2000-10-28 06:59:48 +00:00
|
|
|
/*-
|
2003-07-10 17:22:46 +00:00
|
|
|
* Copyright (c) 2003 Nate Lawson
|
2000-10-28 06:59:48 +00:00
|
|
|
* Copyright (c) 2000 Michael Smith
|
|
|
|
* Copyright (c) 2000 BSDi
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* 1. Copyright Notice
|
|
|
|
*
|
|
|
|
* Some or all of this work - Copyright (c) 1999, Intel Corp. All rights
|
|
|
|
* reserved.
|
|
|
|
*
|
|
|
|
* 2. License
|
|
|
|
*
|
|
|
|
* 2.1. This is your license from Intel Corp. under its intellectual property
|
|
|
|
* rights. You may have additional license terms from the party that provided
|
|
|
|
* you this software, covering your right to use that party's intellectual
|
|
|
|
* property rights.
|
|
|
|
*
|
|
|
|
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
|
|
|
|
* copy of the source code appearing in this file ("Covered Code") an
|
|
|
|
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
|
|
|
|
* base code distributed originally by Intel ("Original Intel Code") to copy,
|
|
|
|
* make derivatives, distribute, use and display any portion of the Covered
|
|
|
|
* Code in any form, with the right to sublicense such rights; and
|
|
|
|
*
|
|
|
|
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
|
|
|
|
* license (with the right to sublicense), under only those claims of Intel
|
|
|
|
* patents that are infringed by the Original Intel Code, to make, use, sell,
|
|
|
|
* offer to sell, and import the Covered Code and derivative works thereof
|
|
|
|
* solely to the minimum extent necessary to exercise the above copyright
|
|
|
|
* license, and in no event shall the patent license extend to any additions
|
|
|
|
* to or modifications of the Original Intel Code. No other license or right
|
|
|
|
* is granted directly or by implication, estoppel or otherwise;
|
|
|
|
*
|
|
|
|
* The above copyright and patent license is granted only if the following
|
|
|
|
* conditions are met:
|
|
|
|
*
|
|
|
|
* 3. Conditions
|
|
|
|
*
|
|
|
|
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
|
|
|
|
* Redistribution of source code of any substantial portion of the Covered
|
|
|
|
* Code or modification with rights to further distribute source must include
|
|
|
|
* the above Copyright Notice, the above License, this list of Conditions,
|
|
|
|
* and the following Disclaimer and Export Compliance provision. In addition,
|
|
|
|
* Licensee must cause all Covered Code to which Licensee contributes to
|
|
|
|
* contain a file documenting the changes Licensee made to create that Covered
|
|
|
|
* Code and the date of any change. Licensee must include in that file the
|
|
|
|
* documentation of any changes made by any predecessor Licensee. Licensee
|
|
|
|
* must include a prominent statement that the modification is derived,
|
|
|
|
* directly or indirectly, from Original Intel Code.
|
|
|
|
*
|
|
|
|
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
|
|
|
|
* Redistribution of source code of any substantial portion of the Covered
|
|
|
|
* Code or modification without rights to further distribute source must
|
|
|
|
* include the following Disclaimer and Export Compliance provision in the
|
|
|
|
* documentation and/or other materials provided with distribution. In
|
|
|
|
* addition, Licensee may not authorize further sublicense of source of any
|
|
|
|
* portion of the Covered Code, and must include terms to the effect that the
|
|
|
|
* license from Licensee to its licensee is limited to the intellectual
|
|
|
|
* property embodied in the software Licensee provides to its licensee, and
|
|
|
|
* not to intellectual property embodied in modifications its licensee may
|
|
|
|
* make.
|
|
|
|
*
|
|
|
|
* 3.3. Redistribution of Executable. Redistribution in executable form of any
|
|
|
|
* substantial portion of the Covered Code or modification must reproduce the
|
|
|
|
* above Copyright Notice, and the following Disclaimer and Export Compliance
|
|
|
|
* provision in the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* 3.4. Intel retains all right, title, and interest in and to the Original
|
|
|
|
* Intel Code.
|
|
|
|
*
|
|
|
|
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
|
|
|
|
* Intel shall be used in advertising or otherwise to promote the sale, use or
|
|
|
|
* other dealings in products derived from or relating to the Covered Code
|
|
|
|
* without prior written authorization from Intel.
|
|
|
|
*
|
|
|
|
* 4. Disclaimer and Export Compliance
|
|
|
|
*
|
|
|
|
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
|
|
|
|
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
|
|
|
|
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
|
|
|
|
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
|
|
|
|
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
|
|
|
|
* PARTICULAR PURPOSE.
|
|
|
|
*
|
|
|
|
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
|
|
|
|
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
|
|
|
|
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
|
|
|
|
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
|
|
|
|
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
|
|
|
|
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
|
|
|
|
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
|
|
|
|
* LIMITED REMEDY.
|
|
|
|
*
|
|
|
|
* 4.3. Licensee shall not export, either directly or indirectly, any of this
|
|
|
|
* software or system incorporating such software without first obtaining any
|
|
|
|
* required license or other approval from the U. S. Department of Commerce or
|
|
|
|
* any other agency or department of the United States Government. In the
|
|
|
|
* event Licensee exports any such software from the United States or
|
|
|
|
* re-exports any such software from a foreign destination, Licensee shall
|
|
|
|
* ensure that the distribution and export/re-export of the software is in
|
|
|
|
* compliance with all laws, regulations, orders, or other restrictions of the
|
|
|
|
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
|
|
|
|
* any of its subsidiaries will export/re-export any technical data, process,
|
|
|
|
* software, or service, directly or indirectly, to any country for which the
|
|
|
|
* United States government or any agency thereof requires an export license,
|
|
|
|
* other governmental approval, or letter of assurance, without first obtaining
|
|
|
|
* such license, approval or letter.
