1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-29 12:03:03 +00:00
freebsd/sys/dev/isp/isp_pci.c

1795 lines
47 KiB
C
Raw Normal View History

1999-08-28 01:08:13 +00:00
/* $FreeBSD$ */
/*
* PCI specific probe and attach routines for Qlogic ISP SCSI adapters.
* FreeBSD Version.
*
2000-08-27 23:39:23 +00:00
* Copyright (c) 1997, 1998, 1999, 2000 by Matthew Jacob
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
2000-09-21 20:16:04 +00:00
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <sys/malloc.h>
#include <dev/isp/isp_freebsd.h>
static u_int16_t isp_pci_rd_reg __P((struct ispsoftc *, int));
static void isp_pci_wr_reg __P((struct ispsoftc *, int, u_int16_t));
static u_int16_t isp_pci_rd_reg_1080 __P((struct ispsoftc *, int));
static void isp_pci_wr_reg_1080 __P((struct ispsoftc *, int, u_int16_t));
static int isp_pci_mbxdma __P((struct ispsoftc *));
static int isp_pci_dmasetup __P((struct ispsoftc *, XS_T *,
ispreq_t *, u_int16_t *, u_int16_t));
static void
isp_pci_dmateardown __P((struct ispsoftc *, XS_T *, u_int32_t));
static void isp_pci_reset1 __P((struct ispsoftc *));
static void isp_pci_dumpregs __P((struct ispsoftc *, const char *));
#ifndef ISP_CODE_ORG
#define ISP_CODE_ORG 0x1000
#endif
static struct ispmdvec mdvec = {
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_1080 = {
isp_pci_rd_reg_1080,
isp_pci_wr_reg_1080,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_12160 = {
isp_pci_rd_reg_1080,
isp_pci_wr_reg_1080,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs,
NULL,
BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64
};
static struct ispmdvec mdvec_2100 = {
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs
};
static struct ispmdvec mdvec_2200 = {
isp_pci_rd_reg,
isp_pci_wr_reg,
isp_pci_mbxdma,
isp_pci_dmasetup,
isp_pci_dmateardown,
NULL,
isp_pci_reset1,
isp_pci_dumpregs
};
#ifndef PCIM_CMD_INVEN
#define PCIM_CMD_INVEN 0x10
#endif
#ifndef PCIM_CMD_BUSMASTEREN
#define PCIM_CMD_BUSMASTEREN 0x0004
#endif
#ifndef PCIM_CMD_PERRESPEN
#define PCIM_CMD_PERRESPEN 0x0040
#endif
#ifndef PCIM_CMD_SEREN
#define PCIM_CMD_SEREN 0x0100
#endif
#ifndef PCIR_COMMAND
#define PCIR_COMMAND 0x04
#endif
#ifndef PCIR_CACHELNSZ
#define PCIR_CACHELNSZ 0x0c
#endif
#ifndef PCIR_LATTIMER
#define PCIR_LATTIMER 0x0d
#endif
#ifndef PCIR_ROMADDR
#define PCIR_ROMADDR 0x30
#endif
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP1020
#define PCI_PRODUCT_QLOGIC_ISP1020 0x1020
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP1080
#define PCI_PRODUCT_QLOGIC_ISP1080 0x1080
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP12160
#define PCI_PRODUCT_QLOGIC_ISP12160 0x1216
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP1240
#define PCI_PRODUCT_QLOGIC_ISP1240 0x1240
#endif
1999-12-16 05:42:02 +00:00
#ifndef PCI_PRODUCT_QLOGIC_ISP1280
#define PCI_PRODUCT_QLOGIC_ISP1280 0x1280
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP2100
#define PCI_PRODUCT_QLOGIC_ISP2100 0x2100
#endif
#ifndef PCI_PRODUCT_QLOGIC_ISP2200
#define PCI_PRODUCT_QLOGIC_ISP2200 0x2200
#endif
#define PCI_QLOGIC_ISP1020 \
((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP1080 \
((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP12160 \
((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP1240 \
((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC)
1999-12-16 05:42:02 +00:00
#define PCI_QLOGIC_ISP1280 \
((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2100 \
((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC)
#define PCI_QLOGIC_ISP2200 \
((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC)
/*
* Odd case for some AMI raid cards... We need to *not* attach to this.
*/
#define AMI_RAID_SUBVENDOR_ID 0x101e
#define IO_MAP_REG 0x10
#define MEM_MAP_REG 0x14
#define PCI_DFLT_LTNCY 0x40
#define PCI_DFLT_LNSZ 0x10
static int isp_pci_probe (device_t);
static int isp_pci_attach (device_t);
struct isp_pcisoftc {
struct ispsoftc pci_isp;
device_t pci_dev;
struct resource * pci_reg;
bus_space_tag_t pci_st;
bus_space_handle_t pci_sh;
void * ih;
int16_t pci_poff[_NREG_BLKS];
bus_dma_tag_t parent_dmat;
bus_dma_tag_t cntrol_dmat;
bus_dmamap_t cntrol_dmap;
bus_dmamap_t *dmaps;
};
ispfwfunc *isp_get_firmware_p = NULL;
static device_method_t isp_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, isp_pci_probe),
DEVMETHOD(device_attach, isp_pci_attach),
{ 0, 0 }
};
static driver_t isp_pci_driver = {
"isp", isp_pci_methods, sizeof (struct isp_pcisoftc)
};
static devclass_t isp_devclass;
DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0);
MODULE_VERSION(isp, 1);
static int
isp_pci_probe(device_t dev)
{
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
case PCI_QLOGIC_ISP1020:
device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP1080:
device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP1240:
device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter");
break;
1999-12-16 05:42:02 +00:00
case PCI_QLOGIC_ISP1280:
device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter");
break;
case PCI_QLOGIC_ISP12160:
if (pci_get_subvendor(dev) == AMI_RAID_SUBVENDOR_ID) {
return (ENXIO);
}
device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter");
1999-12-16 05:42:02 +00:00
break;
case PCI_QLOGIC_ISP2100:
device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter");
break;
case PCI_QLOGIC_ISP2200:
device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter");
break;
default:
return (ENXIO);
}
if (device_get_unit(dev) == 0 && bootverbose) {
printf("Qlogic ISP Driver, FreeBSD Version %d.%d, "
"Core Version %d.%d\n",
ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR,
ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR);
}
/*
* XXXX: Here is where we might load the f/w module
* XXXX: (or increase a reference count to it).
