero
|
|
|
|
);
|
1999-02-07 20:45:15 +00:00
|
|
|
return(m);
|
|
|
|
}
|
1997-11-06 08:35:50 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* vm_page_alloc:
|
|
|
|
*
|
|
|
|
* Allocate and return a memory cell associated
|
|
|
|
* with this VM object/offset pair.
|
|
|
|
*
|
1995-03-01 23:30:04 +00:00
|
|
|
* page_req classes:
|
|
|
|
* VM_ALLOC_NORMAL normal process request
|
|
|
|
* VM_ALLOC_SYSTEM system *really* needs a page
|
|
|
|
* VM_ALLOC_INTERRUPT interrupt time request
|
1995-09-03 20:40:43 +00:00
|
|
|
* VM_ALLOC_ZERO zero page
|
1995-01-24 10:14:09 +00:00
|
|
|
*
|
2001-05-19 01:28:09 +00:00
|
|
|
* vm_mtx must be locked.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
|
|
|
*
|
|
|
|
* Additional special handling is required when called from an
|
|
|
|
* interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with
|
|
|
|
* the page cache in this case.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
1999-02-15 06:52:14 +00:00
|
|
|
|
1994-05-25 09:21:21 +00:00
|
|
|
vm_page_t
|
1995-12-11 04:58:34 +00:00
|
|
|
vm_page_alloc(object, pindex, page_req)
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
vm_object_t object;
|
1995-12-11 04:58:34 +00:00
|
|
|
vm_pindex_t pindex;
|
1995-01-24 10:14:09 +00:00
|
|
|
int page_req;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1999-01-21 08:29:12 +00:00
|
|
|
register vm_page_t m = NULL;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
int s;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1999-01-08 17:31:30 +00:00
|
|
|
KASSERT(!vm_page_lookup(object, pindex),
|
|
|
|
("vm_page_alloc: page already allocated"));
|
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
1995-07-13 08:48:48 +00:00
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
/*
|
|
|
|
* The pager is allowed to eat deeper into the free page list.
|
|
|
|
*/
|
|
|
|
|
1995-03-01 23:30:04 +00:00
|
|
|
if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
|
|
|
|
page_req = VM_ALLOC_SYSTEM;
|
|
|
|
};
|
1995-05-30 08:16:23 +00:00
|
|
|
|
1996-05-18 03:38:05 +00:00
|
|
|
s = splvm();
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
loop:
|
1999-02-15 06:52:14 +00:00
|
|
|
if (cnt.v_free_count > cnt.v_free_reserved) {
|
|
|
|
/*
|
|
|
|
* Allocate from the free queue if there are plenty of pages
|
|
|
|
* in it.
|
|
|
|
*/
|
|
|
|
if (page_req == VM_ALLOC_ZERO)
|
1999-02-08 00:37:36 +00:00
|
|
|
m = vm_page_select_free(object, pindex, TRUE);
|
1999-02-15 06:52:14 +00:00
|
|
|
else
|
1999-02-08 00:37:36 +00:00
|
|
|
m = vm_page_select_free(object, pindex, FALSE);
|
1999-02-15 06:52:14 +00:00
|
|
|
} else if (
|
|
|
|
(page_req == VM_ALLOC_SYSTEM &&
|
|
|
|
cnt.v_cache_count == 0 &&
|
|
|
|
cnt.v_free_count > cnt.v_interrupt_free_min) ||
|
|
|
|
(page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
|
|
|
|
) {
|
|
|
|
/*
|
|
|
|
* Interrupt or system, dig deeper into the free list.
|
|
|
|
*/
|
|
|
|
m = vm_page_select_free(object, pindex, FALSE);
|
|
|
|
} else if (page_req != VM_ALLOC_INTERRUPT) {
|
|
|
|
/*
|
2000-03-26 15:20:23 +00:00
|
|
|
* Allocatable from cache (non-interrupt only). On success,
|
1999-02-15 06:52:14 +00:00
|
|
|
* we must free the page and try again, thus ensuring that
|
|
|
|
* cnt.v_*_free_min counters are replenished.
|
|
|
|
*/
|
|
|
|
m = vm_page_select_cache(object, pindex);
|
|
|
|
if (m == NULL) {
|
|
|
|
splx(s);
|
1996-05-31 00:38:04 +00:00
|
|
|
#if defined(DIAGNOSTIC)
|
1999-02-15 06:52:14 +00:00
|
|
|
if (cnt.v_cache_count > 0)
|
|
|
|
printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
|
1996-05-31 00:38:04 +00:00
|
|
|
#endif
|
VM level code cleanups.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
|
|
|
vm_pageout_deficit++;
|
1995-03-01 23:30:04 +00:00
|
|
|
pagedaemon_wakeup();
|
1996-01-19 04:00:31 +00:00
|
|
|
return (NULL);
|
1995-03-01 23:30:04 +00:00
|
|
|
}
|
1999-02-15 06:52:14 +00:00
|
|
|
KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
|
|
|
|
vm_page_busy(m);
|
|
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
|
|
vm_page_free(m);
|
|
|
|
goto loop;
|
|
|
|
} else {
|
|
|
|
/*
|
2000-03-26 15:20:23 +00:00
|
|
|
* Not allocatable from cache from interrupt, give up.
|
1999-02-15 06:52:14 +00:00
|
|
|
*/
|
|
|
|
splx(s);
|
|
|
|
vm_pageout_deficit++;
|
|
|
|
pagedaemon_wakeup();
|
|
|
|
return (NULL);
|
1995-03-01 23:30:04 +00:00
|
|
|
}
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1999-02-15 06:52:14 +00:00
|
|
|
/*
|
|
|
|
* At this point we had better have found a good page.
|
|
|
|
*/
|
|
|
|
|
|
|
|
KASSERT(
|
|
|
|
m != NULL,
|
|
|
|
("vm_page_alloc(): missing page on free queue\n")
|
|
|
|
);
|
1999-01-21 08:29:12 +00:00
|
|
|
|
|
|
|
/*
|
1999-02-15 06:52:14 +00:00
|
|
|
* Remove from free queue
|
1999-01-21 08:29:12 +00:00
|
|
|
*/
|
|
|
|
|
1999-11-10 05:23:19 +00:00
|
|
|
vm_page_unqueue_nowakeup(m);
|
1999-01-21 08:29:12 +00:00
|
|
|
|
1999-02-15 06:52:14 +00:00
|
|
|
/*
|
|
|
|
* Initialize structure. Only the PG_ZERO flag is inherited.
|
|
|
|
*/
|
1999-01-21 08:29:12 +00:00
|
|
|
|
1999-02-08 00:37:36 +00:00
|
|
|
if (m->flags & PG_ZERO) {
|
1999-01-21 08:29:12 +00:00
|
|
|
vm_page_zero_count--;
|
1998-03-01 04:18:54 +00:00
|
|
|
m->flags = PG_ZERO | PG_BUSY;
|
1996-01-19 04:00:31 +00:00
|
|
|
} else {
|
|
|
|
m->flags = PG_BUSY;
|
|
|
|
}
|
|
|
|
m->wire_count = 0;
|
1996-05-18 03:38:05 +00:00
|
|
|
m->hold_count = 0;
|
This commit does a couple of things:
Re-enables the RSS limiting, and the routine is now tail-recursive,
making it much more safe (eliminates the possiblity of kernel stack
overflow.) Also, the RSS limiting is a little more intelligent about
finding the likely objects that are pushing the process over the limit.
Added some sysctls that help with VM system tuning.
New sysctl features:
1) Enable/disable lru pageout algorithm.
vm.pageout_algorithm = 0, default algorithm that works
well, especially using X windows and heavy
memory loading. Can have adverse effects,
sometimes slowing down program loading.
vm.pageout_algorithm = 1, close to true LRU. Works much
better than clock, etc. Does not work as well as
the default algorithm in general. Certain memory
"malloc" type benchmarks work a little better with
this setting.
Please give me feedback on the performance results
associated with these.
2) Enable/disable swapping.
vm.swapping_enabled = 1, default.
vm.swapping_enabled = 0, useful for cases where swapping
degrades performance.
The config option "NO_SWAPPING" is still operative, and
takes precedence over the sysctl. If "NO_SWAPPING" is
specified, the sysctl still exists, but "vm.swapping_enabled"
is hard-wired to "0".
Each of these can be changed "on the fly."
1996-06-26 05:39:27 +00:00
|
|
|
m->act_count = 0;
|
1996-01-19 04:00:31 +00:00
|
|
|
m->busy = 0;
|
|
|
|
m->valid = 0;
|
1999-08-20 06:32:00 +00:00
|
|
|
KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
|
1995-01-10 09:19:52 +00:00
|
|
|
|
1998-12-23 01:52:47 +00:00
|
|
|
/*
|
|
|
|
* vm_page_insert() is safe prior to the splx(). Note also that
|
|
|
|
* inserting a page here does not insert it into the pmap (which
|
|
|
|
* could cause us to block allocating memory). We cannot block
|
|
|
|
* anywhere.
|
|
|
|
*/
|
|
|
|
|
1996-01-19 04:00:31 +00:00
|
|
|
vm_page_insert(m, object, pindex);
|
1995-01-10 09:19:52 +00:00
|
|
|
|
1995-03-01 23:30:04 +00:00
|
|
|
/*
|
|
|
|
* Don't wakeup too often - wakeup the pageout daemon when
|
|
|
|
* we would be nearly out of memory.