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
#include "opt_acpi.h"
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <machine/resource.h>
|
|
|
|
#include <sys/rman.h>
|
|
|
|
|
|
|
|
#include "acpi.h"
|
|
|
|
|
|
|
|
#include <dev/acpica/acpivar.h>
|
|
|
|
|
2000-12-08 09:16:20 +00:00
|
|
|
/*
|
|
|
|
* Hooks for the ACPI CA debugging infrastructure
|
|
|
|
*/
|
2001-06-29 20:31:37 +00:00
|
|
|
#define _COMPONENT ACPI_EC
|
2002-02-23 05:26:31 +00:00
|
|
|
ACPI_MODULE_NAME("EC")
|
2000-12-08 09:16:20 +00:00
|
|
|
|
2001-07-21 04:06:44 +00:00
|
|
|
/*
|
|
|
|
* EC_COMMAND:
|
|
|
|
* -----------
|
|
|
|
*/
|
|
|
|
typedef UINT8 EC_COMMAND;
|
|
|
|
|
|
|
|
#define EC_COMMAND_UNKNOWN ((EC_COMMAND) 0x00)
|
|
|
|
#define EC_COMMAND_READ ((EC_COMMAND) 0x80)
|
|
|
|
#define EC_COMMAND_WRITE ((EC_COMMAND) 0x81)
|
|
|
|
#define EC_COMMAND_BURST_ENABLE ((EC_COMMAND) 0x82)
|
|
|
|
#define EC_COMMAND_BURST_DISABLE ((EC_COMMAND) 0x83)
|
|
|
|
#define EC_COMMAND_QUERY ((EC_COMMAND) 0x84)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* EC_STATUS:
|
|
|
|
* ----------
|
|
|
|
* The encoding of the EC status register is illustrated below.
|
|
|
|
* Note that a set bit (1) indicates the property is TRUE
|
|
|
|
* (e.g. if bit 0 is set then the output buffer is full).
|
|
|
|
* +-+-+-+-+-+-+-+-+
|
|
|
|
* |7|6|5|4|3|2|1|0|
|
|
|
|
* +-+-+-+-+-+-+-+-+
|
|
|
|
* | | | | | | | |
|
|
|
|
* | | | | | | | +- Output Buffer Full?
|
|
|
|
* | | | | | | +--- Input Buffer Full?
|
|
|
|
* | | | | | +----- <reserved>
|
|
|
|
* | | | | +------- Data Register is Command Byte?
|
|
|
|
* | | | +--------- Burst Mode Enabled?
|
|
|
|
* | | +----------- SCI Event?
|
|
|
|
* | +------------- SMI Event?
|
|
|
|
* +--------------- <Reserved>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef UINT8 EC_STATUS;
|
|
|
|
|
|
|
|
#define EC_FLAG_OUTPUT_BUFFER ((EC_STATUS) 0x01)
|
|
|
|
#define EC_FLAG_INPUT_BUFFER ((EC_STATUS) 0x02)
|
|
|
|
#define EC_FLAG_BURST_MODE ((EC_STATUS) 0x10)
|
|
|
|
#define EC_FLAG_SCI ((EC_STATUS) 0x20)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* EC_EVENT:
|
|
|
|
* ---------
|
|
|
|
*/
|
|
|
|
typedef UINT8 EC_EVENT;
|
|
|
|
|
|
|
|
#define EC_EVENT_UNKNOWN ((EC_EVENT) 0x00)
|
|
|
|
#define EC_EVENT_OUTPUT_BUFFER_FULL ((EC_EVENT) 0x01)
|
|
|
|
#define EC_EVENT_INPUT_BUFFER_EMPTY ((EC_EVENT) 0x02)
|
|
|
|
#define EC_EVENT_SCI ((EC_EVENT) 0x20)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Register access primitives
|
|
|
|
*/
|
|
|
|
#define EC_GET_DATA(sc) \
|
|
|
|
bus_space_read_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0)
|
|
|
|
|
|
|
|
#define EC_SET_DATA(sc, v) \
|
|
|
|
bus_space_write_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0, (v))
|
|
|
|
|
|
|
|
#define EC_GET_CSR(sc) \
|
|
|
|
bus_space_read_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0)
|
|
|
|
|
|
|
|
#define EC_SET_CSR(sc, v) \
|
|
|
|
bus_space_write_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0, (v))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Driver softc.
|
|
|
|
*/
|
2000-10-28 06:59:48 +00:00
|
|
|
struct acpi_ec_softc {
|
|
|
|
device_t ec_dev;
|
|
|
|
ACPI_HANDLE ec_handle;
|
|
|
|
UINT32 ec_gpebit;
|
|
|
|
|
|
|
|
int ec_data_rid;
|
|
|
|
struct resource *ec_data_res;
|
|
|
|
bus_space_tag_t ec_data_tag;
|
|
|
|
bus_space_handle_t ec_data_handle;
|
|
|
|
|
|
|
|
int ec_csr_rid;
|
|
|
|
struct resource *ec_csr_res;
|
|
|
|
bus_space_tag_t ec_csr_tag;
|
|
|
|
bus_space_handle_t ec_csr_handle;
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
int ec_glk;
|
|
|
|
int ec_glkhandle;
|
|
|
|
struct mtx ec_mtx;
|
|
|
|
UINT32 ec_polldelay;
|
2000-10-28 06:59:48 +00:00
|
|
|
};
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/*
|
|
|
|
* XXX
|
|
|
|
* I couldn't find it in the spec but other implementations also use a
|
|
|
|
* value of 1 ms for the time to acquire global lock.