*/
return (0);
}
static int
isp_pci_attach(device_t dev)
{
struct resource *regs, *irq;
int unit, bitmap, rtp, rgd, iqd, m1, m2, s, isp_debug;
u_int32_t data, cmd, linesz, psize, basetype;
struct isp_pcisoftc *pcs;
struct ispsoftc *isp;
struct ispmdvec *mdvp;
bus_size_t lim;
/*
* Figure out if we're supposed to skip this one.
*/
unit = device_get_unit(dev);
if (getenv_int("isp_disable", &bitmap)) {
if (bitmap & (1 << unit)) {
device_printf(dev, "not configuring\n");
return (ENODEV);
}
}
pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT);
if (pcs == NULL) {
device_printf(dev, "cannot allocate softc\n");
return (ENOMEM);
}
bzero(pcs, sizeof (struct isp_pcisoftc));
/*
* Figure out which we should try first - memory mapping or i/o mapping?
*/
#ifdef __alpha__
m1 = PCIM_CMD_MEMEN;
m2 = PCIM_CMD_PORTEN;
#else
m1 = PCIM_CMD_PORTEN;
m2 = PCIM_CMD_MEMEN;
#endif
bitmap = 0;
if (getenv_int("isp_mem_map", &bitmap)) {
if (bitmap & (1 << unit)) {
m1 = PCIM_CMD_MEMEN;
m2 = PCIM_CMD_PORTEN;
}
}
bitmap = 0;
if (getenv_int("isp_io_map", &bitmap)) {
if (bitmap & (1 << unit)) {
m1 = PCIM_CMD_PORTEN;
m2 = PCIM_CMD_MEMEN;
}
}
linesz = PCI_DFLT_LNSZ;
irq = regs = NULL;
rgd = rtp = iqd = 0;
cmd = pci_read_config(dev, PCIR_COMMAND, 1);
if (cmd & m1) {
rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
}
if (regs == NULL && (cmd & m2)) {
rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG;
regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE);
}
if (regs == NULL) {
device_printf(dev, "unable to map any ports\n");
goto bad;
}
if (bootverbose)
printf("isp%d: using %s space register mapping\n", unit,
(rgd == IO_MAP_REG)? "I/O" : "Memory");
pcs->pci_dev = dev;
pcs->pci_reg = regs;
pcs->pci_st = rman_get_bustag(regs);
pcs->pci_sh = rman_get_bushandle(regs);
pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF;
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF;
pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF;
pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF;
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF;
mdvp = &mdvec;
basetype = ISP_HA_SCSI_UNKNOWN;
psize = sizeof (sdparam);
lim = BUS_SPACE_MAXSIZE_32BIT;
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) {
mdvp = &mdvec;
basetype = ISP_HA_SCSI_UNKNOWN;
psize = sizeof (sdparam);
lim = BUS_SPACE_MAXSIZE_24BIT;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) {
mdvp = &mdvec_1080;
basetype = ISP_HA_SCSI_1080;
psize = sizeof (sdparam);
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
ISP1080_DMA_REGS_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) {
mdvp = &mdvec_1080;
1999-12-16 05:42:02 +00:00
basetype = ISP_HA_SCSI_1240;
psize = 2 * sizeof (sdparam);
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
ISP1080_DMA_REGS_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) {
1999-12-16 05:42:02 +00:00
mdvp = &mdvec_1080;
basetype = ISP_HA_SCSI_1280;
psize = 2 * sizeof (sdparam);
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
ISP1080_DMA_REGS_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) {
mdvp = &mdvec_12160;
basetype = ISP_HA_SCSI_12160;
psize = 2 * sizeof (sdparam);
pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] =
ISP1080_DMA_REGS_OFF;
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) {
mdvp = &mdvec_2100;
basetype = ISP_HA_FC_2100;
psize = sizeof (fcparam);
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
PCI_MBOX_REGS2100_OFF;
if (pci_get_revid(dev) < 3) {
/*
* XXX: Need to get the actual revision
* XXX: number of the 2100 FB. At any rate,
* XXX: lower cache line size for early revision
* XXX; boards.
*/
linesz = 1;
}
}
if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) {
mdvp = &mdvec_2200;
basetype = ISP_HA_FC_2200;
psize = sizeof (fcparam);
pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] =
PCI_MBOX_REGS2100_OFF;
}
isp = &pcs->pci_isp;
isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT);
if (isp->isp_param == NULL) {
device_printf(dev, "cannot allocate parameter data\n");
goto bad;
}
bzero(isp->isp_param, psize);
isp->isp_mdvec = mdvp;
isp->isp_type = basetype;
isp->isp_revision = pci_get_revid(dev);
(void) snprintf(isp->isp_name, sizeof (isp->isp_name), "isp%d", unit);
isp->isp_osinfo.unit = unit;
/*
* Try and find firmware for this device.
*/
if (isp_get_firmware_p) {
int device = (int) pci_get_device(dev);
#ifdef ISP_TARGET_MODE
(*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw);
#else
(*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw);
#endif
}
/*
*
*/
s = splbio();
/*
* Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER
* are set.
*/
cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN |
PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN;
pci_write_config(dev, PCIR_COMMAND, cmd, 1);
/*
* Make sure the Cache Line Size register is set sensibly.
*/
data = pci_read_config(dev, PCIR_CACHELNSZ, 1);
if (data != linesz) {
data = PCI_DFLT_LNSZ;
isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data);
pci_write_config(dev, PCIR_CACHELNSZ, data, 1);
}
/*
* Make sure the Latency Timer is sane.
