1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-06 13:09:50 +00:00
freebsd/sys/x86/iommu/busdma_dmar.c

853 lines
24 KiB
C
Raw Normal View History

Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
/*-
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/uio.h>
#include <dev/pci/pcireg.h>
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
#include <dev/pci/pcivar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <x86/include/busdma_impl.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/busdma_dmar.h>
#include <x86/iommu/intel_dmar.h>
/*
* busdma_dmar.c, the implementation of the busdma(9) interface using
* DMAR units from Intel VT-d.
*/
static bool
dmar_bus_dma_is_dev_disabled(int domain, int bus, int slot, int func)
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
{
char str[128], *env;
snprintf(str, sizeof(str), "hw.busdma.pci%d.%d.%d.%d.bounce",
domain, bus, slot, func);
env = getenv(str);
if (env == NULL)
return (false);
freeenv(env);
return (true);
}
/*
* Given original device, find the requester ID that will be seen by
* the DMAR unit and used for page table lookup. PCI bridges may take
* ownership of transactions from downstream devices, so it may not be
* the same as the BSF of the target device. In those cases, all
* devices downstream of the bridge must share a single mapping
* domain, and must collectively be assigned to use either DMAR or
* bounce mapping.
*/
static device_t
dmar_get_requester(device_t dev, uint16_t *rid)
{
devclass_t pci_class;
device_t pci, pcib, requester;
int cap_offset;
pci_class = devclass_find("pci");
requester = dev;
*rid = pci_get_rid(dev);
/*
* Walk the bridge hierarchy from the target device to the
* host port to find the translating bridge nearest the DMAR
* unit.
*/
for (;;) {
pci = device_get_parent(dev);
KASSERT(pci != NULL, ("NULL parent for pci%d:%d:%d:%d",
pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
pci_get_function(dev)));
KASSERT(device_get_devclass(pci) == pci_class,
("Non-pci parent for pci%d:%d:%d:%d",
pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
pci_get_function(dev)));
pcib = device_get_parent(pci);
KASSERT(pcib != NULL, ("NULL bridge for pci%d:%d:%d:%d",
pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
pci_get_function(dev)));
/*
* The parent of our "bridge" isn't another PCI bus,
* so pcib isn't a PCI->PCI bridge but rather a host
* port, and the requester ID won't be translated
* further.
*/
if (device_get_devclass(device_get_parent(pcib)) != pci_class)
break;
if (pci_find_cap(dev, PCIY_EXPRESS, &cap_offset) != 0) {
/*
* Device is not PCIe, it cannot be seen as a
* requester by DMAR unit.
*/
requester = pcib;
/* Check whether the bus above is PCIe. */
if (pci_find_cap(pcib, PCIY_EXPRESS,
&cap_offset) == 0) {
/*
* The current device is not PCIe, but
* the bridge above it is. This is a
* PCIe->PCI bridge. Assume that the
* requester ID will be the secondary
* bus number with slot and function
* set to zero.
*
* XXX: Doesn't handle the case where
* the bridge is PCIe->PCI-X, and the
* bridge will only take ownership of
* requests in some cases. We should
* provide context entries with the
* same page tables for taken and
* non-taken transactions.
*/
*rid = PCI_RID(pci_get_bus(dev), 0, 0);
} else {
/*
* Neither the device nor the bridge
* above it are PCIe. This is a
* conventional PCI->PCI bridge, which
* will use the bridge's BSF as the
* requester ID.
*/
*rid = pci_get_rid(pcib);
}
}
/*
* Do not stop the loop even if the target device is
* PCIe, because it is possible (but unlikely) to have
* a PCI->PCIe bridge somewhere in the hierarchy.
*/
dev = pcib;
}
return (requester);
}
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
struct dmar_ctx *
dmar_instantiate_ctx(struct dmar_unit *dmar, device_t dev, bool rmrr)
{
device_t requester;
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
struct dmar_ctx *ctx;
bool disabled;
uint16_t rid;
requester = dmar_get_requester(dev, &rid);
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
/*
* If the user requested the IOMMU disabled for the device, we
* cannot disable the DMAR, due to possibility of other
* devices on the same DMAR still requiring translation.
