1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-16 15:11:52 +00:00

Take two. Add the missing file that should have been committed

with r219571 and re-enable building of cbrtl.

Implement the long double version for the cube root function, cbrtl.
The algorithm uses Newton's iterations with a crude estimate of the
cube root to converge to a result.

Reviewed by:    bde
Approved by:    das
This commit is contained in:
Steve Kargl 2011-03-12 19:37:35 +00:00
parent e387937975
commit 1cd0ec03d6
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=219576
3 changed files with 159 additions and 1 deletions

View File

@ -93,7 +93,7 @@ COMMON_SRCS+= s_copysignl.c s_fabsl.c s_llrintl.c s_lrintl.c s_modfl.c
COMMON_SRCS+= e_acosl.c e_asinl.c e_atan2l.c e_fmodl.c \
e_hypotl.c e_remainderl.c e_sqrtl.c \
invtrig.c k_cosl.c k_sinl.c k_tanl.c \
s_atanl.c s_ceill.c s_cosl.c s_cprojl.c \
s_atanl.c s_cbrtl.c s_ceill.c s_cosl.c s_cprojl.c \
s_csqrtl.c s_exp2l.c s_floorl.c s_fmal.c \
s_frexpl.c s_logbl.c s_nanl.c s_nextafterl.c s_nexttoward.c \
s_remquol.c s_rintl.c s_scalbnl.c \

View File

@ -222,6 +222,7 @@ FBSD_1.1 {
/* First added in 9.0-CURRENT */
FBSD_1.2 {
__isnanf;
cbrtl;
cexp;
cexpf;
log2;

157
lib/msun/src/s_cbrtl.c Normal file
View File

@ -0,0 +1,157 @@
/*-
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* The argument reduction and testing for exceptional cases was
* written by Steven G. Kargl with input from Bruce D. Evans
* and David A. Schultz.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <float.h>
#include <ieeefp.h>
#include "fpmath.h"
#include "math.h"
#include "math_private.h"
#define BIAS (LDBL_MAX_EXP - 1)
static const unsigned
B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
long double
cbrtl(long double x)
{
union IEEEl2bits u, v;
long double r, s, t, w;
double dr, dt, dx;
float ft, fx;
uint32_t hx;
uint16_t expsign;
int k;
u.e = x;
expsign = u.xbits.expsign;
k = expsign & 0x7fff;
/*
* If x = +-Inf, then cbrt(x) = +-Inf.
* If x = NaN, then cbrt(x) = NaN.
*/
if (k == BIAS + LDBL_MAX_EXP)
return (x + x);
#ifdef __i386__
fp_prec_t oprec;
oprec = fpgetprec();
if (oprec != FP_PE)
fpsetprec(FP_PE);
#endif
if (k == 0) {
/* If x = +-0, then cbrt(x) = +-0. */
if ((u.bits.manh | u.bits.manl) == 0) {
#ifdef __i386__
if (oprec != FP_PE)
fpsetprec(oprec);
#endif
return (x);
}
/* Adjust subnormal numbers. */
u.e *= 0x1.0p514;
k = u.bits.exp;
k -= BIAS + 514;
} else
k -= BIAS;
u.xbits.expsign = BIAS;
v.e = 1;
x = u.e;
switch (k % 3) {
case 1:
case -2:
x = 2*x;
k--;
break;
case 2:
case -1:
x = 4*x;
k -= 2;
break;
}
v.xbits.expsign = (expsign & 0x8000) | (BIAS + k / 3);
/*
* The following is the guts of s_cbrtf, with the handling of
* special values removed and extra care for accuracy not taken,
* but with most of the extra accuracy not discarded.
*/
/* ~5-bit estimate: */
fx = x;
GET_FLOAT_WORD(hx, fx);
SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1));
/* ~16-bit estimate: */
dx = x;
dt = ft;
dr = dt * dt * dt;
dt = dt * (dx + dx + dr) / (dx + dr + dr);
/* ~47-bit estimate: */
dr = dt * dt * dt;
dt = dt * (dx + dx + dr) / (dx + dr + dr);
#if LDBL_MANT_DIG == 64
/*
* dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
* Round it away from zero to 32 bits (32 so that t*t is exact, and
* away from zero for technical reasons).
*/
volatile double vd2 = 0x1.0p32;
volatile double vd1 = 0x1.0p-31;
#define vd ((long double)vd2 + vd1)
t = dt + vd - 0x1.0p32;
#elif LDBL_MANT_DIG == 113
/*
* Round dt away from zero to 47 bits. Since we don't trust the 47,
* add 2 47-bit ulps instead of 1 to round up. Rounding is slow and
* might be avoidable in this case, since on most machines dt will
* have been evaluated in 53-bit precision and the technical reasons
* for rounding up might not apply to either case in cbrtl() since
* dt is much more accurate than needed.
*/
t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60;
#else
#error "Unsupported long double format"
#endif
/*
* Final step Newton iteration to 64 or 113 bits with
* error < 0.667 ulps
*/
s=t*t; /* t*t is exact */
r=x/s; /* error <= 0.5 ulps; |r| < |t| */
w=t+t; /* t+t is exact */
r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
t *= v.e;
#ifdef __i386__
if (oprec != FP_PE)
fpsetprec(oprec);
#endif
return (t);
}