*/
data = pci_read_config(dev, PCIR_LATTIMER, 1);
if (data < PCI_DFLT_LTNCY) {
data = PCI_DFLT_LTNCY;
isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data);
pci_write_config(dev, PCIR_LATTIMER, data, 1);
}
/*
* Make sure we've disabled the ROM.
*/
data = pci_read_config(dev, PCIR_ROMADDR, 4);
data &= ~1;
pci_write_config(dev, PCIR_ROMADDR, data, 4);
if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, lim + 1,
255, lim, 0, &pcs->parent_dmat) != 0) {
splx(s);
printf("%s: could not create master dma tag\n", isp->isp_name);
free(isp->isp_param, M_DEVBUF);
free(pcs, M_DEVBUF);
return (ENXIO);
}
iqd = 0;
irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0,
1, RF_ACTIVE | RF_SHAREABLE);
if (irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto bad;
}
if (getenv_int("isp_no_fwload", &bitmap)) {
if (bitmap & (1 << unit))
isp->isp_confopts |= ISP_CFG_NORELOAD;
}
if (getenv_int("isp_fwload", &bitmap)) {
if (bitmap & (1 << unit))
isp->isp_confopts &= ~ISP_CFG_NORELOAD;
}
if (getenv_int("isp_no_nvram", &bitmap)) {
if (bitmap & (1 << unit))
isp->isp_confopts |= ISP_CFG_NONVRAM;
}
if (getenv_int("isp_nvram", &bitmap)) {
if (bitmap & (1 << unit))
isp->isp_confopts &= ~ISP_CFG_NONVRAM;
}
if (getenv_int("isp_fcduplex", &bitmap)) {
if (bitmap & (1 << unit))
isp->isp_confopts |= ISP_CFG_FULL_DUPLEX;
}
if (getenv_int("isp_no_fcduplex", &bitmap)) {
if (bitmap & (1 << unit))
isp->isp_confopts &= ~ISP_CFG_FULL_DUPLEX;
}
if (getenv_int("isp_nport", &bitmap)) {
if (bitmap & (1 << unit))
isp->isp_confopts |= ISP_CFG_NPORT;
}
/*
* Look for overriding WWN. This is a Node WWN so it binds to
* all FC instances. A Port WWN will be constructed from it
* as appropriate.
*/
if (!getenv_quad("isp_wwn", (quad_t *) &isp->isp_osinfo.default_wwn)) {
int i;
u_int64_t seed = (u_int64_t) (intptr_t) isp;
seed <<= 16;
seed &= ((1LL << 48) - 1LL);
/*
* This isn't very random, but it's the best we can do for
* the real edge case of cards that don't have WWNs. If
* you recompile a new vers.c, you'll get a different WWN.
*/
for (i = 0; version[i] != 0; i++) {
seed += version[i];
}
/*
* Make sure the top nibble has something vaguely sensible
* (NAA == Locally Administered)
*/
isp->isp_osinfo.default_wwn |= (3LL << 60) | seed;
} else {
isp->isp_confopts |= ISP_CFG_OWNWWN;
}
isp_debug = 0;
(void) getenv_int("isp_debug", &isp_debug);
if (bus_setup_intr(dev, irq, INTR_TYPE_CAM, (void (*)(void *))isp_intr,
isp, &pcs->ih)) {
splx(s);
device_printf(dev, "could not setup interrupt\n");
goto bad;
}
/*
* Set up logging levels.
*/
if (isp_debug) {
isp->isp_dblev = isp_debug;
} else {
isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR;
}
if (bootverbose)
isp->isp_dblev |= ISP_LOGCONFIG;
/*
* Make sure we're in reset state.
*/
isp_reset(isp);
if (isp->isp_state != ISP_RESETSTATE) {
splx(s);
goto bad;
}
isp_init(isp);
if (isp->isp_state != ISP_INITSTATE) {
/* If we're a Fibre Channel Card, we allow deferred attach */
if (IS_SCSI(isp)) {
isp_uninit(isp);
splx(s);
goto bad;
}
}
isp_attach(isp);
if (isp->isp_state != ISP_RUNSTATE) {
/* If we're a Fibre Channel Card, we allow deferred attach */
1999-03-25 22:53:56 +00:00
if (IS_SCSI(isp)) {
isp_uninit(isp);
splx(s);
goto bad;
}
}
splx(s);
/*
* XXXX: Here is where we might unload the f/w module
* XXXX: (or decrease the reference count to it).
*/
return (0);
bad:
if (pcs && pcs->ih) {
(void) bus_teardown_intr(dev, irq, pcs->ih);
}
if (irq) {
(void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq);
}
if (regs) {
(void) bus_release_resource(dev, rtp, rgd, regs);
}
if (pcs) {
if (pcs->pci_isp.isp_param)
free(pcs->pci_isp.isp_param, M_DEVBUF);
free(pcs, M_DEVBUF);
}
/*
* XXXX: Here is where we might unload the f/w module
* XXXX: (or decrease the reference count to it).
*/
return (ENXIO);
}
static u_int16_t
isp_pci_rd_reg(isp, regoff)
struct ispsoftc *isp;
int regoff;
{
u_int16_t rv;
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
int offset, oldconf = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
/*
* We will assume that someone has paused the RISC processor.
*/
oldconf = isp_pci_rd_reg(isp, BIU_CONF1);
isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP);
}
offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
offset += (regoff & 0xff);
rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset);
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
isp_pci_wr_reg(isp, BIU_CONF1, oldconf);
}
return (rv);
}
static void
isp_pci_wr_reg(isp, regoff, val)
struct ispsoftc *isp;
int regoff;
u_int16_t val;
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
int offset, oldconf = 0;
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
/*
* We will assume that someone has paused the RISC processor.
*/
oldconf = isp_pci_rd_reg(isp, BIU_CONF1);
isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP);
}
offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
offset += (regoff & 0xff);
bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val);
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) {
isp_pci_wr_reg(isp, BIU_CONF1, oldconf);
}
}
static u_int16_t
isp_pci_rd_reg_1080(isp, regoff)
struct ispsoftc *isp;
int regoff;
{
1999-12-16 05:42:02 +00:00
u_int16_t rv, oc = 0;
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
1999-12-16 05:42:02 +00:00
int offset;
1999-12-16 05:42:02 +00:00
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
(regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
u_int16_t tc;
/*
* We will assume that someone has paused the RISC processor.