|
|
|
|
*/
|
|
|
|
#define EC_LOCK_TIMEOUT 1000
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start with an interval of 1 us for status poll loop. This delay
|
|
|
|
* will be dynamically adjusted based on the actual time waited.
|
|
|
|
*/
|
|
|
|
#define EC_POLL_DELAY 1
|
2002-10-24 10:56:33 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Total time in ms spent in the poll loop waiting for a response. */
|
|
|
|
#define EC_POLL_TIMEOUT 50
|
2000-10-28 06:59:48 +00:00
|
|
|
|
|
|
|
static __inline ACPI_STATUS
|
|
|
|
EcLock(struct acpi_ec_softc *sc)
|
|
|
|
{
|
2003-07-10 17:22:46 +00:00
|
|
|
ACPI_STATUS status = AE_OK;
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Always acquire this EC's mutex. */
|
|
|
|
mtx_lock(&sc->ec_mtx);
|
|
|
|
|
|
|
|
/* If _GLK is non-zero, also acquire the global lock. */
|
|
|
|
if (sc->ec_glk) {
|
|
|
|
status = AcpiAcquireGlobalLock(EC_LOCK_TIMEOUT, &sc->ec_glkhandle);
|
|
|
|
if (ACPI_FAILURE(status))
|
|
|
|
mtx_unlock(&sc->ec_mtx);
|
|
|
|
}
|
2001-12-22 16:05:41 +00:00
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
return (status);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static __inline void
|
|
|
|
EcUnlock(struct acpi_ec_softc *sc)
|
|
|
|
{
|
2003-07-10 17:22:46 +00:00
|
|
|
if (sc->ec_glk)
|
|
|
|
AcpiReleaseGlobalLock(sc->ec_glkhandle);
|
|
|
|
mtx_unlock(&sc->ec_mtx);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void EcGpeHandler(void *Context);
|
|
|
|
static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function,
|
2003-06-27 21:57:42 +00:00
|
|
|
void *Context, void **return_Context);
|
|
|
|
static ACPI_STATUS EcSpaceHandler(UINT32 Function,
|
|
|
|
ACPI_PHYSICAL_ADDRESS Address,
|
|
|
|
UINT32 width, ACPI_INTEGER *Value,
|
|
|
|
void *Context, void *RegionContext);
|
2000-10-28 06:59:48 +00:00
|
|
|
static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event);
|
|
|
|
static ACPI_STATUS EcQuery(struct acpi_ec_softc *sc, UINT8 *Data);
|
2003-07-10 17:22:46 +00:00
|
|
|
static ACPI_STATUS EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd);
|
2003-06-27 21:57:42 +00:00
|
|
|
static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address,
|
|
|
|
UINT8 *Data);
|
|
|
|
static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address,
|
|
|
|
UINT8 *Data);
|
2000-10-28 06:59:48 +00:00
|
|
|
static void acpi_ec_identify(driver_t driver, device_t bus);
|
|
|
|
static int acpi_ec_probe(device_t dev);
|
|
|
|
static int acpi_ec_attach(device_t dev);
|
|
|
|
|
|
|
|
static device_method_t acpi_ec_methods[] = {
|
|
|
|
/* Device interface */
|
|
|
|
DEVMETHOD(device_identify, acpi_ec_identify),
|
|
|
|
DEVMETHOD(device_probe, acpi_ec_probe),
|
|
|
|
DEVMETHOD(device_attach, acpi_ec_attach),
|
|
|
|
|
|
|
|
{0, 0}
|
|
|
|
};
|
|
|
|
|
|
|
|
static driver_t acpi_ec_driver = {
|
|
|
|
"acpi_ec",
|
|
|
|
acpi_ec_methods,
|
|
|
|
sizeof(struct acpi_ec_softc),
|
|
|
|
};
|
|
|
|
|
2002-01-08 06:46:01 +00:00
|
|
|
static devclass_t acpi_ec_devclass;
|
2000-10-28 06:59:48 +00:00
|
|
|
DRIVER_MODULE(acpi_ec, acpi, acpi_ec_driver, acpi_ec_devclass, 0, 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Look for an ECDT table and if we find one, set up a default EC
|
|
|
|
* space handler to catch possible attempts to access EC space before
|
|
|
|
* we have a real driver instance in place.