|
|
|
|
*/
|
Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
|
|
|
if (vm_paging_needed())
|
1995-03-01 23:30:04 +00:00
|
|
|
pagedaemon_wakeup();
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1998-01-17 09:17:02 +00:00
|
|
|
splx(s);
|
1998-01-12 01:46:33 +00:00
|
|
|
|
1996-01-19 04:00:31 +00:00
|
|
|
return (m);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1998-12-23 01:52:47 +00:00
|
|
|
/*
|
|
|
|
* vm_wait: (also see VM_WAIT macro)
|
|
|
|
*
|
|
|
|
* Block until free pages are available for allocation
|
|
|
|
*/
|
|
|
|
|
1996-11-28 23:15:07 +00:00
|
|
|
void
|
|
|
|
vm_wait()
|
|
|
|
{
|
|
|
|
int s;
|
|
|
|
|
|
|
|
s = splvm();
|
|
|
|
if (curproc == pageproc) {
|
|
|
|
vm_pageout_pages_needed = 1;
|
2001-05-19 01:28:09 +00:00
|
|
|
msleep(&vm_pageout_pages_needed, &vm_mtx, PSWP, "VMWait", 0);
|
1996-11-28 23:15:07 +00:00
|
|
|
} else {
|
|
|
|
if (!vm_pages_needed) {
|
Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
|
|
|
vm_pages_needed = 1;
|
1996-11-28 23:15:07 +00:00
|
|
|
wakeup(&vm_pages_needed);
|
|
|
|
}
|
2001-05-19 01:28:09 +00:00
|
|
|
msleep(&cnt.v_free_count, &vm_mtx, PVM, "vmwait", 0);
|
1996-11-28 23:15:07 +00:00
|
|
|
}
|
|
|
|
splx(s);
|
|
|
|
}
|
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
/*
|
|
|
|
* vm_await: (also see VM_AWAIT macro)
|
|
|
|
*
|
|
|
|
* asleep on an event that will signal when free pages are available
|
|
|
|
* for allocation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
vm_await()
|
|
|
|
{
|
|
|
|
int s;
|
|
|
|
|
|
|
|
s = splvm();
|
|
|
|
if (curproc == pageproc) {
|
|
|
|
vm_pageout_pages_needed = 1;
|
|
|
|
asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
|
|
|
|
} else {
|
|
|
|
if (!vm_pages_needed) {
|
|
|
|
vm_pages_needed++;
|
|
|
|
wakeup(&vm_pages_needed);
|
|
|
|
}
|
|
|
|
asleep(&cnt.v_free_count, PVM, "vmwait", 0);
|
|
|
|
}
|
|
|
|
splx(s);
|
|
|
|
}
|
|
|
|
|
1996-01-27 00:13:33 +00:00
|
|
|
/*
|
1996-05-18 03:38:05 +00:00
|
|
|
* vm_page_activate:
|
|
|
|
*
|
|
|
|
* Put the specified page on the active list (if appropriate).
|
1999-09-17 04:56:40 +00:00
|
|
|
* Ensure that act_count is at least ACT_INIT but do not otherwise
|
|
|
|
* mess with it.
|
1996-05-18 03:38:05 +00:00
|
|
|
*
|
|
|
|
* The page queues must be locked.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
1996-01-27 00:13:33 +00:00
|
|
|
*/
|
1996-05-18 03:38:05 +00:00
|
|
|
void
|
|
|
|
vm_page_activate(m)
|
|
|
|
register vm_page_t m;
|
1994-09-27 18:00:29 +00:00
|
|
|
{
|
1996-05-18 03:38:05 +00:00
|
|
|
int s;
|
1994-09-27 18:00:29 +00:00
|
|
|
|
1996-05-18 03:38:05 +00:00
|
|
|
s = splvm();
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1998-01-31 11:56:53 +00:00
|
|
|
if (m->queue != PQ_ACTIVE) {
|
|
|
|
if ((m->queue - m->pc) == PQ_CACHE)
|
|
|
|
cnt.v_reactivated++;
|
1994-09-27 18:00:29 +00:00
|
|
|
|
1998-01-31 11:56:53 +00:00
|
|
|
vm_page_unqueue(m);
|
1995-02-20 13:58:14 +00:00
|
|
|
|
2000-05-29 22:40:54 +00:00
|
|
|
if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
|
1998-01-31 11:56:53 +00:00
|
|
|
m->queue = PQ_ACTIVE;
|
1999-07-31 18:31:00 +00:00
|
|
|
vm_page_queues[PQ_ACTIVE].lcnt++;
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
1998-01-31 11:56:53 +00:00
|
|
|
if (m->act_count < ACT_INIT)
|
|
|
|
m->act_count = ACT_INIT;
|
|
|
|
cnt.v_active_count++;
|
|
|
|
}
|
|
|
|
} else {
|
This commit does a couple of things:
Re-enables the RSS limiting, and the routine is now tail-recursive,
making it much more safe (eliminates the possiblity of kernel stack
overflow.) Also, the RSS limiting is a little more intelligent about
finding the likely objects that are pushing the process over the limit.
Added some sysctls that help with VM system tuning.
New sysctl features:
1) Enable/disable lru pageout algorithm.
vm.pageout_algorithm = 0, default algorithm that works
well, especially using X windows and heavy
memory loading. Can have adverse effects,
sometimes slowing down program loading.
vm.pageout_algorithm = 1, close to true LRU. Works much
better than clock, etc. Does not work as well as
the default algorithm in general. Certain memory
"malloc" type benchmarks work a little better with
this setting.
Please give me feedback on the performance results
associated with these.
2) Enable/disable swapping.
vm.swapping_enabled = 1, default.
vm.swapping_enabled = 0, useful for cases where swapping
degrades performance.
The config option "NO_SWAPPING" is still operative, and
takes precedence over the sysctl. If "NO_SWAPPING" is
specified, the sysctl still exists, but "vm.swapping_enabled"
is hard-wired to "0".
Each of these can be changed "on the fly."
1996-06-26 05:39:27 +00:00
|
|
|
if (m->act_count < ACT_INIT)
|
|
|
|
m->act_count = ACT_INIT;
|
1994-09-27 18:00:29 +00:00
|
|
|
}
|
1998-01-31 11:56:53 +00:00
|
|
|
|
1994-09-27 18:00:29 +00:00
|
|
|
splx(s);
|
|
|
|
}
|
|
|
|
|
1996-06-05 03:31:49 +00:00
|
|
|
/*
|
1999-02-15 06:52:14 +00:00
|
|
|
* vm_page_free_wakeup:
|
|
|
|
*
|
|
|
|
* Helper routine for vm_page_free_toq() and vm_page_cache(). This
|
|
|
|
* routine is called when a page has been added to the cache or free
|
|
|
|
* queues.
|
1998-12-23 01:52:47 +00:00
|
|
|
*
|
1999-02-15 06:52:14 +00:00
|
|
|
* This routine may not block.
|
|
|
|
* This routine must be called at splvm()
|
1996-06-05 03:31:49 +00:00
|
|
|
*/
|
1999-01-21 08:29:12 +00:00
|
|
|
static __inline void
|
|
|
|
vm_page_free_wakeup()
|
1996-06-05 03:31:49 +00:00
|
|
|
{
|
1999-01-21 08:29:12 +00:00
|
|
|
/*
|
|
|
|
* if pageout daemon needs pages, then tell it that there are
|
|
|
|
* some free.
|
|
|
|
*/
|
Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
|
|
|
if (vm_pageout_pages_needed &&
|
|
|
|
cnt.v_cache_count + cnt.v_free_count >= cnt.v_pageout_free_min) {
|
1999-01-21 08:29:12 +00:00
|
|
|
wakeup(&vm_pageout_pages_needed);
|
|
|
|
vm_pageout_pages_needed = 0;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* wakeup processes that are waiting on memory if we hit a
|
|
|
|
* high water mark. And wakeup scheduler process if we have
|
|
|
|
* lots of memory. this process will swapin processes.
|
|
|
|
*/
|
Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
|
|
|
if (vm_pages_needed && !vm_page_count_min()) {
|
1999-01-21 08:29:12 +00:00
|
|
|
vm_pages_needed = 0;
|
Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
|
|
|
wakeup(&cnt.v_free_count);
|
1999-01-21 08:29:12 +00:00
|
|
|
}
|
|
|
|
}
|
1998-01-17 09:17:02 +00:00
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
/*
|
|
|
|
* vm_page_free_toq:
|
|
|
|
*
|
1999-08-17 18:09:01 +00:00
|
|
|
* Returns the given page to the PQ_FREE list,
|
1999-01-21 08:29:12 +00:00
|
|
|
* disassociating it with any VM object.
|
|
|
|
*
|
|
|
|
* Object and page must be locked prior to entry.
|
|
|
|
* This routine may not block.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
1999-02-08 00:37:36 +00:00
|
|
|
vm_page_free_toq(vm_page_t m)
|
1999-01-21 08:29:12 +00:00
|
|
|
{
|
|
|
|
int s;
|
|
|
|
struct vpgqueues *pq;
|
|
|
|
vm_object_t object = m->object;
|
|
|
|
|
|
|
|
s = splvm();
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1999-01-21 08:29:12 +00:00
|
|
|
cnt.v_tfree++;
|
1998-01-17 09:17:02 +00:00
|
|
|
|
1998-01-31 11:56:53 +00:00
|
|
|
if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
|
1996-06-05 03:31:49 +00:00
|
|
|
(m->hold_count != 0)) {
|
1998-07-11 07:46:16 +00:00
|
|
|
printf(
|
|
|
|
"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
|
|
|
|
(u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
|
|
|
|
m->hold_count);
|
1996-09-08 20:44:49 +00:00
|
|
|
if ((m->queue - m->pc) == PQ_FREE)
|
1996-06-05 03:31:49 +00:00
|
|
|
panic("vm_page_free: freeing free page");
|
|
|
|
else
|
|
|
|
panic("vm_page_free: freeing busy page");
|
|
|
|
}
|
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
/*
|
|
|
|
* unqueue, then remove page. Note that we cannot destroy
|
|
|
|
* the page here because we do not want to call the pager's
|
|
|
|
* callback routine until after we've put the page on the
|
|
|
|
* appropriate free queue.
|
|
|
|
*/
|
|
|
|
|
1996-07-30 03:08:57 +00:00
|
|
|
vm_page_unqueue_nowakeup(m);
|
1998-01-31 11:56:53 +00:00
|
|
|
vm_page_remove(m);
|
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
/*
|
|
|
|
* If fictitious remove object association and
|
|
|
|
* return, otherwise delay object association removal.