*/
oc = isp_pci_rd_reg(isp, BIU_CONF1);
1999-12-16 05:42:02 +00:00
tc = oc & ~BIU_PCI1080_CONF1_DMA;
if (regoff & SXP_BANK1_SELECT)
tc |= BIU_PCI1080_CONF1_SXP1;
else
tc |= BIU_PCI1080_CONF1_SXP0;
isp_pci_wr_reg(isp, BIU_CONF1, tc);
} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
oc = isp_pci_rd_reg(isp, BIU_CONF1);
isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA);
}
offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
offset += (regoff & 0xff);
rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset);
1999-12-16 05:42:02 +00:00
if (oc) {
isp_pci_wr_reg(isp, BIU_CONF1, oc);
}
return (rv);
}
static void
isp_pci_wr_reg_1080(isp, regoff, val)
struct ispsoftc *isp;
int regoff;
u_int16_t val;
{
struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp;
int offset, oc = 0;
1999-12-16 05:42:02 +00:00
if ((regoff & _BLK_REG_MASK) == SXP_BLOCK ||
(regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) {
u_int16_t tc;
/*
* We will assume that someone has paused the RISC processor.
*/
oc = isp_pci_rd_reg(isp, BIU_CONF1);
1999-12-16 05:42:02 +00:00
tc = oc & ~BIU_PCI1080_CONF1_DMA;
if (regoff & SXP_BANK1_SELECT)
tc |= BIU_PCI1080_CONF1_SXP1;
else
tc |= BIU_PCI1080_CONF1_SXP0;
isp_pci_wr_reg(isp, BIU_CONF1, tc);
} else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) {
oc = isp_pci_rd_reg(isp, BIU_CONF1);
isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA);
}
offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT];
offset += (regoff & 0xff);
bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val);
1999-12-16 05:42:02 +00:00
if (oc) {
isp_pci_wr_reg(isp, BIU_CONF1, oc);
}
}
static void isp_map_rquest __P((void *, bus_dma_segment_t *, int, int));
static void isp_map_result __P((void *, bus_dma_segment_t *, int, int));
static void isp_map_fcscrt __P((void *, bus_dma_segment_t *, int, int));
struct imush {
struct ispsoftc *isp;
int error;
};
static void
1998-12-28 19:24:23 +00:00
isp_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct imush *imushp = (struct imush *) arg;
if (error) {
imushp->error = error;
} else {
imushp->isp->isp_rquest_dma = segs->ds_addr;
}
}
static void
1998-12-28 19:24:23 +00:00
isp_map_result(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct imush *imushp = (struct imush *) arg;
if (error) {
imushp->error = error;
} else {
imushp->isp->isp_result_dma = segs->ds_addr;
}
}
static void
1998-12-28 19:24:23 +00:00
isp_map_fcscrt(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct imush *imushp = (struct imush *) arg;
if (error) {
imushp->error = error;
} else {
fcparam *fcp = imushp->isp->isp_param;
fcp->isp_scdma = segs->ds_addr;
}
}
static int
1998-12-28 19:24:23 +00:00
isp_pci_mbxdma(struct ispsoftc *isp)
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
caddr_t base;
u_int32_t len;
int i, error;
bus_size_t lim;
struct imush im;
/*
* Already been here? If so, leave...
*/
if (isp->isp_rquest) {
return (0);
}
len = sizeof (XS_T **) * isp->isp_maxcmds;
isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK);
if (isp->isp_xflist == NULL) {
isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array");
return (1);
}
bzero(isp->isp_xflist, len);
len = sizeof (bus_dmamap_t) * isp->isp_maxcmds;
pci->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK);
if (pci->dmaps == NULL) {
isp_prt(isp, ISP_LOGERR, "can't alloc dma maps");
free(isp->isp_xflist, M_DEVBUF);
return (1);
}
1999-12-16 05:42:02 +00:00
if (IS_FC(isp) || IS_ULTRA2(isp))
lim = BUS_SPACE_MAXADDR + 1;
else
lim = BUS_SPACE_MAXADDR_24BIT + 1;
/*
* Allocate and map the request, result queues, plus FC scratch area.
*/
len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
if (IS_FC(isp)) {
len += ISP2100_SCRLEN;
}
if (bus_dma_tag_create(pci->parent_dmat, PAGE_SIZE, lim,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1,
BUS_SPACE_MAXSIZE_32BIT, 0, &pci->cntrol_dmat) != 0) {
printf("%s: cannot create a dma tag for control spaces\n",
isp->isp_name);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
return (1);
}
if (bus_dmamem_alloc(pci->cntrol_dmat, (void **)&base,
BUS_DMA_NOWAIT, &pci->cntrol_dmap) != 0) {
printf("%s: cannot allocate %d bytes of CCB memory\n",
isp->isp_name, len);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
return (1);
}
isp->isp_rquest = base;
im.isp = isp;
im.error = 0;
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_rquest,
ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)), isp_map_rquest, &im, 0);
if (im.error) {
printf("%s: error %d loading dma map for DMA request queue\n",
isp->isp_name, im.error);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
isp->isp_rquest = NULL;
return (1);
}
isp->isp_result = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp));
im.error = 0;
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_result,
ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)), isp_map_result, &im, 0);
if (im.error) {
printf("%s: error %d loading dma map for DMA result queue\n",
isp->isp_name, im.error);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
isp->isp_rquest = NULL;
return (1);
}
for (i = 0; i < isp->isp_maxcmds; i++) {
error = bus_dmamap_create(pci->parent_dmat, 0, &pci->dmaps[i]);
if (error) {
printf("%s: error %d creating per-cmd DMA maps\n",
isp->isp_name, error);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
isp->isp_rquest = NULL;
return (1);
}
}
if (IS_FC(isp)) {
1999-03-25 22:53:56 +00:00
fcparam *fcp = (fcparam *) isp->isp_param;
fcp->isp_scratch = base +
ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)) +
ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp));
im.error = 0;
1999-03-25 22:53:56 +00:00
bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap,
fcp->isp_scratch, ISP2100_SCRLEN, isp_map_fcscrt, &im, 0);
if (im.error) {
printf("%s: error %d loading FC scratch area\n",
isp->isp_name, im.error);
free(isp->isp_xflist, M_DEVBUF);
free(pci->dmaps, M_DEVBUF);
isp->isp_rquest = NULL;
return (1);
}
1999-03-25 22:53:56 +00:00
}
return (0);
}
typedef struct {
struct ispsoftc *isp;
void *cmd_token;
void *rq;
u_int16_t *iptrp;
u_int16_t optr;
u_int error;
} mush_t;
#define MUSHERR_NOQENTRIES -2
#ifdef ISP_TARGET_MODE
/*
* We need to handle DMA for target mode differently from initiator mode.