|
|
|
|
* We're not really an identify routine, but because we get called
|
|
|
|
* before most other things, this works out OK.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
acpi_ec_identify(driver_t driver, device_t bus)
|
|
|
|
{
|
2002-05-19 06:16:47 +00:00
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
|
|
|
/* XXX implement - need an ACPI 2.0 system to test this */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We could setup resources in the probe routine in order to have them printed
|
|
|
|
* when the device is attached.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
acpi_ec_probe(device_t dev)
|
|
|
|
{
|
2003-07-10 17:22:46 +00:00
|
|
|
int ret = ENXIO;
|
2000-12-08 09:16:20 +00:00
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
if (acpi_get_type(dev) == ACPI_TYPE_DEVICE && !acpi_disabled("ec") &&
|
2000-10-28 06:59:48 +00:00
|
|
|
acpi_MatchHid(dev, "PNP0C09")) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set device description
|
|
|
|
*/
|
|
|
|
device_set_desc(dev, "embedded controller");
|
2003-07-10 17:22:46 +00:00
|
|
|
ret = 0;
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
2003-07-10 17:22:46 +00:00
|
|
|
|
|
|
|
return (ret);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
acpi_ec_attach(device_t dev)
|
|
|
|
{
|
|
|
|
struct acpi_ec_softc *sc;
|
|
|
|
ACPI_STATUS Status;
|
2003-06-27 21:57:42 +00:00
|
|
|
int errval = 0;
|
2002-02-23 05:26:31 +00:00
|
|
|
|
2002-05-19 06:16:47 +00:00
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
2000-12-08 09:16:20 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Fetch/initialize softc (assumes softc is pre-zeroed). */
|
2000-10-28 06:59:48 +00:00
|
|
|
sc = device_get_softc(dev);
|
|
|
|
sc->ec_dev = dev;
|
|
|
|
sc->ec_handle = acpi_get_handle(dev);
|
2003-07-10 17:22:46 +00:00
|
|
|
sc->ec_polldelay = EC_POLL_DELAY;
|
|
|
|
mtx_init(&sc->ec_mtx, "ACPI embedded controller", NULL, MTX_DEF);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Attach bus resources for data and command/status ports. */
|
2000-10-28 06:59:48 +00:00
|
|
|
sc->ec_data_rid = 0;
|
2003-06-27 21:57:42 +00:00
|
|
|
sc->ec_data_res = bus_alloc_resource(sc->ec_dev, SYS_RES_IOPORT,
|
|
|
|
&sc->ec_data_rid, 0, ~0, 1, RF_ACTIVE);
|
|
|
|
if (sc->ec_data_res == NULL) {
|
2000-10-28 06:59:48 +00:00
|
|
|
device_printf(dev, "can't allocate data port\n");
|
2002-01-31 01:23:22 +00:00
|
|
|
errval = ENXIO;
|
|
|
|
goto out;
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
sc->ec_data_tag = rman_get_bustag(sc->ec_data_res);
|
|
|
|
sc->ec_data_handle = rman_get_bushandle(sc->ec_data_res);
|
|
|
|
|
|
|
|
sc->ec_csr_rid = 1;
|
2003-06-27 21:57:42 +00:00
|
|
|
sc->ec_csr_res = bus_alloc_resource(sc->ec_dev, SYS_RES_IOPORT,
|
|
|
|
&sc->ec_csr_rid, 0, ~0, 1, RF_ACTIVE);
|
|
|
|
if (sc->ec_csr_res == NULL) {
|
2000-10-28 06:59:48 +00:00
|
|
|
device_printf(dev, "can't allocate command/status port\n");
|
2002-01-31 01:23:22 +00:00
|
|
|
errval = ENXIO;
|
|
|
|
goto out;
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
sc->ec_csr_tag = rman_get_bustag(sc->ec_csr_res);
|
|
|
|
sc->ec_csr_handle = rman_get_bushandle(sc->ec_csr_res);
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Check if global lock should be used. If not, leave flag as 0. */
|
|
|
|
acpi_EvaluateInteger(sc->ec_handle, "_GLK", &sc->ec_glk);
|
|
|
|
|
2000-10-28 06:59:48 +00:00
|
|
|
/*
|
|
|
|
* Evaluate the _GPE method to find the GPE bit used by the EC to signal
|
2003-07-10 17:22:46 +00:00
|
|
|
* status (SCI). Note that we don't handle the case where it can
|
|
|
|
* return a package instead of an int.
|
2000-10-28 06:59:48 +00:00
|
|
|
*/
|
2003-07-10 17:22:46 +00:00
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "querying GPE\n"));
|
2003-06-27 21:57:42 +00:00
|
|
|
Status = acpi_EvaluateInteger(sc->ec_handle, "_GPE", &sc->ec_gpebit);
|
|
|
|
if (ACPI_FAILURE(Status)) {
|
|
|
|
device_printf(dev, "can't evaluate _GPE - %s\n",
|
|
|
|
AcpiFormatException(Status));
|
|
|
|
errval = ENXIO;
|
2002-01-31 01:23:22 +00:00
|
|
|
goto out;
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2003-07-10 17:22:46 +00:00
|
|
|
* Install a handler for this EC's GPE bit. We want edge-triggered
|
|
|
|
* behavior.