* Instead provide the identity mapping for the device
* context.
*/
disabled = dmar_bus_dma_is_dev_disabled(pci_get_domain(requester),
pci_get_bus(requester), pci_get_slot(requester),
pci_get_function(requester));
ctx = dmar_get_ctx(dmar, requester, rid, disabled, rmrr);
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
if (ctx == NULL)
return (NULL);
if (disabled) {
/*
* Keep the first reference on context, release the
* later refs.
*/
DMAR_LOCK(dmar);
if ((ctx->flags & DMAR_CTX_DISABLED) == 0) {
ctx->flags |= DMAR_CTX_DISABLED;
DMAR_UNLOCK(dmar);
} else {
dmar_free_ctx_locked(dmar, ctx);
}
ctx = NULL;
}
return (ctx);
}
bus_dma_tag_t
dmar_get_dma_tag(device_t dev, device_t child)
{
struct dmar_unit *dmar;
struct dmar_ctx *ctx;
bus_dma_tag_t res;
dmar = dmar_find(child);
/* Not in scope of any DMAR ? */
if (dmar == NULL)
return (NULL);
dmar_quirks_pre_use(dmar);
dmar_instantiate_rmrr_ctxs(dmar);
ctx = dmar_instantiate_ctx(dmar, child, false);
res = ctx == NULL ? NULL : (bus_dma_tag_t)&ctx->ctx_tag;
return (res);
}
static MALLOC_DEFINE(M_DMAR_DMAMAP, "dmar_dmamap", "Intel DMAR DMA Map");
static void dmar_bus_schedule_dmamap(struct dmar_unit *unit,
struct bus_dmamap_dmar *map);
static int
dmar_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
void *lockfuncarg, bus_dma_tag_t *dmat)
{
struct bus_dma_tag_dmar *newtag, *oldtag;
int error;
*dmat = NULL;
error = common_bus_dma_tag_create(parent != NULL ?
&((struct bus_dma_tag_dmar *)parent)->common : NULL, alignment,
boundary, lowaddr, highaddr, filter, filterarg, maxsize,
nsegments, maxsegsz, flags, lockfunc, lockfuncarg,
sizeof(struct bus_dma_tag_dmar), (void **)&newtag);
if (error != 0)
goto out;
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
oldtag = (struct bus_dma_tag_dmar *)parent;
newtag->common.impl = &bus_dma_dmar_impl;
newtag->ctx = oldtag->ctx;
newtag->owner = oldtag->owner;
*dmat = (bus_dma_tag_t)newtag;
out:
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
__func__, newtag, (newtag != NULL ? newtag->common.flags : 0),
error);
return (error);
}
static int
dmar_bus_dma_tag_destroy(bus_dma_tag_t dmat1)
{
struct bus_dma_tag_dmar *dmat, *dmat_copy, *parent;
int error;
error = 0;
dmat_copy = dmat = (struct bus_dma_tag_dmar *)dmat1;
if (dmat != NULL) {
if (dmat->map_count != 0) {
error = EBUSY;
goto out;
}
while (dmat != NULL) {
parent = (struct bus_dma_tag_dmar *)dmat->common.parent;
if (atomic_fetchadd_int(&dmat->common.ref_count, -1) ==
1) {
if (dmat == &dmat->ctx->ctx_tag)
dmar_free_ctx(dmat->ctx);
free(dmat->segments, M_DMAR_DMAMAP);
free(dmat, M_DEVBUF);
dmat = parent;
} else
dmat = NULL;
}
}
out:
CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
return (error);
}
static int
dmar_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
tag = (struct bus_dma_tag_dmar *)dmat;
map = malloc(sizeof(*map), M_DMAR_DMAMAP, M_NOWAIT | M_ZERO);
if (map == NULL) {
*mapp = NULL;
return (ENOMEM);
}
if (tag->segments == NULL) {
tag->segments = malloc(sizeof(bus_dma_segment_t) *
tag->common.nsegments, M_DMAR_DMAMAP, M_NOWAIT);
if (tag->segments == NULL) {
free(map, M_DMAR_DMAMAP);
*mapp = NULL;
return (ENOMEM);
}
}
TAILQ_INIT(&map->map_entries);