|
|
|
|
*/
|
|
|
|
|
1996-06-05 03:31:49 +00:00
|
|
|
if ((m->flags & PG_FICTITIOUS) != 0) {
|
1999-01-21 08:29:12 +00:00
|
|
|
splx(s);
|
|
|
|
return;
|
1996-06-05 03:31:49 +00:00
|
|
|
}
|
1998-01-31 11:56:53 +00:00
|
|
|
|
1998-03-01 04:18:54 +00:00
|
|
|
m->valid = 0;
|
1999-08-17 05:08:39 +00:00
|
|
|
vm_page_undirty(m);
|
1998-03-01 04:18:54 +00:00
|
|
|
|
1996-06-05 03:31:49 +00:00
|
|
|
if (m->wire_count != 0) {
|
|
|
|
if (m->wire_count > 1) {
|
1999-07-01 19:53:43 +00:00
|
|
|
panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
|
|
|
|
m->wire_count, (long)m->pindex);
|
1996-06-05 03:31:49 +00:00
|
|
|
}
|
1999-11-10 05:23:19 +00:00
|
|
|
panic("vm_page_free: freeing wired page\n");
|
1996-06-05 03:31:49 +00:00
|
|
|
}
|
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
/*
|
|
|
|
* If we've exhausted the object's resident pages we want to free
|
|
|
|
* it up.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (object &&
|
|
|
|
(object->type == OBJT_VNODE) &&
|
|
|
|
((object->flags & OBJ_DEAD) == 0)
|
|
|
|
) {
|
|
|
|
struct vnode *vp = (struct vnode *)object->handle;
|
|
|
|
|
2000-07-04 04:32:40 +00:00
|
|
|
if (vp && VSHOULDFREE(vp))
|
|
|
|
vfree(vp);
|
1998-01-17 09:17:02 +00:00
|
|
|
}
|
|
|
|
|
2000-05-29 22:40:54 +00:00
|
|
|
/*
|
|
|
|
* Clear the UNMANAGED flag when freeing an unmanaged page.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (m->flags & PG_UNMANAGED) {
|
|
|
|
m->flags &= ~PG_UNMANAGED;
|
|
|
|
} else {
|
1998-07-26 18:15:20 +00:00
|
|
|
#ifdef __alpha__
|
2000-05-29 22:40:54 +00:00
|
|
|
pmap_page_is_free(m);
|
1998-07-26 18:15:20 +00:00
|
|
|
#endif
|
2000-05-29 22:40:54 +00:00
|
|
|
}
|
1998-07-26 18:15:20 +00:00
|
|
|
|
1999-02-08 00:37:36 +00:00
|
|
|
m->queue = PQ_FREE + m->pc;
|
1996-09-28 03:33:40 +00:00
|
|
|
pq = &vm_page_queues[m->queue];
|
1999-07-31 18:31:00 +00:00
|
|
|
pq->lcnt++;
|
1996-09-28 03:33:40 +00:00
|
|
|
++(*pq->cnt);
|
1998-01-17 09:17:02 +00:00
|
|
|
|
1999-02-08 00:37:36 +00:00
|
|
|
/*
|
|
|
|
* Put zero'd pages on the end ( where we look for zero'd pages
|
|
|
|
* first ) and non-zerod pages at the head.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (m->flags & PG_ZERO) {
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
|
1999-01-21 08:29:12 +00:00
|
|
|
++vm_page_zero_count;
|
1999-02-08 00:37:36 +00:00
|
|
|
} else {
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
|
1996-06-05 03:31:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
vm_page_free_wakeup();
|
1999-01-21 08:29:12 +00:00
|
|
|
|
1996-06-16 20:37:31 +00:00
|
|
|
splx(s);
|
1996-06-05 03:31:49 +00:00
|
|
|
}
|
1994-05-25 09:21:21 +00:00
|
|
|
|
2000-05-29 22:40:54 +00:00
|
|
|
/*
|
|
|
|
* vm_page_unmanage:
|
|
|
|
*
|
|
|
|
* Prevent PV management from being done on the page. The page is
|
|
|
|
* removed from the paging queues as if it were wired, and as a
|
|
|
|
* consequence of no longer being managed the pageout daemon will not
|
|
|
|
* touch it (since there is no way to locate the pte mappings for the
|
|
|
|
* page). madvise() calls that mess with the pmap will also no longer
|
|
|
|
* operate on the page.
|
|
|
|
*
|
|
|
|
* Beyond that the page is still reasonably 'normal'. Freeing the page
|
|
|
|
* will clear the flag.
|
|
|
|
*
|
|
|
|
* This routine is used by OBJT_PHYS objects - objects using unswappable
|
|
|
|
* physical memory as backing store rather then swap-backed memory and
|
|
|
|
* will eventually be extended to support 4MB unmanaged physical
|
|
|
|
* mappings.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
vm_page_unmanage(vm_page_t m)
|
|
|
|
{
|
|
|
|
int s;
|
|
|
|
|
|
|
|
s = splvm();
|
|
|
|
if ((m->flags & PG_UNMANAGED) == 0) {
|
|
|
|
if (m->wire_count == 0)
|
|
|
|
vm_page_unqueue(m);
|
|
|
|
}
|
|
|
|
vm_page_flag_set(m, PG_UNMANAGED);
|
|
|
|
splx(s);
|
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* vm_page_wire:
|
|
|
|
*
|
|
|
|
* Mark this page as wired down by yet
|
|
|
|
* another map, removing it from paging queues
|
|
|
|
* as necessary.
|
|
|
|
*
|
|
|
|
* The page queues must be locked.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
1995-05-30 08:16:23 +00:00
|
|
|
void
|
1996-01-19 04:00:31 +00:00
|
|
|
vm_page_wire(m)
|
|
|
|
register vm_page_t m;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1994-05-25 09:21:21 +00:00
|
|
|
int s;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2000-05-29 22:40:54 +00:00
|
|
|
/*
|
|
|
|
* Only bump the wire statistics if the page is not already wired,
|
|
|
|
* and only unqueue the page if it is on some queue (if it is unmanaged
|
|
|
|
* it is already off the queues).
|
|
|
|
*/
|
1998-11-11 15:07:57 +00:00
|
|
|
s = splvm();
|
1996-01-19 04:00:31 +00:00
|
|
|
if (m->wire_count == 0) {
|
2000-05-29 22:40:54 +00:00
|
|
|
if ((m->flags & PG_UNMANAGED) == 0)
|
|
|
|
vm_page_unqueue(m);
|
1994-05-24 10:09:53 +00:00
|
|
|
cnt.v_wire_count++;
|
|
|
|
}
|
1996-01-19 04:00:31 +00:00
|
|
|
m->wire_count++;
|
1998-11-11 15:07:57 +00:00
|
|
|
splx(s);
|
1998-09-04 08:06:57 +00:00
|
|
|
vm_page_flag_set(m, PG_MAPPED);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_page_unwire:
|
|
|
|
*
|
|
|
|
* Release one wiring of this page, potentially
|
|
|
|
* enabling it to be paged again.
|
|
|
|
*
|
1999-01-21 08:29:12 +00:00
|
|
|
* Many pages placed on the inactive queue should actually go
|
|
|
|
* into the cache, but it is difficult to figure out which. What
|
|
|
|
* we do instead, if the inactive target is well met, is to put
|
|
|
|
* clean pages at the head of the inactive queue instead of the tail.
|
|
|
|
* This will cause them to be moved to the cache more quickly and
|
|
|
|
* if not actively re-referenced, freed more quickly. If we just
|
|
|
|
* stick these pages at the end of the inactive queue, heavy filesystem
|
|
|
|
* meta-data accesses can cause an unnecessary paging load on memory bound
|
|
|
|
* processes. This optimization causes one-time-use metadata to be
|
|
|
|
* reused more quickly.
|
|
|
|
*
|
Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
|
|
|
* BUT, if we are in a low-memory situation we have no choice but to
|
|
|
|
* put clean pages on the cache queue.
|
|
|
|
*
|
2000-03-26 15:20:23 +00:00
|
|
|
* A number of routines use vm_page_unwire() to guarantee that the page
|
1999-01-24 06:00:31 +00:00
|
|
|
* will go into either the inactive or active queues, and will NEVER
|
|
|
|
* be placed in the cache - for example, just after dirtying a page.
|
|
|
|
* dirty pages in the cache are not allowed.
|
|
|
|
*
|
1994-05-24 10:09:53 +00:00
|
|
|
* The page queues must be locked.
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
1995-05-30 08:16:23 +00:00
|
|
|
void
|
1998-10-28 13:37:02 +00:00
|
|
|
vm_page_unwire(m, activate)
|
1996-01-19 04:00:31 +00:00
|
|
|
register vm_page_t m;
|
1998-10-28 13:37:02 +00:00
|
|
|
int activate;
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
1994-05-25 09:21:21 +00:00
|
|
|
int s;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1996-05-18 03:38:05 +00:00
|
|
|
s = splvm();
|
1994-05-25 09:21:21 +00:00
|
|
|
|
1998-01-31 11:56:53 +00:00
|
|
|
if (m->wire_count > 0) {
|
1996-01-19 04:00:31 +00:00
|
|
|
m->wire_count--;
|
1998-01-31 11:56:53 +00:00
|
|
|
if (m->wire_count == 0) {
|
|
|
|
cnt.v_wire_count--;
|
2000-05-29 22:40:54 +00:00
|
|
|
if (m->flags & PG_UNMANAGED) {
|
|
|
|
;
|
|
|
|
} else if (activate) {
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
|
1998-10-28 13:37:02 +00:00
|
|
|
m->queue = PQ_ACTIVE;
|
1999-07-31 18:31:00 +00:00
|
|
|
vm_page_queues[PQ_ACTIVE].lcnt++;
|
1998-10-28 13:37:02 +00:00
|
|
|
cnt.v_active_count++;
|
|
|
|
} else {
|
2000-12-26 19:41:38 +00:00
|
|
|
vm_page_flag_clear(m, PG_WINATCFLS);
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
1998-10-28 13:37:02 +00:00
|
|
|
m->queue = PQ_INACTIVE;
|
1999-07-31 18:31:00 +00:00
|
|
|
vm_page_queues[PQ_INACTIVE].lcnt++;
|
1998-10-28 13:37:02 +00:00
|
|
|
cnt.v_inactive_count++;
|
|
|
|
}
|
1998-01-31 11:56:53 +00:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
|
1995-03-25 08:47:35 +00:00
|
|
|
}
|
|
|
|
splx(s);
|
|
|
|
}
|
|
|
|
|
1996-05-18 03:38:05 +00:00
|
|
|
|
1994-05-25 09:21:21 +00:00
|
|
|
/*
|
1999-01-21 08:29:12 +00:00
|
|
|
* Move the specified page to the inactive queue. If the page has
|
|
|
|
* any associated swap, the swap is deallocated.
|
1998-12-23 01:52:47 +00:00
|
|
|
*
|
1999-09-17 04:56:40 +00:00
|
|
|
* Normally athead is 0 resulting in LRU operation. athead is set
|
|
|
|
* to 1 if we want this page to be 'as if it were placed in the cache',
|
|
|
|
* except without unmapping it from the process address space.
|
|
|
|
*
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
1994-05-25 09:21:21 +00:00
|
|
|
*/
|
1999-09-17 04:56:40 +00:00
|
|
|
static __inline void
|
|
|
|
_vm_page_deactivate(vm_page_t m, int athead)
|
1994-05-25 09:21:21 +00:00
|
|
|
{
|
1996-05-31 00:38:04 +00:00
|
|
|
int s;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1994-05-25 09:21:21 +00:00
|
|
|
/*
|
1998-10-28 13:41:43 +00:00
|
|
|
* Ignore if already inactive.