|
2000-10-28 06:59:48 +00:00
|
|
|
*/
|
2003-07-10 17:22:46 +00:00
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching GPE handler\n"));
|
2003-07-13 22:57:16 +00:00
|
|
|
Status = AcpiInstallGpeHandler(NULL, sc->ec_gpebit,
|
|
|
|
ACPI_EVENT_EDGE_TRIGGERED, &EcGpeHandler, sc);
|
2003-06-27 21:57:42 +00:00
|
|
|
if (ACPI_FAILURE(Status)) {
|
2001-07-05 07:21:12 +00:00
|
|
|
device_printf(dev, "can't install GPE handler for %s - %s\n",
|
2001-07-21 10:24:37 +00:00
|
|
|
acpi_name(sc->ec_handle), AcpiFormatException(Status));
|
2002-01-31 01:23:22 +00:00
|
|
|
errval = ENXIO;
|
|
|
|
goto out;
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Install address space handler
|
|
|
|
*/
|
2001-08-26 22:50:15 +00:00
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching address space handler\n"));
|
2003-06-27 21:57:42 +00:00
|
|
|
Status = AcpiInstallAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC,
|
2003-07-10 17:22:46 +00:00
|
|
|
&EcSpaceHandler, &EcSpaceSetup, sc);
|
2003-06-27 21:57:42 +00:00
|
|
|
if (ACPI_FAILURE(Status)) {
|
2001-07-05 07:21:12 +00:00
|
|
|
device_printf(dev, "can't install address space handler for %s - %s\n",
|
2001-07-21 10:24:37 +00:00
|
|
|
acpi_name(sc->ec_handle), AcpiFormatException(Status));
|
2003-07-13 22:57:16 +00:00
|
|
|
Status = AcpiRemoveGpeHandler(sc->ec_handle, sc->ec_gpebit,
|
|
|
|
&EcGpeHandler);
|
2003-07-10 17:22:46 +00:00
|
|
|
if (ACPI_FAILURE(Status))
|
|
|
|
panic("Added GPE handler but can't remove it");
|
2002-01-31 01:23:22 +00:00
|
|
|
errval = ENXIO;
|
|
|
|
goto out;
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
2003-07-10 17:22:46 +00:00
|
|
|
|
|
|
|
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
|
|
|
|
"GPE bit is %#x, %susing global lock\n", sc->ec_gpebit,
|
|
|
|
sc->ec_glk == 0 ? "not " : "");
|
|
|
|
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "acpi_ec_attach complete\n"));
|
|
|
|
return (0);
|
2003-06-27 21:57:42 +00:00
|
|
|
|
2002-01-31 01:23:22 +00:00
|
|
|
out:
|
2003-06-27 21:57:42 +00:00
|
|
|
if (sc->ec_csr_res)
|
2002-01-31 01:23:22 +00:00
|
|
|
bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_csr_rid,
|
|
|
|
sc->ec_csr_res);
|
2003-06-27 21:57:42 +00:00
|
|
|
if (sc->ec_data_res)
|
2003-07-10 17:22:46 +00:00
|
|
|
bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_data_rid,
|
2002-01-31 01:23:22 +00:00
|
|
|
sc->ec_data_res);
|
2003-07-10 17:22:46 +00:00
|
|
|
return (errval);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
static ACPI_STATUS
|
|
|
|
EcQuery(struct acpi_ec_softc *sc, UINT8 *Data)
|
|
|
|
{
|
|
|
|
ACPI_STATUS Status;
|
|
|
|
|
|
|
|
Status = EcLock(sc);
|
|
|
|
if (ACPI_FAILURE(Status))
|
|
|
|
return (Status);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send a query command to the EC to find out which _Qxx call it
|
|
|
|
* wants to make. This command clears the SCI bit and also the
|
|
|
|
* interrupt source since we are edge-triggered.
|
|
|
|
*/
|
|
|
|
Status = EcCommand(sc, EC_COMMAND_QUERY);
|
|
|
|
if (ACPI_SUCCESS(Status))
|
|
|
|
*Data = EC_GET_DATA(sc);
|
|
|
|
|
|
|
|
EcUnlock(sc);
|
|
|
|
|
|
|
|
return (Status);
|
|
|
|
}
|
|
|
|
|
2000-10-28 06:59:48 +00:00
|
|
|
static void
|
2000-12-14 12:43:22 +00:00
|
|
|
EcGpeQueryHandler(void *Context)
|
2000-10-28 06:59:48 +00:00
|
|
|
{
|
|
|
|
struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context;
|
|
|
|
UINT8 Data;
|
|
|
|
ACPI_STATUS Status;
|
2003-07-10 17:22:46 +00:00
|
|
|
EC_STATUS EcStatus;
|
2000-10-28 06:59:48 +00:00
|
|
|
char qxx[5];
|
|
|
|
|
2002-05-19 06:16:47 +00:00
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
2003-07-10 17:22:46 +00:00
|
|
|
KASSERT(Context != NULL, ("EcGpeQueryHandler called with NULL"));
|
2000-12-08 09:16:20 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/*
|
|
|
|
* Check status for EC_SCI.
|
|
|
|
*
|
|
|
|
* Bail out if the EC_SCI bit of the status register is not set.
|
|
|
|
* Note that this function should only be called when
|
|
|
|
* this bit is set (polling is used to detect IBE/OBF events).
|
|
|
|
*
|
|
|
|
* We don't acquire the global lock here but do protect against other
|
|
|
|
* running commands (read/write/query) by grabbing ec_mtx.