map->tag = tag;
map->locked = true;
map->cansleep = false;
tag->map_count++;
*mapp = (bus_dmamap_t)map;
2014-03-18 15:59:06 +00:00
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
return (0);
}
static int
dmar_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map1)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
tag = (struct bus_dma_tag_dmar *)dmat;
map = (struct bus_dmamap_dmar *)map1;
if (map != NULL) {
DMAR_CTX_LOCK(tag->ctx);
if (!TAILQ_EMPTY(&map->map_entries)) {
DMAR_CTX_UNLOCK(tag->ctx);
return (EBUSY);
}
DMAR_CTX_UNLOCK(tag->ctx);
free(map, M_DMAR_DMAMAP);
}
tag->map_count--;
return (0);
}
static int
dmar_bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
bus_dmamap_t *mapp)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
int error, mflags;
vm_memattr_t attr;
error = dmar_bus_dmamap_create(dmat, flags, mapp);
if (error != 0)
return (error);
mflags = (flags & BUS_DMA_NOWAIT) != 0 ? M_NOWAIT : M_WAITOK;
mflags |= (flags & BUS_DMA_ZERO) != 0 ? M_ZERO : 0;
attr = (flags & BUS_DMA_NOCACHE) != 0 ? VM_MEMATTR_UNCACHEABLE :
VM_MEMATTR_DEFAULT;
2014-03-18 15:59:06 +00:00
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
tag = (struct bus_dma_tag_dmar *)dmat;
map = (struct bus_dmamap_dmar *)*mapp;
if (tag->common.maxsize < PAGE_SIZE &&
tag->common.alignment <= tag->common.maxsize &&
attr == VM_MEMATTR_DEFAULT) {
*vaddr = malloc(tag->common.maxsize, M_DEVBUF, mflags);
map->flags |= BUS_DMAMAP_DMAR_MALLOC;
} else {
*vaddr = (void *)kmem_alloc_attr(kernel_arena,
tag->common.maxsize, mflags, 0ul, BUS_SPACE_MAXADDR,
attr);
map->flags |= BUS_DMAMAP_DMAR_KMEM_ALLOC;
}
if (*vaddr == NULL) {
dmar_bus_dmamap_destroy(dmat, *mapp);
*mapp = NULL;
return (ENOMEM);
}
return (0);
}
static void
dmar_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map1)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
tag = (struct bus_dma_tag_dmar *)dmat;
map = (struct bus_dmamap_dmar *)map1;
if ((map->flags & BUS_DMAMAP_DMAR_MALLOC) != 0) {
free(vaddr, M_DEVBUF);
map->flags &= ~BUS_DMAMAP_DMAR_MALLOC;
} else {
KASSERT((map->flags & BUS_DMAMAP_DMAR_KMEM_ALLOC) != 0,
("dmar_bus_dmamem_free for non alloced map %p", map));
kmem_free(kernel_arena, (vm_offset_t)vaddr, tag->common.maxsize);
map->flags &= ~BUS_DMAMAP_DMAR_KMEM_ALLOC;
}
dmar_bus_dmamap_destroy(dmat, map1);
}
static int
dmar_bus_dmamap_load_something1(struct bus_dma_tag_dmar *tag,
struct bus_dmamap_dmar *map, vm_page_t *ma, int offset, bus_size_t buflen,
int flags, bus_dma_segment_t *segs, int *segp,
struct dmar_map_entries_tailq *unroll_list)
{
struct dmar_ctx *ctx;
struct dmar_map_entry *entry;
dmar_gaddr_t size;
bus_size_t buflen1;
int error, idx, gas_flags, seg;
if (segs == NULL)
segs = tag->segments;
ctx = tag->ctx;
seg = *segp;
error = 0;