|
1994-05-25 09:21:21 +00:00
|
|
|
*/
|
1996-01-19 04:00:31 +00:00
|
|
|
if (m->queue == PQ_INACTIVE)
|
|
|
|
return;
|
1994-05-25 09:21:21 +00:00
|
|
|
|
1996-05-31 00:38:04 +00:00
|
|
|
s = splvm();
|
2000-05-29 22:40:54 +00:00
|
|
|
if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
|
1996-09-08 20:44:49 +00:00
|
|
|
if ((m->queue - m->pc) == PQ_CACHE)
|
1995-03-25 08:47:35 +00:00
|
|
|
cnt.v_reactivated++;
|
2000-12-26 19:41:38 +00:00
|
|
|
vm_page_flag_clear(m, PG_WINATCFLS);
|
1996-07-30 03:08:57 +00:00
|
|
|
vm_page_unqueue(m);
|
1999-09-17 04:56:40 +00:00
|
|
|
if (athead)
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
1999-09-17 04:56:40 +00:00
|
|
|
else
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
|
1996-01-19 04:00:31 +00:00
|
|
|
m->queue = PQ_INACTIVE;
|
1999-07-31 18:31:00 +00:00
|
|
|
vm_page_queues[PQ_INACTIVE].lcnt++;
|
1994-05-25 09:21:21 +00:00
|
|
|
cnt.v_inactive_count++;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
}
|
1996-05-31 00:38:04 +00:00
|
|
|
splx(s);
|
1994-05-25 09:21:21 +00:00
|
|
|
}
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1999-09-17 04:56:40 +00:00
|
|
|
void
|
|
|
|
vm_page_deactivate(vm_page_t m)
|
|
|
|
{
|
|
|
|
_vm_page_deactivate(m, 0);
|
|
|
|
}
|
|
|
|
|
Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
|
|
|
/*
|
|
|
|
* vm_page_try_to_cache:
|
|
|
|
*
|
|
|
|
* Returns 0 on failure, 1 on success
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
vm_page_try_to_cache(vm_page_t m)
|
|
|
|
{
|
2001-05-19 01:28:09 +00:00
|
|
|
|
|
|
|
mtx_assert(VM_PAGE_MTX(m), MA_OWNED);
|
Implement a low-memory deadlock solution.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
|
|
|
if (m->dirty || m->hold_count || m->busy || m->wire_count ||
|
|
|
|
(m->flags & (PG_BUSY|PG_UNMANAGED))) {
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
vm_page_test_dirty(m);
|
|
|
|
if (m->dirty)
|
|
|
|
return(0);
|
|
|
|
vm_page_cache(m);
|
|
|
|
return(1);
|
|
|
|
}
|
|
|
|
|
2001-05-24 07:22:27 +00:00
|
|
|
/*
|
|
|
|
* vm_page_try_to_free()
|
|
|
|
*
|
|
|
|
* Attempt to free the page. If we cannot free it, we do nothing.
|
|
|
|
* 1 is returned on success, 0 on failure.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
vm_page_try_to_free(m)
|
|
|
|
vm_page_t m;
|
|
|
|
{
|
|
|
|
if (m->dirty || m->hold_count || m->busy || m->wire_count ||
|
|
|
|
(m->flags & (PG_BUSY|PG_UNMANAGED))) {
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
vm_page_test_dirty(m);
|
|
|
|
if (m->dirty)
|
|
|
|
return(0);
|
|
|
|
vm_page_busy(m);
|
|
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
|
|
vm_page_free(m);
|
|
|
|
return(1);
|
|
|
|
}
|
|
|
|
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
/*
|
|
|
|
* vm_page_cache
|
|
|
|
*
|
1999-01-21 08:29:12 +00:00
|
|
|
* Put the specified page onto the page cache queue (if appropriate).
|
|
|
|
*
|
1998-12-23 01:52:47 +00:00
|
|
|
* This routine may not block.
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*/
|
1995-05-30 08:16:23 +00:00
|
|
|
void
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
vm_page_cache(m)
|
|
|
|
register vm_page_t m;
|
|
|
|
{
|
|
|
|
int s;
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
2000-05-29 22:40:54 +00:00
|
|
|
if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
|
1996-03-28 04:53:28 +00:00
|
|
|
printf("vm_page_cache: attempting to cache busy page\n");
|
1996-01-19 04:00:31 +00:00
|
|
|
return;
|
1996-03-28 04:53:28 +00:00
|
|
|
}
|
1996-09-08 20:44:49 +00:00
|
|
|
if ((m->queue - m->pc) == PQ_CACHE)
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
return;
|
|
|
|
|
1999-01-24 01:04:04 +00:00
|
|
|
/*
|
|
|
|
* Remove all pmaps and indicate that the page is not
|
1999-01-24 02:29:26 +00:00
|
|
|
* writeable or mapped.
|
1999-01-24 01:04:04 +00:00
|
|
|
*/
|
|
|
|
|
1996-01-19 04:00:31 +00:00
|
|
|
vm_page_protect(m, VM_PROT_NONE);
|
1996-05-24 05:20:15 +00:00
|
|
|
if (m->dirty != 0) {
|
1999-07-01 19:53:43 +00:00
|
|
|
panic("vm_page_cache: caching a dirty page, pindex: %ld",
|
|
|
|
(long)m->pindex);
|
1996-05-24 05:20:15 +00:00
|
|
|
}
|
1996-05-18 03:38:05 +00:00
|
|
|
s = splvm();
|
1996-07-30 03:08:57 +00:00
|
|
|
vm_page_unqueue_nowakeup(m);
|
1996-09-08 20:44:49 +00:00
|
|
|
m->queue = PQ_CACHE + m->pc;
|
1999-07-31 18:31:00 +00:00
|
|
|
vm_page_queues[m->queue].lcnt++;
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
cnt.v_cache_count++;
|
1996-06-16 20:37:31 +00:00
|
|
|
vm_page_free_wakeup();
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
splx(s);
|
|
|
|
}
|
|
|
|
|
1999-09-17 04:56:40 +00:00
|
|
|
/*
|
|
|
|
* vm_page_dontneed
|
|
|
|
*
|
|
|
|
* Cache, deactivate, or do nothing as appropriate. This routine
|
|
|
|
* is typically used by madvise() MADV_DONTNEED.
|
|
|
|
*
|
|
|
|
* Generally speaking we want to move the page into the cache so
|
|
|
|
* it gets reused quickly. However, this can result in a silly syndrome
|
|
|
|
* due to the page recycling too quickly. Small objects will not be
|
|
|
|
* fully cached. On the otherhand, if we move the page to the inactive
|
|
|
|
* queue we wind up with a problem whereby very large objects
|
|
|
|
* unnecessarily blow away our inactive and cache queues.
|
|
|
|
*
|
|
|
|
* The solution is to move the pages based on a fixed weighting. We
|
|
|
|
* either leave them alone, deactivate them, or move them to the cache,
|
|
|
|
* where moving them to the cache has the highest weighting.
|
|
|
|
* By forcing some pages into other queues we eventually force the
|
|
|
|
* system to balance the queues, potentially recovering other unrelated
|
|
|
|
* space from active. The idea is to not force this to happen too
|
|
|
|
* often.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
vm_page_dontneed(m)
|
|
|
|
vm_page_t m;
|
|
|
|
{
|
|
|
|
static int dnweight;
|
|
|
|
int dnw;
|
|
|
|
int head;
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1999-09-17 04:56:40 +00:00
|
|
|
dnw = ++dnweight;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* occassionally leave the page alone
|
|
|
|
*/
|
|
|
|
|
|
|
|
if ((dnw & 0x01F0) == 0 ||
|
|
|
|
m->queue == PQ_INACTIVE ||
|
|
|
|
m->queue - m->pc == PQ_CACHE
|
|
|
|
) {
|
|
|
|
if (m->act_count >= ACT_INIT)
|
|
|
|
--m->act_count;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (m->dirty == 0)
|
|
|
|
vm_page_test_dirty(m);
|
|
|
|
|
|
|
|
if (m->dirty || (dnw & 0x0070) == 0) {
|
|
|
|
/*
|
|
|
|
* Deactivate the page 3 times out of 32.
|
|
|
|
*/
|
|
|
|
head = 0;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Cache the page 28 times out of every 32. Note that
|
|
|
|
* the page is deactivated instead of cached, but placed
|
|
|
|
* at the head of the queue instead of the tail.
|
|
|
|
*/
|
|
|
|
head = 1;
|
|
|
|
}
|
|
|
|
_vm_page_deactivate(m, head);
|
|
|
|
}
|
|
|
|
|
1998-02-05 03:32:49 +00:00
|
|
|
/*
|
|
|
|
* Grab a page, waiting until we are waken up due to the page
|
|
|
|
* changing state. We keep on waiting, if the page continues
|
|
|
|
* to be in the object. If the page doesn't exist, allocate it.
|
1998-12-23 01:52:47 +00:00
|
|
|
*
|
|
|
|
* This routine may block.
|
2001-05-19 01:28:09 +00:00
|
|
|
* Requires vm_mtx.
|
1998-02-05 03:32:49 +00:00
|
|
|
*/
|
|
|
|
vm_page_t
|
|
|
|
vm_page_grab(object, pindex, allocflags)
|
|
|
|
vm_object_t object;
|
|
|
|
vm_pindex_t pindex;
|
|
|
|
int allocflags;
|
|
|
|
{
|
|
|
|
vm_page_t m;
|
|
|
|
int s, generation;
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1998-02-05 03:32:49 +00:00
|
|
|
retrylookup:
|
|
|
|
if ((m = vm_page_lookup(object, pindex)) != NULL) {
|
|
|
|
if (m->busy || (m->flags & PG_BUSY)) {
|
|
|
|
generation = object->generation;
|
|
|
|
|
|
|
|
s = splvm();
|
|
|
|
while ((object->generation == generation) &&
|
|
|
|
(m->busy || (m->flags & PG_BUSY))) {
|
1998-09-04 08:06:57 +00:00
|
|
|
vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
|
2001-05-19 01:28:09 +00:00
|
|
|
msleep(m, &vm_mtx, PVM, "pgrbwt", 0);
|
1998-02-05 03:32:49 +00:00
|
|
|
if ((allocflags & VM_ALLOC_RETRY) == 0) {
|
|
|
|
splx(s);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
splx(s);
|
|
|
|
goto retrylookup;
|
|
|
|
} else {
|
1998-09-04 08:06:57 +00:00
|
|
|
vm_page_busy(m);
|
1998-02-05 03:32:49 +00:00
|
|
|
return m;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
|
|
|
|
if (m == NULL) {
|
|
|
|
VM_WAIT;
|
|
|
|
if ((allocflags & VM_ALLOC_RETRY) == 0)
|
|
|
|
return NULL;
|
|
|
|
goto retrylookup;
|
|
|
|
}
|
|
|
|
|
|
|
|
return m;
|
|
|
|
}
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
|
|
|
/*
|
1999-04-05 19:38:30 +00:00
|
|
|
* Mapping function for valid bits or for dirty bits in
|
1998-12-23 01:52:47 +00:00
|
|
|
* a page. May not block.
|
1999-04-05 19:38:30 +00:00
|
|
|
*
|
|
|
|
* Inputs are required to range within a page.