|
|
|
|
*/
|
|
|
|
mtx_lock(&sc->ec_mtx);
|
|
|
|
EcStatus = EC_GET_CSR(sc);
|
|
|
|
mtx_unlock(&sc->ec_mtx);
|
|
|
|
if ((EcStatus & EC_EVENT_SCI) == 0)
|
|
|
|
goto re_enable;
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Find out why the EC is signaling us. */
|
|
|
|
Status = EcQuery(sc, &Data);
|
|
|
|
if (ACPI_FAILURE(Status)) {
|
|
|
|
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
|
|
|
|
"GPE query failed - %s\n", AcpiFormatException(Status));
|
|
|
|
goto re_enable;
|
|
|
|
}
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Ignore the value for "no outstanding event". (13.3.5) */
|
|
|
|
if (Data == 0)
|
|
|
|
goto re_enable;
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Evaluate _Qxx to respond to the controller. */
|
|
|
|
sprintf(qxx, "_Q%02x", Data);
|
|
|
|
strupr(qxx);
|
|
|
|
Status = AcpiEvaluateObject(sc->ec_handle, qxx, NULL, NULL);
|
|
|
|
if (ACPI_FAILURE(Status) && Status != AE_NOT_FOUND) {
|
|
|
|
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
|
|
|
|
"evaluation of GPE query method %s failed - %s\n",
|
|
|
|
qxx, AcpiFormatException(Status));
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
2003-07-10 17:22:46 +00:00
|
|
|
|
|
|
|
re_enable:
|
|
|
|
/* Re-enable the GPE event so we'll get future requests. */
|
2003-07-13 22:57:16 +00:00
|
|
|
Status = AcpiEnableGpe(NULL, sc->ec_gpebit, ACPI_NOT_ISR);
|
2003-07-10 17:22:46 +00:00
|
|
|
if (ACPI_FAILURE(Status))
|
|
|
|
printf("EcGpeQueryHandler: AcpiEnableEvent failed\n");
|
2000-12-14 12:43:22 +00:00
|
|
|
}
|
2001-01-31 09:32:44 +00:00
|
|
|
|
2001-06-29 20:31:37 +00:00
|
|
|
/*
|
2003-07-10 17:22:46 +00:00
|
|
|
* Handle a GPE. Currently we only handle SCI events as others must
|
|
|
|
* be handled by polling in EcWaitEvent(). This is because some ECs
|
|
|
|
* treat events as level when they should be edge-triggered.
|
2001-06-29 20:31:37 +00:00
|
|
|
*/
|
|
|
|
static void
|
|
|
|
EcGpeHandler(void *Context)
|
2000-12-14 12:43:22 +00:00
|
|
|
{
|
2001-06-29 20:31:37 +00:00
|
|
|
struct acpi_ec_softc *sc = Context;
|
2003-07-10 17:22:46 +00:00
|
|
|
ACPI_STATUS Status;
|
2001-06-29 20:31:37 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
KASSERT(Context != NULL, ("EcGpeHandler called with NULL"));
|
|
|
|
|
|
|
|
/* Disable further GPEs while we handle this one. */
|
2003-07-13 22:57:16 +00:00
|
|
|
AcpiDisableGpe(NULL, sc->ec_gpebit, ACPI_ISR);
|
2003-07-10 17:22:46 +00:00
|
|
|
|
|
|
|
/* Schedule the GPE query handler. */
|
|
|
|
Status = AcpiOsQueueForExecution(OSD_PRIORITY_GPE, EcGpeQueryHandler,
|
|
|
|
Context);
|
|
|
|
if (ACPI_FAILURE(Status)) {
|
|
|
|
printf("Queuing GPE query handler failed.\n");
|
2003-07-13 22:57:16 +00:00
|
|
|
Status = AcpiEnableGpe(NULL, sc->ec_gpebit, ACPI_ISR);
|
2003-07-10 17:22:46 +00:00
|
|
|
if (ACPI_FAILURE(Status))
|
|
|
|
printf("EcGpeHandler: AcpiEnableEvent failed\n");
|
2001-06-29 20:31:37 +00:00
|
|
|
}
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static ACPI_STATUS
|
2003-06-27 21:57:42 +00:00
|
|
|
EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context,
|
|
|
|
void **RegionContext)
|
2000-10-28 06:59:48 +00:00
|
|
|
{
|
2001-01-31 09:32:44 +00:00
|
|
|
|
2002-05-19 06:16:47 +00:00
|
|
|
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
|
2001-01-31 09:32:44 +00:00
|
|
|
|
2000-10-28 06:59:48 +00:00
|
|
|
/*
|
|
|
|
* Just pass the context through, there's nothing to do here.
|
|
|
|
*/
|
|
|
|
*RegionContext = Context;
|
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
return_ACPI_STATUS (AE_OK);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static ACPI_STATUS
|
2003-06-27 21:57:42 +00:00
|
|
|
EcSpaceHandler(UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 width,
|
|
|
|
ACPI_INTEGER *Value, void *Context, void *RegionContext)
|
2000-10-28 06:59:48 +00:00
|
|
|
{
|
|
|
|
struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context;
|
|
|
|
ACPI_STATUS Status = AE_OK;
|
2003-07-10 17:22:46 +00:00
|
|
|
UINT8 EcAddr, EcData;
|
2001-02-26 20:36:56 +00:00
|
|
|
int i;
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2002-05-19 06:16:47 +00:00
|
|
|
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, (UINT32)Address);
|
2000-12-08 09:16:20 +00:00
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
if (Address > 0xFF || width % 8 != 0 || Value == NULL || Context == NULL)
|
2003-07-10 17:22:46 +00:00
|
|
|
return_ACPI_STATUS (AE_BAD_PARAMETER);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Perform the transaction.