Import the driver for VT-d DMAR hardware, as specified in the revision 1.3 of Intelб╝ Virtualization Technology for Directed I/O Architecture Specification. The Extended Context and PASIDs from the rev. 2.2 are not supported, but I am not aware of any released hardware which implements them. Code does not use queued invalidation, see comments for the reason, and does not provide interrupt remapping services. Code implements the management of the guest address space per domain and allows to establish and tear down arbitrary mappings, but not partial unmapping. The superpages are created as needed, but not promoted. Faults are recorded, fault records could be obtained programmatically, and printed on the console. Implement the busdma(9) using DMARs. This busdma backend avoids bouncing and provides security against misbehaving hardware and driver bad programming, preventing leaks and corruption of the memory by wild DMA accesses. By default, the implementation is compiled into amd64 GENERIC kernel but disabled; to enable, set hw.dmar.enable=1 loader tunable. Code is written to work on i386, but testing there was low priority, and driver is not enabled in GENERIC. Even with the DMAR turned on, individual devices could be directed to use the bounce busdma with the hw.busdma.pci<domain>:<bus>:<device>:<function>.bounce=1 tunable. If DMARs are capable of the pass-through translations, it is used, otherwise, an identity-mapping page table is constructed. The driver was tested on Xeon 5400/5500 chipset legacy machine, Haswell desktop and E5 SandyBridge dual-socket boxes, with ahci(4), ata(4), bce(4), ehci(4), mfi(4), uhci(4), xhci(4) devices. It also works with em(4) and igb(4), but there some fixes are needed for drivers, which are not committed yet. Intel GPUs do not work with DMAR (yet). Many thanks to John Baldwin, who explained me the newbus integration; Peter Holm, who did all testing and helped me to discover and understand several incredible bugs; and to Jim Harris for the access to the EDS and BWG and for listening when I have to explain my findings to somebody. Sponsored by: The FreeBSD Foundation MFC after: 1 month
2013-10-28 13:33:29 +00:00
idx = 0;
while (buflen > 0) {
seg++;
if (seg >= tag->common.nsegments) {
error = EFBIG;
break;
}
buflen1 = buflen > tag->common.maxsegsz ?
tag->common.maxsegsz : buflen;
buflen -= buflen1;
size = round_page(offset + buflen1);
/*
* (Too) optimistically allow split if there are more
* then one segments left.
*/
gas_flags = map->cansleep ? DMAR_GM_CANWAIT : 0;
if (seg + 1 < tag->common.nsegments)
gas_flags |= DMAR_GM_CANSPLIT;
error = dmar_gas_map(ctx, &tag->common, size,
DMAR_MAP_ENTRY_READ | DMAR_MAP_ENTRY_WRITE,
gas_flags, ma + idx, &entry);
if (error != 0)
break;
if ((gas_flags & DMAR_GM_CANSPLIT) != 0) {
KASSERT(size >= entry->end - entry->start,
("split increased entry size %jx %jx %jx",
(uintmax_t)size, (uintmax_t)entry->start,
(uintmax_t)entry->end));
size = entry->end - entry->start;
if (buflen1 > size)
buflen1 = size;
} else {
KASSERT(entry->end - entry->start == size,
("no split allowed %jx %jx %jx",
(uintmax_t)size, (uintmax_t)entry->start,
(uintmax_t)entry->end));
}
KASSERT(((entry->start + offset) & (tag->common.alignment - 1))
== 0,
("alignment failed: ctx %p start 0x%jx offset %x "
"align 0x%jx", ctx, (uintmax_t)entry->start, offset,
(uintmax_t)tag->common.alignment));
KASSERT(entry->end <= tag->common.lowaddr ||
entry->start >= tag->common.highaddr,
("entry placement failed: ctx %p start 0x%jx end 0x%jx "
"lowaddr 0x%jx highaddr 0x%jx", ctx,