*
* DMA mapping and construction and submission of CTIO Request Entries
* and rendevous for completion are very tightly coupled because we start
* out by knowing (per platform) how much data we have to move, but we
* don't know, up front, how many DMA mapping segments will have to be used
* cover that data, so we don't know how many CTIO Request Entries we
* will end up using. Further, for performance reasons we may want to
* (on the last CTIO for Fibre Channel), send status too (if all went well).
*
* The standard vector still goes through isp_pci_dmasetup, but the callback
* for the DMA mapping routines comes here instead with the whole transfer
* mapped and a pointer to a partially filled in already allocated request
* queue entry. We finish the job.
*/
static void tdma_mk __P((void *, bus_dma_segment_t *, int, int));
static void tdma_mkfc __P((void *, bus_dma_segment_t *, int, int));
static void
tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ccb_scsiio *csio;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
u_int8_t scsi_status;
ct_entry_t *cto;
u_int32_t handle, totxfr, sflags;
int nctios, send_status;
int32_t resid;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
csio = mp->cmd_token;
cto = mp->rq;
cto->ct_xfrlen = 0;
cto->ct_seg_count = 0;
cto->ct_header.rqs_entry_count = 1;
MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
if (nseg == 0) {
cto->ct_header.rqs_seqno = 1;
ISP_TDQE(mp->isp, "tdma_mk[no data]", *mp->iptrp, cto);
isp_prt(mp->isp, ISP_LOGTDEBUG1,
"CTIO lun %d->iid%d flgs 0x%x sts 0x%x ssts 0x%x res %d",
csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags,
cto->ct_status, cto->ct_scsi_status, cto->ct_resid);
ISP_SWIZ_CTIO(mp->isp, cto, cto);
return;
}
nctios = nseg / ISP_RQDSEG;
if (nseg % ISP_RQDSEG) {
nctios++;
}
/*
* Save handle, and potentially any SCSI status, which we'll reinsert
* on the last CTIO we're going to send.
*/
handle = cto->ct_reserved;
cto->ct_reserved = 0;
cto->ct_header.rqs_seqno = 0;
send_status = (cto->ct_flags & CT_SENDSTATUS) != 0;
if (send_status) {
sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR);
cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR);
/*
* Preserve residual.
*/
resid = cto->ct_resid;
/*
* Save actual SCSI status.
*/
scsi_status = cto->ct_scsi_status;
/*
* We can't do a status at the same time as a data CTIO, so
* we need to synthesize an extra CTIO at this level.
*/
nctios++;
} else {
sflags = scsi_status = resid = 0;
}
totxfr = cto->ct_resid = 0;
cto->ct_scsi_status = 0;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[isp_handle_index(handle)];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
while (nctios--) {
int seglim;
seglim = nseg;
if (seglim) {
int seg;
if (seglim > ISP_RQDSEG)
seglim = ISP_RQDSEG;
for (seg = 0; seg < seglim; seg++, nseg--) {
/*
* Unlike normal initiator commands, we don't
* do any swizzling here.
*/
cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
cto->ct_xfrlen += dm_segs->ds_len;
totxfr += dm_segs->ds_len;
dm_segs++;
}
cto->ct_seg_count = seg;
} else {
/*
* This case should only happen when we're sending an
* extra CTIO with final status.
*/
if (send_status == 0) {
printf("%s: tdma_mk ran out of segments\n",
mp->isp->isp_name);
mp->error = EINVAL;
return;
}
}
/*
* At this point, the fields ct_lun, ct_iid, ct_tagval,
* ct_tagtype, and ct_timeout have been carried over
* unchanged from what our caller had set.
*
* The dataseg fields and the seg_count fields we just got
* through setting. The data direction we've preserved all
* along and only clear it if we're now sending status.
*/
if (nctios == 0) {
/*
* We're the last in a sequence of CTIOs, so mark
* this CTIO and save the handle to the CCB such that
* when this CTIO completes we can free dma resources
* and do whatever else we need to do to finish the
* rest of the command.
*/
cto->ct_reserved = handle;
cto->ct_header.rqs_seqno = 1;
if (send_status) {
cto->ct_scsi_status = scsi_status;
cto->ct_flags |= sflags | CT_NO_DATA;;
cto->ct_resid = resid;
}
if (send_status) {
isp_prt(mp->isp, ISP_LOGTDEBUG1,
"CTIO lun%d for ID %d ct_flags 0x%x scsi "
"status %x resid %d",
csio->ccb_h.target_lun,
cto->ct_iid, cto->ct_flags,
cto->ct_scsi_status, cto->ct_resid);
} else {
isp_prt(mp->isp, ISP_LOGTDEBUG1,
"CTIO lun%d for ID%d ct_flags 0x%x",
csio->ccb_h.target_lun,
cto->ct_iid, cto->ct_flags);
}
ISP_TDQE(mp->isp, "last tdma_mk", *mp->iptrp, cto);
ISP_SWIZ_CTIO(mp->isp, cto, cto);
} else {
ct_entry_t *octo = cto;
/*
* Make sure handle fields are clean
*/
cto->ct_reserved = 0;
cto->ct_header.rqs_seqno = 0;
isp_prt(mp->isp, ISP_LOGTDEBUG1,
"CTIO lun%d for ID%d ct_flags 0x%x",
csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags);
ISP_TDQE(mp->isp, "tdma_mk", *mp->iptrp, cto);
/*
* Get a new CTIO
*/
cto = (ct_entry_t *)
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
*mp->iptrp =
ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp));
if (*mp->iptrp == mp->optr) {
printf("%s: Queue Overflow in tdma_mk\n",
mp->isp->isp_name);
mp->error = MUSHERR_NOQENTRIES;
return;
}
/*
* Fill in the new CTIO with info from the old one.