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*/
|
1999-04-05 19:38:30 +00:00
|
|
|
|
1998-04-15 17:47:40 +00:00
|
|
|
__inline int
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
vm_page_bits(int base, int size)
|
|
|
|
{
|
1999-04-05 19:38:30 +00:00
|
|
|
int first_bit;
|
|
|
|
int last_bit;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1999-04-05 19:38:30 +00:00
|
|
|
KASSERT(
|
|
|
|
base + size <= PAGE_SIZE,
|
|
|
|
("vm_page_bits: illegal base/size %d/%d", base, size)
|
|
|
|
);
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
|
1999-04-05 19:38:30 +00:00
|
|
|
if (size == 0) /* handle degenerate case */
|
|
|
|
return(0);
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
|
1999-04-05 19:38:30 +00:00
|
|
|
first_bit = base >> DEV_BSHIFT;
|
|
|
|
last_bit = (base + size - 1) >> DEV_BSHIFT;
|
|
|
|
|
|
|
|
return ((2 << last_bit) - (1 << first_bit));
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
}
|
|
|
|
|
1995-09-03 19:57:25 +00:00
|
|
|
/*
|
The VFS/BIO subsystem contained a number of hacks in order to optimize
piecemeal, middle-of-file writes for NFS. These hacks have caused no
end of trouble, especially when combined with mmap(). I've removed
them. Instead, NFS will issue a read-before-write to fully
instantiate the struct buf containing the write. NFS does, however,
optimize piecemeal appends to files. For most common file operations,
you will not notice the difference. The sole remaining fragment in
the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache
coherency issues with read-merge-write style operations. NFS also
optimizes the write-covers-entire-buffer case by avoiding the
read-before-write. There is quite a bit of room for further
optimization in these areas.
The VM system marks pages fully-valid (AKA vm_page_t->valid =
VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This
is not correct operation. The vm_pager_get_pages() code is now
responsible for marking VM pages all-valid. A number of VM helper
routines have been added to aid in zeroing-out the invalid portions of
a VM page prior to the page being marked all-valid. This operation is
necessary to properly support mmap(). The zeroing occurs most often
when dealing with file-EOF situations. Several bugs have been fixed
in the NFS subsystem, including bits handling file and directory EOF
situations and buf->b_flags consistancy issues relating to clearing
B_ERROR & B_INVAL, and handling B_DONE.
getblk() and allocbuf() have been rewritten. B_CACHE operation is now
formally defined in comments and more straightforward in
implementation. B_CACHE for VMIO buffers is based on the validity of
the backing store. B_CACHE for non-VMIO buffers is based simply on
whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear,
and vise-versa). biodone() is now responsible for setting B_CACHE
when a successful read completes. B_CACHE is also set when a bdwrite()
is initiated and when a bwrite() is initiated. VFS VOP_BWRITE
routines (there are only two - nfs_bwrite() and bwrite()) are now
expected to set B_CACHE. This means that bowrite() and bawrite() also
set B_CACHE indirectly.
There are a number of places in the code which were previously using
buf->b_bufsize (which is DEV_BSIZE aligned) when they should have
been using buf->b_bcount. These have been fixed. getblk() now clears
B_DONE on return because the rest of the system is so bad about
dealing with B_DONE.
Major fixes to NFS/TCP have been made. A server-side bug could cause
requests to be lost by the server due to nfs_realign() overwriting
other rpc's in the same TCP mbuf chain. The server's kernel must be
recompiled to get the benefit of the fixes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
|
|
|
* vm_page_set_validclean:
|
1999-04-05 19:38:30 +00:00
|
|
|
*
|
The VFS/BIO subsystem contained a number of hacks in order to optimize
piecemeal, middle-of-file writes for NFS. These hacks have caused no
end of trouble, especially when combined with mmap(). I've removed
them. Instead, NFS will issue a read-before-write to fully
instantiate the struct buf containing the write. NFS does, however,
optimize piecemeal appends to files. For most common file operations,
you will not notice the difference. The sole remaining fragment in
the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache
coherency issues with read-merge-write style operations. NFS also
optimizes the write-covers-entire-buffer case by avoiding the
read-before-write. There is quite a bit of room for further
optimization in these areas.
The VM system marks pages fully-valid (AKA vm_page_t->valid =
VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This
is not correct operation. The vm_pager_get_pages() code is now
responsible for marking VM pages all-valid. A number of VM helper
routines have been added to aid in zeroing-out the invalid portions of
a VM page prior to the page being marked all-valid. This operation is
necessary to properly support mmap(). The zeroing occurs most often
when dealing with file-EOF situations. Several bugs have been fixed
in the NFS subsystem, including bits handling file and directory EOF
situations and buf->b_flags consistancy issues relating to clearing
B_ERROR & B_INVAL, and handling B_DONE.
getblk() and allocbuf() have been rewritten. B_CACHE operation is now
formally defined in comments and more straightforward in
implementation. B_CACHE for VMIO buffers is based on the validity of
the backing store. B_CACHE for non-VMIO buffers is based simply on
whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear,
and vise-versa). biodone() is now responsible for setting B_CACHE
when a successful read completes. B_CACHE is also set when a bdwrite()
is initiated and when a bwrite() is initiated. VFS VOP_BWRITE
routines (there are only two - nfs_bwrite() and bwrite()) are now
expected to set B_CACHE. This means that bowrite() and bawrite() also
set B_CACHE indirectly.
There are a number of places in the code which were previously using
buf->b_bufsize (which is DEV_BSIZE aligned) when they should have
been using buf->b_bcount. These have been fixed. getblk() now clears
B_DONE on return because the rest of the system is so bad about
dealing with B_DONE.
Major fixes to NFS/TCP have been made. A server-side bug could cause
requests to be lost by the server due to nfs_realign() overwriting
other rpc's in the same TCP mbuf chain. The server's kernel must be
recompiled to get the benefit of the fixes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
|
|
|
* Sets portions of a page valid and clean. The arguments are expected
|
|
|
|
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
|
|
|
|
* of any partial chunks touched by the range. The invalid portion of
|
|
|
|
* such chunks will be zero'd.
|
1999-04-05 19:38:30 +00:00
|
|
|
*
|
The VFS/BIO subsystem contained a number of hacks in order to optimize
piecemeal, middle-of-file writes for NFS. These hacks have caused no
end of trouble, especially when combined with mmap(). I've removed
them. Instead, NFS will issue a read-before-write to fully
instantiate the struct buf containing the write. NFS does, however,
optimize piecemeal appends to files. For most common file operations,
you will not notice the difference. The sole remaining fragment in
the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache
coherency issues with read-merge-write style operations. NFS also
optimizes the write-covers-entire-buffer case by avoiding the
read-before-write. There is quite a bit of room for further
optimization in these areas.
The VM system marks pages fully-valid (AKA vm_page_t->valid =
VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This
is not correct operation. The vm_pager_get_pages() code is now
responsible for marking VM pages all-valid. A number of VM helper
routines have been added to aid in zeroing-out the invalid portions of
a VM page prior to the page being marked all-valid. This operation is
necessary to properly support mmap(). The zeroing occurs most often
when dealing with file-EOF situations. Several bugs have been fixed
in the NFS subsystem, including bits handling file and directory EOF
situations and buf->b_flags consistancy issues relating to clearing
B_ERROR & B_INVAL, and handling B_DONE.
getblk() and allocbuf() have been rewritten. B_CACHE operation is now
formally defined in comments and more straightforward in
implementation. B_CACHE for VMIO buffers is based on the validity of
the backing store. B_CACHE for non-VMIO buffers is based simply on
whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear,
and vise-versa). biodone() is now responsible for setting B_CACHE
when a successful read completes. B_CACHE is also set when a bdwrite()
is initiated and when a bwrite() is initiated. VFS VOP_BWRITE
routines (there are only two - nfs_bwrite() and bwrite()) are now
expected to set B_CACHE. This means that bowrite() and bawrite() also
set B_CACHE indirectly.
There are a number of places in the code which were previously using
buf->b_bufsize (which is DEV_BSIZE aligned) when they should have
been using buf->b_bcount. These have been fixed. getblk() now clears
B_DONE on return because the rest of the system is so bad about
dealing with B_DONE.