(uintmax_t)entry->start, (uintmax_t)entry->end,
(uintmax_t)tag->common.lowaddr,
(uintmax_t)tag->common.highaddr));
KASSERT(dmar_test_boundary(entry->start, entry->end -
entry->start, tag->common.boundary),
("boundary failed: ctx %p start 0x%jx end 0x%jx "
"boundary 0x%jx", ctx, (uintmax_t)entry->start,
(uintmax_t)entry->end, (uintmax_t)tag->common.boundary));
KASSERT(buflen1 <= tag->common.maxsegsz,
("segment too large: ctx %p start 0x%jx end 0x%jx "
"maxsegsz 0x%jx", ctx, (uintmax_t)entry->start,
(uintmax_t)entry->end, (uintmax_t)tag->common.maxsegsz));
DMAR_CTX_LOCK(ctx);
TAILQ_INSERT_TAIL(&map->map_entries, entry, dmamap_link);
entry->flags |= DMAR_MAP_ENTRY_MAP;
DMAR_CTX_UNLOCK(ctx);
TAILQ_INSERT_TAIL(unroll_list, entry, unroll_link);
segs[seg].ds_addr = entry->start + offset;
segs[seg].ds_len = buflen1;
idx += OFF_TO_IDX(trunc_page(offset + buflen1));
offset += buflen1;
offset &= DMAR_PAGE_MASK;
}
if (error == 0)
*segp = seg;
return (error);
}
static int
dmar_bus_dmamap_load_something(struct bus_dma_tag_dmar *tag,
struct bus_dmamap_dmar *map, vm_page_t *ma, int offset, bus_size_t buflen,
int flags, bus_dma_segment_t *segs, int *segp)
{
struct dmar_ctx *ctx;
struct dmar_map_entry *entry, *entry1;
struct dmar_map_entries_tailq unroll_list;
int error;
ctx = tag->ctx;
atomic_add_long(&ctx->loads, 1);
TAILQ_INIT(&unroll_list);
error = dmar_bus_dmamap_load_something1(tag, map, ma, offset,
buflen, flags, segs, segp, &unroll_list);
if (error != 0) {
/*
* The busdma interface does not allow us to report
* partial buffer load, so unfortunately we have to
* revert all work done.
*/
DMAR_CTX_LOCK(ctx);
TAILQ_FOREACH_SAFE(entry, &unroll_list, unroll_link,
entry1) {
/*
* No entries other than what we have created
* during the failed run might have been
* inserted there in between, since we own ctx
* pglock.
*/
TAILQ_REMOVE(&map->map_entries, entry, dmamap_link);
TAILQ_REMOVE(&unroll_list, entry, unroll_link);
TAILQ_INSERT_TAIL(&ctx->unload_entries, entry,
dmamap_link);
}
DMAR_CTX_UNLOCK(ctx);
taskqueue_enqueue(ctx->dmar->delayed_taskqueue,
&ctx->unload_task);
}
if (error == ENOMEM && (flags & BUS_DMA_NOWAIT) == 0 &&
!map->cansleep)
error = EINPROGRESS;
if (error == EINPROGRESS)
dmar_bus_schedule_dmamap(ctx->dmar, map);
return (error);
}
static int
dmar_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map1,
struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
bus_dma_segment_t *segs, int *segp)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
tag = (struct bus_dma_tag_dmar *)dmat;
map = (struct bus_dmamap_dmar *)map1;
return (dmar_bus_dmamap_load_something(tag, map, ma, ma_offs, tlen,
flags, segs, segp));
}
static int
dmar_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map1,
vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs,
int *segp)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
vm_page_t *ma;
vm_paddr_t pstart, pend;
int error, i, ma_cnt, offset;
tag = (struct bus_dma_tag_dmar *)dmat;
map = (struct bus_dmamap_dmar *)map1;
pstart = trunc_page(buf);
pend = round_page(buf + buflen);
offset = buf & PAGE_MASK;
ma_cnt = OFF_TO_IDX(pend - pstart);
ma = malloc(sizeof(vm_page_t) * ma_cnt, M_DEVBUF, map->cansleep ?