|
|
|
|
*/
|
2003-07-10 17:22:46 +00:00
|
|
|
EcAddr = Address;
|
2001-02-26 20:36:56 +00:00
|
|
|
for (i = 0; i < width; i += 8) {
|
2003-07-10 17:22:46 +00:00
|
|
|
Status = EcLock(sc);
|
2003-06-27 21:57:42 +00:00
|
|
|
if (ACPI_FAILURE(Status))
|
2003-07-10 17:22:46 +00:00
|
|
|
return (Status);
|
2001-05-29 20:13:42 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
switch (Function) {
|
|
|
|
case ACPI_READ:
|
|
|
|
EcData = 0;
|
|
|
|
Status = EcRead(sc, EcAddr, &EcData);
|
|
|
|
break;
|
|
|
|
case ACPI_WRITE:
|
|
|
|
EcData = (UINT8)((*Value) >> i);
|
|
|
|
Status = EcWrite(sc, EcAddr, &EcData);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
device_printf(sc->ec_dev, "invalid EcSpaceHandler function %d\n",
|
|
|
|
Function);
|
|
|
|
Status = AE_BAD_PARAMETER;
|
|
|
|
break;
|
|
|
|
}
|
2001-06-29 20:31:37 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
EcUnlock(sc);
|
|
|
|
if (ACPI_FAILURE(Status))
|
|
|
|
return (Status);
|
2001-06-29 20:31:37 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
*Value |= (ACPI_INTEGER)EcData << i;
|
|
|
|
if (++EcAddr == 0)
|
|
|
|
return_ACPI_STATUS (AE_BAD_PARAMETER);
|
2000-12-14 12:43:22 +00:00
|
|
|
}
|
2003-07-10 17:22:46 +00:00
|
|
|
return_ACPI_STATUS (Status);
|
2000-12-14 12:43:22 +00:00
|
|
|
}
|
2000-10-28 06:59:48 +00:00
|
|
|
|
|
|
|
static ACPI_STATUS
|
|
|
|
EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event)
|
|
|
|
{
|
|
|
|
EC_STATUS EcStatus;
|
2003-07-10 17:22:46 +00:00
|
|
|
ACPI_STATUS Status;
|
|
|
|
UINT32 i, period;
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
mtx_assert(&sc->ec_mtx, MA_OWNED);
|
|
|
|
Status = AE_NO_HARDWARE_RESPONSE;
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/*
|
|
|
|
* Wait for 1 us before checking the CSR. Testing shows about
|
|
|
|
* 50% of requests complete in 1 us and 90% of them complete
|
|
|
|
* in 5 us or less.
|
2000-10-28 06:59:48 +00:00
|
|
|
*/
|
2001-07-21 04:06:44 +00:00
|
|
|
AcpiOsStall(1);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Poll the EC status register to detect completion of the last
|
2003-07-10 17:22:46 +00:00
|
|
|
* command. Wait up to 50 ms (in chunks of sc->ec_polldelay
|
|
|
|
* microseconds for the first 1 ms, in 1 ms chunks for the remainder
|
|
|
|
* of the period) for this to occur.
|
2000-10-28 06:59:48 +00:00
|
|
|
*/
|
2003-07-10 17:22:46 +00:00
|
|
|
for (i = 0; i < (1000 / sc->ec_polldelay) + EC_POLL_TIMEOUT; i++) {
|
2000-10-28 06:59:48 +00:00
|
|
|
EcStatus = EC_GET_CSR(sc);
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Check if the user's event occurred. */
|
|
|
|
if ((Event == EC_EVENT_OUTPUT_BUFFER_FULL &&
|
|
|
|
(EcStatus & EC_FLAG_OUTPUT_BUFFER) != 0) ||
|
|
|
|
(Event == EC_EVENT_INPUT_BUFFER_EMPTY &&
|
|
|
|
(EcStatus & EC_FLAG_INPUT_BUFFER) == 0)) {
|
|
|
|
Status = AE_OK;
|
|
|
|
break;
|
|
|
|
}
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* For the first 1 ms, DELAY, after that, msleep. */
|
|
|
|
if (i < 1000)
|
|
|
|
AcpiOsStall(sc->ec_polldelay);
|
|
|
|
else
|
|
|
|
msleep(&sc->ec_polldelay, &sc->ec_mtx, PZERO, "ecpoll", 1/*ms*/);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Scale poll delay by the amount of time actually waited. */
|
|
|
|
if (Status == AE_OK) {
|
|
|
|
period = i * sc->ec_polldelay;
|
|
|
|
if (period <= 5)
|
|
|
|
sc->ec_polldelay = 1;
|
|
|
|
else if (period <= 20)
|
|
|
|
sc->ec_polldelay = 5;
|
|
|
|
else if (period <= 100)
|
|
|
|
sc->ec_polldelay = 10;
|
|
|
|
else
|
|
|
|
sc->ec_polldelay = 100;
|
2003-06-27 21:57:42 +00:00
|
|
|
}
|
2003-07-10 17:22:46 +00:00
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
return (Status);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static ACPI_STATUS
|
2003-07-10 17:22:46 +00:00
|
|
|
EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd)
|
2000-10-28 06:59:48 +00:00
|
|
|
{
|
|
|
|
ACPI_STATUS Status;
|
2003-07-10 17:22:46 +00:00
|
|
|
EC_EVENT Event;
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
mtx_assert(&sc->ec_mtx, MA_OWNED);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
/* Decide what to wait for based on command type. */
|
|
|
|
switch (cmd) {
|
2000-10-28 06:59:48 +00:00
|
|
|
case EC_COMMAND_READ:
|
|
|
|
case EC_COMMAND_WRITE:
|
2003-07-10 17:22:46 +00:00
|
|
|
case EC_COMMAND_BURST_DISABLE:
|
|
|
|
Event = EC_EVENT_INPUT_BUFFER_EMPTY;
|
2000-10-28 06:59:48 +00:00
|
|
|
break;
|