Major fixes to NFS/TCP have been made. A server-side bug could cause
requests to be lost by the server due to nfs_realign() overwriting
other rpc's in the same TCP mbuf chain. The server's kernel must be
recompiled to get the benefit of the fixes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
|
|
|
* This routine may not block.
|
|
|
|
*
|
|
|
|
* (base + size) must be less then or equal to PAGE_SIZE.
|
2001-05-19 01:28:09 +00:00
|
|
|
*
|
|
|
|
* vm_mtx needs to be held
|
1995-09-03 19:57:25 +00:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
vm_page_set_validclean(m, base, size)
|
|
|
|
vm_page_t m;
|
|
|
|
int base;
|
|
|
|
int size;
|
|
|
|
{
|
1999-04-05 19:38:30 +00:00
|
|
|
int pagebits;
|
|
|
|
int frag;
|
|
|
|
int endoff;
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
1999-04-05 19:38:30 +00:00
|
|
|
if (size == 0) /* handle degenerate case */
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the base is not DEV_BSIZE aligned and the valid
|
|
|
|
* bit is clear, we have to zero out a portion of the
|
|
|
|
* first block.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
|
|
|
|
(m->valid & (1 << (base >> DEV_BSHIFT))) == 0
|
|
|
|
) {
|
|
|
|
pmap_zero_page_area(
|
|
|
|
VM_PAGE_TO_PHYS(m),
|
|
|
|
frag,
|
|
|
|
base - frag
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the ending offset is not DEV_BSIZE aligned and the
|
|
|
|
* valid bit is clear, we have to zero out a portion of
|
|
|
|
* the last block.
|
|
|
|
*/
|
|
|
|
|
|
|
|
endoff = base + size;
|
|
|
|
|
|
|
|
if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
|
|
|
|
(m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
|
|
|
|
) {
|
|
|
|
pmap_zero_page_area(
|
|
|
|
VM_PAGE_TO_PHYS(m),
|
|
|
|
endoff,
|
|
|
|
DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set valid, clear dirty bits. If validating the entire
|
1999-12-12 03:19:33 +00:00
|
|
|
* page we can safely clear the pmap modify bit. We also
|
|
|
|
* use this opportunity to clear the PG_NOSYNC flag. If a process
|
|
|
|
* takes a write fault on a MAP_NOSYNC memory area the flag will
|
|
|
|
* be set again.
|
1999-04-05 19:38:30 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
pagebits = vm_page_bits(base, size);
|
1995-09-03 19:57:25 +00:00
|
|
|
m->valid |= pagebits;
|
|
|
|
m->dirty &= ~pagebits;
|
1999-12-12 03:19:33 +00:00
|
|
|
if (base == 0 && size == PAGE_SIZE) {
|
2000-05-21 12:50:18 +00:00
|
|
|
pmap_clear_modify(m);
|
1999-12-12 03:19:33 +00:00
|
|
|
vm_page_flag_clear(m, PG_NOSYNC);
|
|
|
|
}
|
1995-09-03 19:57:25 +00:00
|
|
|
}
|
|
|
|
|
The VFS/BIO subsystem contained a number of hacks in order to optimize
piecemeal, middle-of-file writes for NFS. These hacks have caused no
end of trouble, especially when combined with mmap(). I've removed
them. Instead, NFS will issue a read-before-write to fully
instantiate the struct buf containing the write. NFS does, however,
optimize piecemeal appends to files. For most common file operations,
you will not notice the difference. The sole remaining fragment in
the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache
coherency issues with read-merge-write style operations. NFS also
optimizes the write-covers-entire-buffer case by avoiding the
read-before-write. There is quite a bit of room for further
optimization in these areas.
The VM system marks pages fully-valid (AKA vm_page_t->valid =
VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This
is not correct operation. The vm_pager_get_pages() code is now
responsible for marking VM pages all-valid. A number of VM helper
routines have been added to aid in zeroing-out the invalid portions of
a VM page prior to the page being marked all-valid. This operation is
necessary to properly support mmap(). The zeroing occurs most often
when dealing with file-EOF situations. Several bugs have been fixed
in the NFS subsystem, including bits handling file and directory EOF
situations and buf->b_flags consistancy issues relating to clearing
B_ERROR & B_INVAL, and handling B_DONE.
getblk() and allocbuf() have been rewritten. B_CACHE operation is now
formally defined in comments and more straightforward in
implementation. B_CACHE for VMIO buffers is based on the validity of
the backing store. B_CACHE for non-VMIO buffers is based simply on
whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear,
and vise-versa). biodone() is now responsible for setting B_CACHE
when a successful read completes. B_CACHE is also set when a bdwrite()
is initiated and when a bwrite() is initiated. VFS VOP_BWRITE
routines (there are only two - nfs_bwrite() and bwrite()) are now
expected to set B_CACHE. This means that bowrite() and bawrite() also
set B_CACHE indirectly.
There are a number of places in the code which were previously using
buf->b_bufsize (which is DEV_BSIZE aligned) when they should have
been using buf->b_bcount. These have been fixed. getblk() now clears
B_DONE on return because the rest of the system is so bad about
dealing with B_DONE.
Major fixes to NFS/TCP have been made. A server-side bug could cause
requests to be lost by the server due to nfs_realign() overwriting
other rpc's in the same TCP mbuf chain. The server's kernel must be
recompiled to get the benefit of the fixes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
|
|
|
#if 0
|
|
|
|
|
|
|
|
void
|
|
|
|
vm_page_set_dirty(m, base, size)
|
|
|
|
vm_page_t m;
|
|
|
|
int base;
|
|
|
|
int size;
|
|
|
|
{
|
|
|
|
m->dirty |= vm_page_bits(base, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void
|
|
|
|
vm_page_clear_dirty(m, base, size)
|
|
|
|
vm_page_t m;
|
|
|
|
int base;
|
|
|
|
int size;
|
|
|
|
{
|
2001-05-19 01:28:09 +00:00
|
|
|
|
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
The VFS/BIO subsystem contained a number of hacks in order to optimize
piecemeal, middle-of-file writes for NFS. These hacks have caused no
end of trouble, especially when combined with mmap(). I've removed
them. Instead, NFS will issue a read-before-write to fully
instantiate the struct buf containing the write. NFS does, however,
optimize piecemeal appends to files. For most common file operations,
you will not notice the difference. The sole remaining fragment in
the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache
coherency issues with read-merge-write style operations. NFS also
optimizes the write-covers-entire-buffer case by avoiding the
read-before-write. There is quite a bit of room for further
optimization in these areas.
The VM system marks pages fully-valid (AKA vm_page_t->valid =
VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This
is not correct operation. The vm_pager_get_pages() code is now
responsible for marking VM pages all-valid. A number of VM helper
routines have been added to aid in zeroing-out the invalid portions of
a VM page prior to the page being marked all-valid. This operation is
necessary to properly support mmap(). The zeroing occurs most often
when dealing with file-EOF situations. Several bugs have been fixed
in the NFS subsystem, including bits handling file and directory EOF
situations and buf->b_flags consistancy issues relating to clearing
B_ERROR & B_INVAL, and handling B_DONE.
getblk() and allocbuf() have been rewritten. B_CACHE operation is now
formally defined in comments and more straightforward in
implementation. B_CACHE for VMIO buffers is based on the validity of
the backing store. B_CACHE for non-VMIO buffers is based simply on
whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear,
and vise-versa). biodone() is now responsible for setting B_CACHE
when a successful read completes. B_CACHE is also set when a bdwrite()
is initiated and when a bwrite() is initiated. VFS VOP_BWRITE
routines (there are only two - nfs_bwrite() and bwrite()) are now
expected to set B_CACHE. This means that bowrite() and bawrite() also
set B_CACHE indirectly.
There are a number of places in the code which were previously using
buf->b_bufsize (which is DEV_BSIZE aligned) when they should have
been using buf->b_bcount. These have been fixed. getblk() now clears
B_DONE on return because the rest of the system is so bad about
dealing with B_DONE.
Major fixes to NFS/TCP have been made. A server-side bug could cause
requests to be lost by the server due to nfs_realign() overwriting
other rpc's in the same TCP mbuf chain. The server's kernel must be
recompiled to get the benefit of the fixes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
|
|
|
m->dirty &= ~vm_page_bits(base, size);
|
|
|
|
}
|
|
|
|
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
/*
|
The VFS/BIO subsystem contained a number of hacks in order to optimize
piecemeal, middle-of-file writes for NFS. These hacks have caused no
end of trouble, especially when combined with mmap(). I've removed
them. Instead, NFS will issue a read-before-write to fully
instantiate the struct buf containing the write. NFS does, however,
optimize piecemeal appends to files. For most common file operations,
you will not notice the difference. The sole remaining fragment in
the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache
coherency issues with read-merge-write style operations. NFS also
optimizes the write-covers-entire-buffer case by avoiding the
read-before-write. There is quite a bit of room for further
optimization in these areas.
The VM system marks pages fully-valid (AKA vm_page_t->valid =
VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This
is not correct operation. The vm_pager_get_pages() code is now
responsible for marking VM pages all-valid. A number of VM helper
routines have been added to aid in zeroing-out the invalid portions of
a VM page prior to the page being marked all-valid. This operation is
necessary to properly support mmap(). The zeroing occurs most often
when dealing with file-EOF situations. Several bugs have been fixed
in the NFS subsystem, including bits handling file and directory EOF
situations and buf->b_flags consistancy issues relating to clearing
B_ERROR & B_INVAL, and handling B_DONE.
getblk() and allocbuf() have been rewritten. B_CACHE operation is now
formally defined in comments and more straightforward in
implementation. B_CACHE for VMIO buffers is based on the validity of
the backing store. B_CACHE for non-VMIO buffers is based simply on
whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear,
and vise-versa). biodone() is now responsible for setting B_CACHE
when a successful read completes. B_CACHE is also set when a bdwrite()
is initiated and when a bwrite() is initiated. VFS VOP_BWRITE
routines (there are only two - nfs_bwrite() and bwrite()) are now
expected to set B_CACHE. This means that bowrite() and bawrite() also
set B_CACHE indirectly.
There are a number of places in the code which were previously using
buf->b_bufsize (which is DEV_BSIZE aligned) when they should have
been using buf->b_bcount. These have been fixed. getblk() now clears
B_DONE on return because the rest of the system is so bad about
dealing with B_DONE.
Major fixes to NFS/TCP have been made. A server-side bug could cause
requests to be lost by the server due to nfs_realign() overwriting
other rpc's in the same TCP mbuf chain. The server's kernel must be
recompiled to get the benefit of the fixes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
|
|
|
* vm_page_set_invalid:
|
|
|
|
*
|
|
|
|
* Invalidates DEV_BSIZE'd chunks within a page. Both the
|
|
|
|
* valid and dirty bits for the effected areas are cleared.
|
|
|
|
*
|
|
|
|
* May not block.
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
vm_page_set_invalid(m, base, size)
|
|
|
|
vm_page_t m;
|
|
|
|
int base;
|
|
|
|
int size;
|
|
|
|
{
|
|
|
|
int bits;
|
|
|
|
|
2001-05-19 01:28:09 +00:00
|
|
|
mtx_assert(&vm_mtx, MA_OWNED);
|
The VFS/BIO subsystem contained a number of hacks in order to optimize
piecemeal, middle-of-file writes for NFS. These hacks have caused no
end of trouble, especially when combined with mmap(). I've removed
them. Instead, NFS will issue a read-before-write to fully
instantiate the struct buf containing the write. NFS does, however,
optimize piecemeal appends to files. For most common file operations,
you will not notice the difference. The sole remaining fragment in
the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache
coherency issues with read-merge-write style operations. NFS also
optimizes the write-covers-entire-buffer case by avoiding the
read-before-write. There is quite a bit of room for further
optimization in these areas.