M_WAITOK : M_NOWAIT);
if (ma == NULL)
return (ENOMEM);
for (i = 0; i < ma_cnt; i++)
ma[i] = PHYS_TO_VM_PAGE(pstart + i * PAGE_SIZE);
error = dmar_bus_dmamap_load_something(tag, map, ma, offset, buflen,
flags, segs, segp);
free(ma, M_DEVBUF);
return (error);
}
static int
dmar_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map1, void *buf,
bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs,
int *segp)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
vm_page_t *ma, fma;
vm_paddr_t pstart, pend, paddr;
int error, i, ma_cnt, offset;
tag = (struct bus_dma_tag_dmar *)dmat;
map = (struct bus_dmamap_dmar *)map1;
pstart = trunc_page((vm_offset_t)buf);
pend = round_page((vm_offset_t)buf + buflen);
offset = (vm_offset_t)buf & PAGE_MASK;
ma_cnt = OFF_TO_IDX(pend - pstart);
ma = malloc(sizeof(vm_page_t) * ma_cnt, M_DEVBUF, map->cansleep ?
M_WAITOK : M_NOWAIT);
if (ma == NULL)
return (ENOMEM);
if (dumping) {
/*
* If dumping, do not attempt to call
* PHYS_TO_VM_PAGE() at all. It may return non-NULL
* but the vm_page returned might be not initialized,
* e.g. for the kernel itself.
*/
KASSERT(pmap == kernel_pmap, ("non-kernel address write"));
fma = malloc(sizeof(struct vm_page) * ma_cnt, M_DEVBUF,
M_ZERO | (map->cansleep ? M_WAITOK : M_NOWAIT));
if (fma == NULL) {
free(ma, M_DEVBUF);
return (ENOMEM);
}
for (i = 0; i < ma_cnt; i++, pstart += PAGE_SIZE) {
paddr = pmap_kextract(pstart);
vm_page_initfake(&fma[i], paddr, VM_MEMATTR_DEFAULT);
ma[i] = &fma[i];
}
} else {
fma = NULL;
for (i = 0; i < ma_cnt; i++, pstart += PAGE_SIZE) {
if (pmap == kernel_pmap)
paddr = pmap_kextract(pstart);
else
paddr = pmap_extract(pmap, pstart);
ma[i] = PHYS_TO_VM_PAGE(paddr);
KASSERT(VM_PAGE_TO_PHYS(ma[i]) == paddr,
("PHYS_TO_VM_PAGE failed %jx %jx m %p",
(uintmax_t)paddr, (uintmax_t)VM_PAGE_TO_PHYS(ma[i]),
ma[i]));
}
}
error = dmar_bus_dmamap_load_something(tag, map, ma, offset, buflen,
flags, segs, segp);
free(ma, M_DEVBUF);
free(fma, M_DEVBUF);
return (error);
}
static void
dmar_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map1,
struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg)
{
struct bus_dmamap_dmar *map;
if (map1 == NULL)
return;
map = (struct bus_dmamap_dmar *)map1;
map->mem = *mem;
map->tag = (struct bus_dma_tag_dmar *)dmat;
map->callback = callback;
map->callback_arg = callback_arg;
}
static bus_dma_segment_t *
dmar_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map1,
bus_dma_segment_t *segs, int nsegs, int error)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
tag = (struct bus_dma_tag_dmar *)dmat;
map = (struct bus_dmamap_dmar *)map1;
if (!map->locked) {
KASSERT(map->cansleep,
("map not locked and not sleepable context %p", map));
/*
* We are called from the delayed context. Relock the
* driver.
*/
(tag->common.lockfunc)(tag->common.lockfuncarg, BUS_DMA_LOCK);
map->locked = true;
}
if (segs == NULL)
segs = tag->segments;
return (segs);
}
/*
* The limitations of busdma KPI forces the dmar to perform the actual
* unload, consisting of the unmapping of the map entries page tables,
* from the delayed context on i386, since page table page mapping
* might require a sleep to be successfull. The unfortunate
* consequence is that the DMA requests can be served some time after
* the bus_dmamap_unload() call returned.
*
* On amd64, we assume that sf allocation cannot fail.