*/
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_flags = 0;
cto->ct_lun = octo->ct_lun;
cto->ct_iid = octo->ct_iid;
cto->ct_reserved2 = octo->ct_reserved2;
cto->ct_tgt = octo->ct_tgt;
cto->ct_flags = octo->ct_flags;
cto->ct_status = 0;
cto->ct_scsi_status = 0;
cto->ct_tag_val = octo->ct_tag_val;
cto->ct_tag_type = octo->ct_tag_type;
cto->ct_xfrlen = 0;
cto->ct_resid = 0;
cto->ct_timeout = octo->ct_timeout;
cto->ct_seg_count = 0;
MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg));
/*
* Now swizzle the old one for the consumption of the
* chip.
*/
ISP_SWIZ_CTIO(mp->isp, octo, octo);
}
}
}
static void
tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ccb_scsiio *csio;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
ct2_entry_t *cto;
u_int16_t scsi_status, send_status, send_sense;
u_int32_t handle, totxfr, datalen;
u_int8_t sense[QLTM_SENSELEN];
int nctios;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
csio = mp->cmd_token;
cto = mp->rq;
if (nseg == 0) {
if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) {
printf("%s: dma2_tgt_fc, a status CTIO2 without MODE1 "
"set (0x%x)\n", mp->isp->isp_name, cto->ct_flags);
mp->error = EINVAL;
return;
}
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_seqno = 1;
/* ct_reserved contains the handle set by caller */
/*
* We preserve ct_lun, ct_iid, ct_rxid. We set the data
* flags to NO DATA and clear relative offset flags.
* We preserve the ct_resid and the response area.
*/
cto->ct_flags |= CT2_NO_DATA;
if (cto->ct_resid > 0)
cto->ct_flags |= CT2_DATA_UNDER;
else if (cto->ct_resid < 0)
cto->ct_flags |= CT2_DATA_OVER;
cto->ct_seg_count = 0;
cto->ct_reloff = 0;
ISP_TDQE(mp->isp, "dma2_tgt_fc[no data]", *mp->iptrp, cto);
isp_prt(mp->isp, ISP_LOGTDEBUG1,
"CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x sts 0x%x ssts "
"0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun,
cto->ct_iid, cto->ct_flags, cto->ct_status,
cto->rsp.m1.ct_scsi_status, cto->ct_resid);
ISP_SWIZ_CTIO2(isp, cto, cto);
return;
}
if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) {
printf("%s: dma2_tgt_fc, a data CTIO2 without MODE0 set "
"(0x%x)\n\n", mp->isp->isp_name, cto->ct_flags);
mp->error = EINVAL;
return;
}
nctios = nseg / ISP_RQDSEG_T2;
if (nseg % ISP_RQDSEG_T2) {
nctios++;
}
/*
* Save the handle, status, reloff, and residual. We'll reinsert the
* handle into the last CTIO2 we're going to send, and reinsert status
* and residual (and possibly sense data) if that's to be sent as well.
*
* We preserve ct_reloff and adjust it for each data CTIO2 we send past
* the first one. This is needed so that the FCP DATA IUs being sent
* out have the correct offset (they can arrive at the other end out
* of order).
*/
handle = cto->ct_reserved;
cto->ct_reserved = 0;
if ((send_status = (cto->ct_flags & CT2_SENDSTATUS)) != 0) {
cto->ct_flags &= ~CT2_SENDSTATUS;
/*
* Preserve residual, which is actually the total count.
*/
datalen = cto->ct_resid;
/*
* Save actual SCSI status. We'll reinsert the
* CT2_SNSLEN_VALID later if appropriate.
*/
scsi_status = cto->rsp.m0.ct_scsi_status & 0xff;
send_sense = cto->rsp.m0.ct_scsi_status & CT2_SNSLEN_VALID;
/*
* If we're sending status and have a CHECK CONDTION and
* have sense data, we send one more CTIO2 with just the
* status and sense data. The upper layers have stashed
* the sense data in the dataseg structure for us.
*/
if ((scsi_status & 0xf) == SCSI_STATUS_CHECK_COND &&
send_sense) {
bcopy(cto->rsp.m0.ct_dataseg, sense, QLTM_SENSELEN);
nctios++;
}
} else {
scsi_status = send_sense = datalen = 0;
}
totxfr = cto->ct_resid = 0;
cto->rsp.m0.ct_scsi_status = 0;
bzero(&cto->rsp, sizeof (cto->rsp));
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[isp_handle_index(handle)];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
while (nctios--) {
int seg, seglim;
seglim = nseg;
if (seglim) {
if (seglim > ISP_RQDSEG_T2)
seglim = ISP_RQDSEG_T2;
for (seg = 0; seg < seglim; seg++) {
cto->rsp.m0.ct_dataseg[seg].ds_base =
dm_segs->ds_addr;
cto->rsp.m0.ct_dataseg[seg].ds_count =
dm_segs->ds_len;
cto->rsp.m0.ct_xfrlen += dm_segs->ds_len;
totxfr += dm_segs->ds_len;
dm_segs++;
}
cto->ct_seg_count = seg;
} else {
/*
* This case should only happen when we're sending a
* synthesized MODE1 final status with sense data.
*/
if (send_sense == 0) {
printf("%s: dma2_tgt_fc ran out of segments, "
"no SENSE DATA\n", mp->isp->isp_name);
mp->error = EINVAL;
return;
}
}
/*
* At this point, the fields ct_lun, ct_iid, ct_rxid,
* ct_timeout have been carried over unchanged from what
* our caller had set.