The VM system marks pages fully-valid (AKA vm_page_t->valid =
VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This
is not correct operation. The vm_pager_get_pages() code is now
responsible for marking VM pages all-valid. A number of VM helper
routines have been added to aid in zeroing-out the invalid portions of
a VM page prior to the page being marked all-valid. This operation is
necessary to properly support mmap(). The zeroing occurs most often
when dealing with file-EOF situations. Several bugs have been fixed
in the NFS subsystem, including bits handling file and directory EOF
situations and buf->b_flags consistancy issues relating to clearing
B_ERROR & B_INVAL, and handling B_DONE.
getblk() and allocbuf() have been rewritten. B_CACHE operation is now
formally defined in comments and more straightforward in
implementation. B_CACHE for VMIO buffers is based on the validity of
the backing store. B_CACHE for non-VMIO buffers is based simply on
whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear,
and vise-versa). biodone() is now responsible for setting B_CACHE
when a successful read completes. B_CACHE is also set when a bdwrite()
is initiated and when a bwrite() is initiated. VFS VOP_BWRITE
routines (there are only two - nfs_bwrite() and bwrite()) are now
expected to set B_CACHE. This means that bowrite() and bawrite() also
set B_CACHE indirectly.
There are a number of places in the code which were previously using
buf->b_bufsize (which is DEV_BSIZE aligned) when they should have
been using buf->b_bcount. These have been fixed. getblk() now clears
B_DONE on return because the rest of the system is so bad about
dealing with B_DONE.
Major fixes to NFS/TCP have been made. A server-side bug could cause
requests to be lost by the server due to nfs_realign() overwriting
other rpc's in the same TCP mbuf chain. The server's kernel must be
recompiled to get the benefit of the fixes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
|
|
|
bits = vm_page_bits(base, size);
|
|
|
|
m->valid &= ~bits;
|
|
|
|
m->dirty &= ~bits;
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
m->object->generation++;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
1999-04-05 19:38:30 +00:00
|
|
|
* vm_page_zero_invalid()
|
|
|
|
*
|
|
|
|
* The kernel assumes that the invalid portions of a page contain
|
|
|
|
* garbage, but such pages can be mapped into memory by user code.
|
|
|
|
* When this occurs, we must zero out the non-valid portions of the
|
|
|
|
* page so user code sees what it expects.
|
|
|
|
*
|
|
|
|
* Pages are most often semi-valid when the end of a file is mapped
|
|
|
|
* into memory and the file's size is not page aligned.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
|
|
|
|
{
|
|
|
|
int b;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Scan the valid bits looking for invalid sections that
|
|
|
|
* must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
|
|
|
|
* valid bit may be set ) have already been zerod by
|
|
|
|
* vm_page_set_validclean().
|
|
|
|
*/
|
|
|
|
|
|
|
|
for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
|
|
|
|
if (i == (PAGE_SIZE / DEV_BSIZE) ||
|
|
|
|
(m->valid & (1 << i))
|
|
|
|
) {
|
|
|
|
if (i > b) {
|
|
|
|
pmap_zero_page_area(
|
|
|
|
VM_PAGE_TO_PHYS(m),
|
|
|
|
b << DEV_BSHIFT,
|
|
|
|
(i - b) << DEV_BSHIFT
|
|
|
|
);
|
|
|
|
}
|
|
|
|
b = i + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* setvalid is TRUE when we can safely set the zero'd areas
|
|
|
|
* as being valid. We can do this if there are no cache consistancy
|
|
|
|
* issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (setvalid)
|
|
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* vm_page_is_valid:
|
|
|
|
*
|
|
|
|
* Is (partial) page valid? Note that the case where size == 0
|
|
|
|
* will return FALSE in the degenerate case where the page is
|
|
|
|
* entirely invalid, and TRUE otherwise.
|
|
|
|
*
|
|
|
|
* May not block.
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*/
|
1999-04-05 19:38:30 +00:00
|
|
|
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
int
|
|
|
|
vm_page_is_valid(m, base, size)
|
|
|
|
vm_page_t m;
|
|
|
|
int base;
|
|
|
|
int size;
|
|
|
|
{
|
1995-04-09 06:03:56 +00:00
|
|
|
int bits = vm_page_bits(base, size);
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
1995-04-09 06:03:56 +00:00
|
|
|
if (m->valid && ((m->valid & bits) == bits))
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
return 1;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
1998-12-23 01:52:47 +00:00
|
|
|
/*
|
|
|
|
* update dirty bits from pmap/mmu. May not block.
|
|
|
|
*/
|
|
|
|
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
void
|
|
|
|
vm_page_test_dirty(m)
|
|
|
|
vm_page_t m;
|
|
|
|
{
|
2000-05-21 12:50:18 +00:00
|
|
|
if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
|
1999-01-24 06:00:31 +00:00
|
|
|
vm_page_dirty(m);
|
1996-07-30 03:08:57 +00:00
|
|
|
}
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
}
|
|
|
|
|
1996-05-18 03:38:05 +00:00
|
|
|
/*
|
|
|
|
* This interface is for merging with malloc() someday.
|
|
|
|
* Even if we never implement compaction so that contiguous allocation
|
|
|
|
* works after initialization time, malloc()'s data structures are good
|
|
|
|
* for statistics and for allocations of less than a page.
|
|
|
|
*/
|
|
|
|
void *
|
1997-02-13 19:37:40 +00:00
|
|
|
contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
|
1996-05-18 03:38:05 +00:00
|
|
|
unsigned long size; /* should be size_t here and for malloc() */
|
1997-10-10 18:18:47 +00:00
|
|
|
struct malloc_type *type;
|
1996-05-18 03:38:05 +00:00
|
|
|
int flags;
|
|
|
|
unsigned long low;
|
|
|
|
unsigned long high;
|
|
|
|
unsigned long alignment;
|
|
|
|
unsigned long boundary;
|
1997-02-13 19:37:40 +00:00
|
|
|
vm_map_t map;
|
1996-05-18 03:38:05 +00:00
|
|
|
{
|
|
|
|
int i, s, start;
|
|
|
|
vm_offset_t addr, phys, tmp_addr;
|
1996-11-05 04:19:08 +00:00
|
|
|
int pass;
|
1996-05-18 03:38:05 +00:00
|
|
|
vm_page_t pga = vm_page_array;
|
|
|
|
|
|
|
|
size = round_page(size);
|
|
|
|
if (size == 0)
|
1997-09-13 15:04:52 +00:00
|
|
|
panic("contigmalloc1: size must not be 0");
|
1996-05-18 03:38:05 +00:00
|
|
|
if ((alignment & (alignment - 1)) != 0)
|
1997-09-13 15:04:52 +00:00
|
|
|
panic("contigmalloc1: alignment must be a power of 2");
|
1996-05-18 03:38:05 +00:00
|
|
|
if ((boundary & (boundary - 1)) != 0)
|
1997-09-13 15:04:52 +00:00
|
|
|
panic("contigmalloc1: boundary must be a power of 2");
|
1996-05-18 03:38:05 +00:00
|
|
|
|
|
|
|
start = 0;
|
1996-11-05 04:19:08 +00:00
|
|
|
for (pass = 0; pass <= 1; pass++) {
|
|
|
|
s = splvm();
|
1996-05-18 03:38:05 +00:00
|
|
|
again:
|
1996-11-05 04:19:08 +00:00
|
|
|
/*
|
|
|
|
* Find first page in array that is free, within range, aligned, and
|
|
|
|
* such that the boundary won't be crossed.
|
|
|
|
*/
|
|
|
|
for (i = start; i < cnt.v_page_count; i++) {
|
|
|
|
int pqtype;
|
|
|
|
phys = VM_PAGE_TO_PHYS(&pga[i]);
|
|
|
|
pqtype = pga[i].queue - pga[i].pc;
|
1999-02-08 00:37:36 +00:00
|
|
|
if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
|
1996-11-05 04:19:08 +00:00
|
|
|
(phys >= low) && (phys < high) &&
|
|
|
|
((phys & (alignment - 1)) == 0) &&
|
|
|
|
(((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
|
|
|
|
break;
|
|
|
|
}
|
1996-05-18 03:38:05 +00:00
|
|
|
|
1996-11-05 04:19:08 +00:00
|
|
|
/*
|
|
|
|
* If the above failed or we will exceed the upper bound, fail.
|
|
|
|
*/
|
|
|
|
if ((i == cnt.v_page_count) ||
|
|
|
|
((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
|
|
|
|
vm_page_t m, next;
|
1996-05-18 03:38:05 +00:00
|
|
|
|
1996-11-05 04:19:08 +00:00
|
|
|
again1:
|
1999-10-30 07:37:14 +00:00
|
|
|
for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
|
1996-11-05 04:19:08 +00:00
|
|
|
m != NULL;
|
|
|
|
m = next) {
|
|
|
|
|
1999-08-11 05:12:00 +00:00
|
|
|
KASSERT(m->queue == PQ_INACTIVE,
|
|
|
|
("contigmalloc1: page %p is not PQ_INACTIVE", m));
|
1996-11-05 04:19:08 +00:00
|
|
|
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
1999-01-21 08:29:12 +00:00
|
|
|
if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
|
1996-11-05 04:19:08 +00:00
|
|
|
goto again1;
|
|
|
|
vm_page_test_dirty(m);
|
|
|
|
if (m->dirty) {
|
|
|
|
if (m->object->type == OBJT_VNODE) {
|
1997-12-29 00:25:11 +00:00
|
|
|
vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
|
This mega-commit is meant to fix numerous interrelated problems. There
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
|
|
|
vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
|
1997-12-29 00:25:11 +00:00
|
|
|
VOP_UNLOCK(m->object->handle, 0, curproc);
|
1996-11-05 04:19:08 +00:00
|
|
|
goto again1;
|
|
|
|
} else if (m->object->type == OBJT_SWAP ||
|
|
|
|
m->object->type == OBJT_DEFAULT) {
|
|
|
|
vm_pageout_flush(&m, 1, 0);
|
|
|
|
goto again1;
|
|
|
|
}
|
|
|
|
}
|
1998-01-31 11:56:53 +00:00
|
|
|
if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
|
1996-11-05 04:19:08 +00:00
|
|
|
vm_page_cache(m);
|
|
|
|
}
|
|
|
|
|
1999-10-30 07:37:14 +00:00
|
|
|
for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
|
1996-11-05 04:19:08 +00:00
|
|
|
m != NULL;
|
|
|
|
m = next) {
|
|
|
|
|
1999-08-11 05:12:00 +00:00
|
|
|
KASSERT(m->queue == PQ_ACTIVE,
|
|
|
|
("contigmalloc1: page %p is not PQ_ACTIVE", m));
|
1996-11-05 04:19:08 +00:00
|
|
|
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
1999-01-21 08:29:12 +00:00
|
|
|
if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
|
1996-11-05 04:19:08 +00:00
|
|
|
goto again1;
|
|
|
|
vm_page_test_dirty(m);
|
|
|
|
if (m->dirty) {
|
|
|
|
if (m->object->type == OBJT_VNODE) {
|
1997-12-29 00:25:11 +00:00
|
|
|
vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
|
This mega-commit is meant to fix numerous interrelated problems. There
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
|
|
|
vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
|
1997-12-29 00:25:11 +00:00
|
|
|
VOP_UNLOCK(m->object->handle, 0, curproc);
|
1996-11-05 04:19:08 +00:00
|
|
|
goto again1;
|
|
|
|
} else if (m->object->type == OBJT_SWAP ||
|
|
|
|
m->object->type == OBJT_DEFAULT) {
|
|
|
|
vm_pageout_flush(&m, 1, 0);
|
|
|
|
goto again1;
|
|
|
|
}
|
|
|
|
}
|
1998-01-31 11:56:53 +00:00
|
|
|
if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
|
1996-11-05 04:19:08 +00:00
|
|
|
vm_page_cache(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
splx(s);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
start = i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check successive pages for contiguous and free.