*/
static void
dmar_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map1)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
struct dmar_ctx *ctx;
#if defined(__amd64__)
struct dmar_map_entries_tailq entries;
#endif
tag = (struct bus_dma_tag_dmar *)dmat;
map = (struct bus_dmamap_dmar *)map1;
ctx = tag->ctx;
atomic_add_long(&ctx->unloads, 1);
#if defined(__i386__)
DMAR_CTX_LOCK(ctx);
TAILQ_CONCAT(&ctx->unload_entries, &map->map_entries, dmamap_link);
DMAR_CTX_UNLOCK(ctx);
taskqueue_enqueue(ctx->dmar->delayed_taskqueue, &ctx->unload_task);
#else /* defined(__amd64__) */
TAILQ_INIT(&entries);
DMAR_CTX_LOCK(ctx);
TAILQ_CONCAT(&entries, &map->map_entries, dmamap_link);
DMAR_CTX_UNLOCK(ctx);
THREAD_NO_SLEEPING();
dmar_ctx_unload(ctx, &entries, false);
THREAD_SLEEPING_OK();
KASSERT(TAILQ_EMPTY(&entries), ("lazy dmar_ctx_unload %p", ctx));
#endif
}
static void
dmar_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dmasync_op_t op)
{
}
struct bus_dma_impl bus_dma_dmar_impl = {
.tag_create = dmar_bus_dma_tag_create,
.tag_destroy = dmar_bus_dma_tag_destroy,
.map_create = dmar_bus_dmamap_create,
.map_destroy = dmar_bus_dmamap_destroy,
.mem_alloc = dmar_bus_dmamem_alloc,
.mem_free = dmar_bus_dmamem_free,
.load_phys = dmar_bus_dmamap_load_phys,
.load_buffer = dmar_bus_dmamap_load_buffer,
.load_ma = dmar_bus_dmamap_load_ma,
.map_waitok = dmar_bus_dmamap_waitok,
.map_complete = dmar_bus_dmamap_complete,
.map_unload = dmar_bus_dmamap_unload,
.map_sync = dmar_bus_dmamap_sync
};
static void
dmar_bus_task_dmamap(void *arg, int pending)
{
struct bus_dma_tag_dmar *tag;
struct bus_dmamap_dmar *map;
struct dmar_unit *unit;
struct dmar_ctx *ctx;
unit = arg;
DMAR_LOCK(unit);
while ((map = TAILQ_FIRST(&unit->delayed_maps)) != NULL) {
TAILQ_REMOVE(&unit->delayed_maps, map, delay_link);
DMAR_UNLOCK(unit);
tag = map->tag;
ctx = map->tag->ctx;
map->cansleep = true;
map->locked = false;
bus_dmamap_load_mem((bus_dma_tag_t)tag, (bus_dmamap_t)map,
&map->mem, map->callback, map->callback_arg,
BUS_DMA_WAITOK);
map->cansleep = false;
if (map->locked) {
(tag->common.lockfunc)(tag->common.lockfuncarg,
BUS_DMA_UNLOCK);
} else
map->locked = true;
map->cansleep = false;
DMAR_LOCK(unit);
}
DMAR_UNLOCK(unit);
}
static void
dmar_bus_schedule_dmamap(struct dmar_unit *unit, struct bus_dmamap_dmar *map)
{
struct dmar_ctx *ctx;
ctx = map->tag->ctx;
map->locked = false;
DMAR_LOCK(unit);
TAILQ_INSERT_TAIL(&unit->delayed_maps, map, delay_link);
DMAR_UNLOCK(unit);
taskqueue_enqueue(unit->delayed_taskqueue, &unit->dmamap_load_task);
}
int
dmar_init_busdma(struct dmar_unit *unit)
{
TAILQ_INIT(&unit->delayed_maps);
TASK_INIT(&unit->dmamap_load_task, 0, dmar_bus_task_dmamap, unit);
unit->delayed_taskqueue = taskqueue_create("dmar", M_WAITOK,
taskqueue_thread_enqueue, &unit->delayed_taskqueue);
taskqueue_start_threads(&unit->delayed_taskqueue, 1, PI_DISK,
"dmar%d busdma taskq", unit->unit);
return (0);
}
void
dmar_fini_busdma(struct dmar_unit *unit)
{
if (unit->delayed_taskqueue == NULL)
return;
taskqueue_drain(unit->delayed_taskqueue, &unit->dmamap_load_task);
taskqueue_free(unit->delayed_taskqueue);
unit->delayed_taskqueue = NULL;
}