2003-07-10 17:22:46 +00:00
|
|
|
case EC_COMMAND_QUERY:
|
|
|
|
case EC_COMMAND_BURST_ENABLE:
|
|
|
|
Event = EC_EVENT_OUTPUT_BUFFER_FULL;
|
2000-10-28 06:59:48 +00:00
|
|
|
break;
|
2003-07-10 17:22:46 +00:00
|
|
|
default:
|
2001-11-18 18:12:07 +00:00
|
|
|
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
|
2003-07-10 17:22:46 +00:00
|
|
|
"EcCommand: Invalid command %#x\n", cmd);
|
|
|
|
return (AE_BAD_PARAMETER);
|
2003-06-27 21:57:42 +00:00
|
|
|
}
|
2003-07-10 17:22:46 +00:00
|
|
|
|
|
|
|
/* Run the command and wait for the chosen event. */
|
|
|
|
EC_SET_CSR(sc, cmd);
|
|
|
|
Status = EcWaitEvent(sc, Event);
|
|
|
|
if (ACPI_FAILURE(Status)) {
|
2001-11-18 18:12:07 +00:00
|
|
|
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
|
2003-07-10 17:22:46 +00:00
|
|
|
"EcCommand: no response to %#x\n", cmd);
|
2003-06-27 21:57:42 +00:00
|
|
|
}
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
return (Status);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static ACPI_STATUS
|
|
|
|
EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data)
|
|
|
|
{
|
|
|
|
ACPI_STATUS Status;
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
mtx_assert(&sc->ec_mtx, MA_OWNED);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
#ifdef notyet
|
|
|
|
/* If we can't start burst mode, continue anyway. */
|
|
|
|
EcCommand(sc, EC_COMMAND_BURST_ENABLE);
|
|
|
|
#endif
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
Status = EcCommand(sc, EC_COMMAND_READ);
|
|
|
|
if (ACPI_FAILURE(Status))
|
2003-06-27 21:57:42 +00:00
|
|
|
return (Status);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
|
|
|
EC_SET_DATA(sc, Address);
|
2003-07-10 17:22:46 +00:00
|
|
|
Status = EcWaitEvent(sc, EC_EVENT_OUTPUT_BUFFER_FULL);
|
2003-06-27 21:57:42 +00:00
|
|
|
if (ACPI_FAILURE(Status)) {
|
2001-11-18 18:12:07 +00:00
|
|
|
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
|
2003-07-10 17:22:46 +00:00
|
|
|
"EcRead: Failed waiting for EC to send data.\n");
|
2003-06-27 21:57:42 +00:00
|
|
|
return (Status);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
*Data = EC_GET_DATA(sc);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
#ifdef notyet
|
|
|
|
if (sc->ec_burstactive) {
|
|
|
|
Status = EcCommand(sc, EC_COMMAND_BURST_DISABLE);
|
|
|
|
if (ACPI_FAILURE(Status))
|
|
|
|
return (Status);
|
|
|
|
}
|
|
|
|
#endif
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
return (AE_OK);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static ACPI_STATUS
|
|
|
|
EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data)
|
|
|
|
{
|
|
|
|
ACPI_STATUS Status;
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
mtx_assert(&sc->ec_mtx, MA_OWNED);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
#ifdef notyet
|
|
|
|
/* If we can't start burst mode, continue anyway. */
|
|
|
|
EcCommand(sc, EC_COMMAND_BURST_ENABLE);
|
|
|
|
#endif
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
Status = EcCommand(sc, EC_COMMAND_WRITE);
|
|
|
|
if (ACPI_FAILURE(Status))
|
2003-06-27 21:57:42 +00:00
|
|
|
return (Status);
|
2000-10-28 06:59:48 +00:00
|
|
|
|
|
|
|
EC_SET_DATA(sc, Address);
|
2003-07-10 17:22:46 +00:00
|
|
|
Status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY);
|
2003-06-27 21:57:42 +00:00
|
|
|
if (ACPI_FAILURE(Status)) {
|
2001-11-18 18:12:07 +00:00
|
|
|
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
|
2003-07-10 17:22:46 +00:00
|
|
|
"EcRead: Failed waiting for EC to process address\n");
|
2003-06-27 21:57:42 +00:00
|
|
|
return (Status);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
EC_SET_DATA(sc, *Data);
|
2003-07-10 17:22:46 +00:00
|
|
|
Status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY);
|
2003-06-27 21:57:42 +00:00
|
|
|
if (ACPI_FAILURE(Status)) {
|
2001-11-18 18:12:07 +00:00
|
|
|
ACPI_VPRINT(sc->ec_dev, acpi_device_get_parent_softc(sc->ec_dev),
|
2003-07-10 17:22:46 +00:00
|
|
|
"EcWrite: Failed waiting for EC to process data\n");
|
2003-06-27 21:57:42 +00:00
|
|
|
return (Status);
|
2000-10-28 06:59:48 +00:00
|
|
|
}
|
|
|
|
|
2003-07-10 17:22:46 +00:00
|
|
|
#ifdef notyet
|
|
|
|
if (sc->ec_burstactive) {
|
|
|
|
Status = EcCommand(sc, EC_COMMAND_BURST_DISABLE);
|
|
|
|
if (ACPI_FAILURE(Status))
|
|
|
|
return (Status);
|
|
|
|
}
|
|
|
|
#endif
|
2000-10-28 06:59:48 +00:00
|
|
|
|
2003-06-27 21:57:42 +00:00
|
|
|
return (AE_OK);
|
2000-12-14 12:43:22 +00:00
|
|
|
}
|