*
* The field ct_reloff is either what the caller set, or
* what we've added to below.
*
* The dataseg fields and the seg_count fields we just got
* through setting. The data direction we've preserved all
* along and only clear it if we're sending a MODE1 status
* as the last CTIO.
*
*/
if (nctios == 0) {
/*
* We're the last in a sequence of CTIO2s, so mark this
* CTIO2 and save the handle to the CCB such that when
* this CTIO2 completes we can free dma resources and
* do whatever else we need to do to finish the rest
* of the command.
*/
cto->ct_reserved = handle;
cto->ct_header.rqs_seqno = 1;
if (send_status) {
if (send_sense) {
bcopy(sense, cto->rsp.m1.ct_resp,
QLTM_SENSELEN);
cto->rsp.m1.ct_senselen =
QLTM_SENSELEN;
scsi_status |= CT2_SNSLEN_VALID;
cto->rsp.m1.ct_scsi_status =
scsi_status;
cto->ct_flags &= CT2_FLAG_MMASK;
cto->ct_flags |= CT2_FLAG_MODE1 |
CT2_NO_DATA| CT2_SENDSTATUS;
} else {
cto->rsp.m0.ct_scsi_status =
scsi_status;
cto->ct_flags |= CT2_SENDSTATUS;
}
/*
* Get 'real' residual and set flags based
* on it.
*/
cto->ct_resid = datalen - totxfr;
if (cto->ct_resid > 0)
cto->ct_flags |= CT2_DATA_UNDER;
else if (cto->ct_resid < 0)
cto->ct_flags |= CT2_DATA_OVER;
}
ISP_TDQE(mp->isp, "last dma2_tgt_fc", *mp->iptrp, cto);
isp_prt(mp->isp, ISP_LOGTDEBUG1,
"CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x sts 0x%x"
" ssts 0x%x res %d", cto->ct_rxid,
csio->ccb_h.target_lun, (int) cto->ct_iid,
cto->ct_flags, cto->ct_status,
cto->rsp.m1.ct_scsi_status, cto->ct_resid);
ISP_SWIZ_CTIO2(isp, cto, cto);
} else {
ct2_entry_t *octo = cto;
/*
* Make sure handle fields are clean
*/
cto->ct_reserved = 0;
cto->ct_header.rqs_seqno = 0;
ISP_TDQE(mp->isp, "dma2_tgt_fc", *mp->iptrp, cto);
isp_prt(mp->isp, ISP_LOGTDEBUG1,
"CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x",
cto->ct_rxid, csio->ccb_h.target_lun,
(int) cto->ct_iid, cto->ct_flags);
/*
* Get a new CTIO2
*/
cto = (ct2_entry_t *)
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
*mp->iptrp =
ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp));
if (*mp->iptrp == mp->optr) {
printf("%s: Queue Overflow in dma2_tgt_fc\n",
mp->isp->isp_name);
mp->error = MUSHERR_NOQENTRIES;
return;
}
/*
* Fill in the new CTIO2 with info from the old one.
*/
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_flags = 0;
/* ct_header.rqs_seqno && ct_reserved done later */
cto->ct_lun = octo->ct_lun;
cto->ct_iid = octo->ct_iid;
cto->ct_rxid = octo->ct_rxid;
cto->ct_flags = octo->ct_flags;
cto->ct_status = 0;
cto->ct_resid = 0;
cto->ct_timeout = octo->ct_timeout;
cto->ct_seg_count = 0;
/*
* Adjust the new relative offset by the amount which
* is recorded in the data segment of the old CTIO2 we
* just finished filling out.
*/
cto->ct_reloff += octo->rsp.m0.ct_xfrlen;
bzero(&cto->rsp, sizeof (cto->rsp));
ISP_SWIZ_CTIO2(isp, cto, cto);
}
}
}
#endif
static void dma2 __P((void *, bus_dma_segment_t *, int, int));
static void
1998-12-28 19:24:23 +00:00
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ccb_scsiio *csio;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
bus_dma_segment_t *eseg;
ispreq_t *rq;
ispcontreq_t *crq;
int seglim, datalen;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
if (nseg < 1) {
printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg);
mp->error = EFAULT;
return;
}
csio = mp->cmd_token;
rq = mp->rq;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[isp_handle_index(rq->req_handle)];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
datalen = XS_XFRLEN(csio);
/*
* We're passed an initial partially filled in entry that
* has most fields filled in except for data transfer
* related values.
*
* Our job is to fill in the initial request queue entry and
* then to start allocating and filling in continuation entries
* until we've covered the entire transfer.