|
|
|
|
*/
|
|
|
|
for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
|
|
|
|
int pqtype;
|
|
|
|
pqtype = pga[i].queue - pga[i].pc;
|
|
|
|
if ((VM_PAGE_TO_PHYS(&pga[i]) !=
|
|
|
|
(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
|
1999-02-08 00:37:36 +00:00
|
|
|
((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
|
1996-11-05 04:19:08 +00:00
|
|
|
start++;
|
|
|
|
goto again;
|
|
|
|
}
|
1996-05-18 03:38:05 +00:00
|
|
|
}
|
|
|
|
|
1996-11-05 04:19:08 +00:00
|
|
|
for (i = start; i < (start + size / PAGE_SIZE); i++) {
|
|
|
|
int pqtype;
|
|
|
|
vm_page_t m = &pga[i];
|
1996-05-18 03:38:05 +00:00
|
|
|
|
1996-11-05 04:19:08 +00:00
|
|
|
pqtype = m->queue - m->pc;
|
1998-01-31 11:56:53 +00:00
|
|
|
if (pqtype == PQ_CACHE) {
|
1998-09-04 08:06:57 +00:00
|
|
|
vm_page_busy(m);
|
1996-11-05 04:19:08 +00:00
|
|
|
vm_page_free(m);
|
1998-01-31 11:56:53 +00:00
|
|
|
}
|
1996-05-18 03:38:05 +00:00
|
|
|
|
1999-10-30 07:37:14 +00:00
|
|
|
TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
|
1999-07-31 18:31:00 +00:00
|
|
|
vm_page_queues[m->queue].lcnt--;
|
1996-11-05 04:19:08 +00:00
|
|
|
cnt.v_free_count--;
|
|
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
|
|
m->flags = 0;
|
1999-08-20 06:32:00 +00:00
|
|
|
KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
|
1996-11-05 04:19:08 +00:00
|
|
|
m->wire_count = 0;
|
|
|
|
m->busy = 0;
|
|
|
|
m->queue = PQ_NONE;
|
|
|
|
m->object = NULL;
|
|
|
|
vm_page_wire(m);
|
|
|
|
}
|
1996-05-18 03:38:05 +00:00
|
|
|
|
1996-11-05 04:19:08 +00:00
|
|
|
/*
|
|
|
|
* We've found a contiguous chunk that meets are requirements.
|
|
|
|
* Allocate kernel VM, unfree and assign the physical pages to it and
|
|
|
|
* return kernel VM pointer.
|
|
|
|
*/
|
1997-02-13 19:37:40 +00:00
|
|
|
tmp_addr = addr = kmem_alloc_pageable(map, size);
|
1996-11-05 04:19:08 +00:00
|
|
|
if (addr == 0) {
|
|
|
|
/*
|
|
|
|
* XXX We almost never run out of kernel virtual
|
|
|
|
* space, so we don't make the allocated memory
|
|
|
|
* above available.
|
|
|
|
*/
|
|
|
|
splx(s);
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = start; i < (start + size / PAGE_SIZE); i++) {
|
|
|
|
vm_page_t m = &pga[i];
|
|
|
|
vm_page_insert(m, kernel_object,
|
|
|
|
OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
|
|
|
|
pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
|
|
|
|
tmp_addr += PAGE_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
splx(s);
|
|
|
|
return ((void *)addr);
|
|
|
|
}
|
|
|
|
return NULL;
|
1996-05-18 03:38:05 +00:00
|
|
|
}
|
|
|
|
|
1997-02-13 19:37:40 +00:00
|
|
|
void *
|
|
|
|
contigmalloc(size, type, flags, low, high, alignment, boundary)
|
|
|
|
unsigned long size; /* should be size_t here and for malloc() */
|
1997-10-10 18:18:47 +00:00
|
|
|
struct malloc_type *type;
|
1997-02-13 19:37:40 +00:00
|
|
|
int flags;
|
|
|
|
unsigned long low;
|
|
|
|
unsigned long high;
|
|
|
|
unsigned long alignment;
|
|
|
|
unsigned long boundary;
|
|
|
|
{
|
2001-05-19 01:28:09 +00:00
|
|
|
void * ret;
|
|
|
|
int hadvmlock;
|
|
|
|
|
|
|
|
hadvmlock = mtx_owned(&vm_mtx);
|
|
|
|
if (!hadvmlock)
|
|
|
|
mtx_lock(&vm_mtx);
|
|
|
|
ret = contigmalloc1(size, type, flags, low, high, alignment, boundary,
|
1997-02-13 19:37:40 +00:00
|
|
|
kernel_map);
|
2001-05-19 01:28:09 +00:00
|
|
|
if (!hadvmlock)
|
|
|
|
mtx_unlock(&vm_mtx);
|
|
|
|
|
|
|
|
return (ret);
|
|
|
|
|
1997-02-13 19:37:40 +00:00
|
|
|
}
|
|
|
|
|
1999-08-10 22:21:13 +00:00
|
|
|
void
|
|
|
|
contigfree(addr, size, type)
|
|
|
|
void *addr;
|
|
|
|
unsigned long size;
|
|
|
|
struct malloc_type *type;
|
|
|
|
{
|
2001-05-19 01:28:09 +00:00
|
|
|
int hadvmlock;
|
|
|
|
|
|
|
|
hadvmlock = mtx_owned(&vm_mtx);
|
|
|
|
if (!hadvmlock)
|
|
|
|
mtx_lock(&vm_mtx);
|
1999-08-10 22:21:13 +00:00
|
|
|
kmem_free(kernel_map, (vm_offset_t)addr, size);
|
2001-05-19 01:28:09 +00:00
|
|
|
if (!hadvmlock)
|
|
|
|
mtx_unlock(&vm_mtx);
|
1999-08-10 22:21:13 +00:00
|
|
|
}
|
|
|
|
|
1996-05-18 03:38:05 +00:00
|
|
|
vm_offset_t
|
|
|
|
vm_page_alloc_contig(size, low, high, alignment)
|
|
|
|
vm_offset_t size;
|
|
|
|
vm_offset_t low;
|
|
|
|
vm_offset_t high;
|
|
|
|
vm_offset_t alignment;
|
|
|
|
{
|
2001-05-19 01:28:09 +00:00
|
|
|
vm_offset_t ret;
|
|
|
|
int hadvmlock;
|
|
|
|
|
|
|
|
hadvmlock = mtx_owned(&vm_mtx);
|
|
|
|
if (!hadvmlock)
|
|
|
|
mtx_lock(&vm_mtx);
|
|
|
|
ret = ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
|
1997-02-13 19:37:40 +00:00
|
|
|
alignment, 0ul, kernel_map));
|
2001-05-19 01:28:09 +00:00
|
|
|
if (!hadvmlock)
|
|
|
|
mtx_unlock(&vm_mtx);
|
|
|
|
return (ret);
|
|
|
|
|
1996-05-18 03:38:05 +00:00
|
|
|
}
|
1996-09-14 11:54:59 +00:00
|
|
|
|
|
|
|
#include "opt_ddb.h"
|
1995-04-16 09:59:16 +00:00
|
|
|
#ifdef DDB
|
1996-09-14 11:54:59 +00:00
|
|
|
#include <sys/kernel.h>
|
|
|
|
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
|
|
|
|
DB_SHOW_COMMAND(page, vm_page_print_page_info)
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
{
|
1996-09-14 11:54:59 +00:00
|
|
|
db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
|
|
|
|
db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
|
|
|
|
db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
|
|
|
|
db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
|
|
|
|
db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
|
|
|
|
db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
|
|
|
|
db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
|
|
|
|
db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
|
|
|
|
db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
|
|
|
|
db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
1996-09-08 20:44:49 +00:00
|
|
|
|
1996-09-14 11:54:59 +00:00
|
|
|
DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
|
1996-09-08 20:44:49 +00:00
|
|
|
{
|
|
|
|
int i;
|
1996-09-14 11:54:59 +00:00
|
|
|
db_printf("PQ_FREE:");
|
1996-09-08 20:44:49 +00:00
|
|
|
for(i=0;i<PQ_L2_SIZE;i++) {
|
1999-07-31 18:31:00 +00:00
|
|
|
db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
|
1996-09-08 20:44:49 +00:00
|
|
|
}
|
1996-09-14 11:54:59 +00:00
|
|
|
db_printf("\n");
|
1996-09-08 20:44:49 +00:00
|
|
|
|
1996-09-14 11:54:59 +00:00
|
|
|
db_printf("PQ_CACHE:");
|
1996-09-08 20:44:49 +00:00
|
|
|
for(i=0;i<PQ_L2_SIZE;i++) {
|
1999-07-31 18:31:00 +00:00
|
|
|
db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
|
1996-09-08 20:44:49 +00:00
|
|
|
}
|
1996-09-14 11:54:59 +00:00
|
|
|
db_printf("\n");
|
1996-09-08 20:44:49 +00:00
|
|
|
|
1996-09-14 11:54:59 +00:00
|
|
|
db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
|
1999-07-31 18:31:00 +00:00
|
|
|
vm_page_queues[PQ_ACTIVE].lcnt,
|
|
|
|
vm_page_queues[PQ_INACTIVE].lcnt);
|
1996-09-08 20:44:49 +00:00
|
|
|
}
|
1996-09-14 11:54:59 +00:00
|
|
|
#endif /* DDB */
|