*/
if (IS_FC(mp->isp)) {
seglim = ISP_RQDSEG_T2;
((ispreqt2_t *)rq)->req_totalcnt = datalen;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
} else {
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
}
} else {
if (csio->cdb_len > 12) {
seglim = 0;
} else {
seglim = ISP_RQDSEG;
}
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
rq->req_flags |= REQFLAG_DATA_IN;
} else {
rq->req_flags |= REQFLAG_DATA_OUT;
}
}
eseg = dm_segs + nseg;
while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
if (IS_FC(mp->isp)) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq;
rq2->req_dataseg[rq2->req_seg_count].ds_base =
dm_segs->ds_addr;
rq2->req_dataseg[rq2->req_seg_count].ds_count =
dm_segs->ds_len;
} else {
rq->req_dataseg[rq->req_seg_count].ds_base =
dm_segs->ds_addr;
rq->req_dataseg[rq->req_seg_count].ds_count =
dm_segs->ds_len;
}
datalen -= dm_segs->ds_len;
#if 0
if (IS_FC(mp->isp)) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq;
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
mp->isp->isp_name, rq->req_seg_count,
rq2->req_dataseg[rq2->req_seg_count].ds_count,
rq2->req_dataseg[rq2->req_seg_count].ds_base);
} else {
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
mp->isp->isp_name, rq->req_seg_count,
rq->req_dataseg[rq->req_seg_count].ds_count,
rq->req_dataseg[rq->req_seg_count].ds_base);
}
#endif
rq->req_seg_count++;
dm_segs++;
}
while (datalen > 0 && dm_segs != eseg) {
crq = (ispcontreq_t *)
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
*mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp));
if (*mp->iptrp == mp->optr) {
#if 0
printf("%s: Request Queue Overflow++\n",
mp->isp->isp_name);
#endif
mp->error = MUSHERR_NOQENTRIES;
return;
}
rq->req_header.rqs_entry_count++;
bzero((void *)crq, sizeof (*crq));
crq->req_header.rqs_entry_count = 1;
crq->req_header.rqs_entry_type = RQSTYPE_DATASEG;
seglim = 0;
while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) {
crq->req_dataseg[seglim].ds_base =
dm_segs->ds_addr;
crq->req_dataseg[seglim].ds_count =
dm_segs->ds_len;
#if 0
printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n",
mp->isp->isp_name, rq->req_header.rqs_entry_count-1,
seglim, crq->req_dataseg[seglim].ds_count,
crq->req_dataseg[seglim].ds_base);
#endif
rq->req_seg_count++;
dm_segs++;
seglim++;
datalen -= dm_segs->ds_len;
}
}
}
static int
isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
u_int16_t *iptrp, u_int16_t optr)
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
bus_dmamap_t *dp = NULL;
mush_t mush, *mp;
void (*eptr) __P((void *, bus_dma_segment_t *, int, int));
#ifdef ISP_TARGET_MODE
if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
if (IS_FC(isp)) {
eptr = tdma_mkfc;
} else {
eptr = tdma_mk;
}
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
(csio->dxfer_len == 0)) {
rq->req_seg_count = 1;
mp = &mush;
mp->isp = isp;
mp->cmd_token = csio;
mp->rq = rq;
mp->iptrp = iptrp;
mp->optr = optr;
mp->error = 0;
(*eptr)(mp, NULL, 0, 0);
goto exit;
}
} else
#endif
eptr = dma2;
/*
* NB: if we need to do request queue entry swizzling,
* NB: this is where it would need to be done for cmds
* NB: that move no data. For commands that move data,
* NB: swizzling would take place in those functions.
*/
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE ||
(csio->dxfer_len == 0)) {
rq->req_seg_count = 1;
return (CMD_QUEUED);
}
/*
* Do a virtual grapevine step to collect info for
* the callback dma allocation that we have to use...
*/
mp = &mush;
mp->isp = isp;
mp->cmd_token = csio;
mp->rq = rq;
mp->iptrp = iptrp;
mp->optr = optr;
mp->error = 0;
if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
int error, s;
dp = &pci->dmaps[isp_handle_index(rq->req_handle)];
s = splsoftvm();
error = bus_dmamap_load(pci->parent_dmat, *dp,
csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
if (error == EINPROGRESS) {
bus_dmamap_unload(pci->parent_dmat, *dp);
mp->error = EINVAL;
printf("%s: deferred dma allocation not "
"supported\n", isp->isp_name);
} else if (error && mp->error == 0) {
#ifdef DIAGNOSTIC
printf("%s: error %d in dma mapping code\n",
isp->isp_name, error);
#endif
mp->error = error;
}
splx(s);
} else {
/* Pointer to physical buffer */
struct bus_dma_segment seg;
seg.ds_addr = (bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
(*eptr)(mp, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
printf("%s: Physical segment pointers unsupported",
isp->isp_name);
mp->error = EINVAL;
} else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
printf("%s: Virtual segment addresses unsupported",
isp->isp_name);
mp->error = EINVAL;
} else {
/* Just use the segments provided */
segs = (struct bus_dma_segment *) csio->data_ptr;
(*eptr)(mp, segs, csio->sglist_cnt, 0);
}
}
#ifdef ISP_TARGET_MODE
exit:
#endif
if (mp->error) {
int retval = CMD_COMPLETE;
if (mp->error == MUSHERR_NOQENTRIES) {
retval = CMD_EAGAIN;
} else if (mp->error == EFBIG) {
XS_SETERR(csio, CAM_REQ_TOO_BIG);
} else if (mp->error == EINVAL) {
XS_SETERR(csio, CAM_REQ_INVALID);
} else {
XS_SETERR(csio, CAM_UNREC_HBA_ERROR);
}
return (retval);
} else {
/*
* Check to see if we weren't cancelled while sleeping on
* getting DMA resources...
*/
if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
if (dp) {
bus_dmamap_unload(pci->parent_dmat, *dp);
}
return (CMD_COMPLETE);
}
return (CMD_QUEUED);
}
}
static void
isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int32_t handle)
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
bus_dmamap_t *dp = &pci->dmaps[isp_handle_index(handle)];
if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_unload(pci->parent_dmat, *dp);
}
static void
1998-12-28 19:24:23 +00:00
isp_pci_reset1(struct ispsoftc *isp)
{
/* Make sure the BIOS is disabled */
isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS);
/* and enable interrupts */
ENABLE_INTS(isp);
}
static void
isp_pci_dumpregs(struct ispsoftc *isp, const char *msg)
{
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
if (msg)
printf("%s: %s\n", isp->isp_name, msg);
if (IS_SCSI(isp))
printf(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1));
else
printf(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR));
printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR),
ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA));
printf("risc_hccr=%x\n", ISP_READ(isp, HCCR));
if (IS_SCSI(isp)) {
ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE);
printf(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n",
ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS),
ISP_READ(isp, CDMA_FIFO_STS));
printf(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n",
ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS),
ISP_READ(isp, DDMA_FIFO_STS));
printf(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n",
ISP_READ(isp, SXP_INTERRUPT),
ISP_READ(isp, SXP_GROSS_ERR),
ISP_READ(isp, SXP_PINS_CTRL));
ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE);
}
printf(" mbox regs: %x %x %x %x %x\n",
ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1),
ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3),
ISP_READ(isp, OUTMAILBOX4));
printf(" PCI Status Command/Status=%x\n",
pci_read_config(pci->pci_dev, PCIR_COMMAND, 1));
}