1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-15 10:17:20 +00:00

Make vm_fault much cleaner by removing the evil macro inlines, and

put alot of it's context into a data structure.  This allows
significant shortening of its codepath, and will significantly
decrease it's cache footprint.

Also, add some stats to vmmeter.  Note that you'll have to
rebuild/recompile vmstat, systat, etc... Otherwise, you'll
get "very interesting" paging stats.
This commit is contained in:
John Dyson 1998-03-07 20:45:47 +00:00
parent f0a8e032c6
commit 4866e0856c
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=34202
2 changed files with 211 additions and 221 deletions

View File

@ -31,7 +31,7 @@
* SUCH DAMAGE.
*
* @(#)vmmeter.h 8.2 (Berkeley) 7/10/94
* $Id$
* $Id: vmmeter.h,v 1.15 1997/02/22 09:46:27 peter Exp $
*/
#ifndef _SYS_VMMETER_H_
@ -54,7 +54,9 @@ struct vmmeter {
*/
u_int v_vm_faults; /* number of address memory faults */
u_int v_cow_faults; /* number of copy-on-writes */
u_int v_cow_optim; /* number of optimized copy-on-writes */
u_int v_zfod; /* pages zero filled on demand */
u_int v_ozfod; /* pages prezero filled on demand */
u_int v_swapin; /* swap pager pageins */
u_int v_swapout; /* swap pager pageouts */
u_int v_swappgsin; /* swap pager pages paged in */

View File

@ -66,7 +66,7 @@
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $Id: vm_fault.c,v 1.80 1998/02/09 06:11:23 eivind Exp $
* $Id: vm_fault.c,v 1.81 1998/03/01 04:18:18 dyson Exp $
*/
/*
@ -101,6 +101,58 @@ static int vm_fault_additional_pages __P((vm_page_t, int,
#define VM_FAULT_READ_BEHIND 7
#define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
struct faultstate {
vm_page_t m;
vm_object_t object;
vm_pindex_t pindex;
vm_page_t first_m;
vm_object_t first_object;
vm_pindex_t first_pindex;
vm_map_t map;
vm_map_entry_t entry;
int lookup_still_valid;
struct vnode *vp;
};
static void
release_page(struct faultstate *fs)
{
PAGE_WAKEUP(fs->m);
vm_page_deactivate(fs->m);
fs->m = NULL;
}
static void
unlock_map(struct faultstate *fs)
{
if (fs->lookup_still_valid) {
vm_map_lookup_done(fs->map, fs->entry);
fs->lookup_still_valid = FALSE;
}
}
static void
_unlock_things(struct faultstate *fs, int dealloc)
{
vm_object_pip_wakeup(fs->object);
if (fs->object != fs->first_object) {
vm_page_free(fs->first_m);
vm_object_pip_wakeup(fs->first_object);
fs->first_m = NULL;
}
if (dealloc) {
vm_object_deallocate(fs->first_object);
}
unlock_map(fs);
if (fs->vp != NULL) {
vput(fs->vp);
fs->vp = NULL;
}
}
#define unlock_things(fs) _unlock_things(fs, 0)
#define unlock_and_deallocate(fs) _unlock_things(fs, 1)
/*
* vm_fault:
*
@ -122,77 +174,31 @@ static int vm_fault_additional_pages __P((vm_page_t, int,
int
vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
{
vm_object_t first_object;
vm_pindex_t first_pindex;
vm_map_entry_t entry;
register vm_object_t object;
register vm_pindex_t pindex;
vm_page_t m;
vm_page_t first_m;
vm_prot_t prot;
int result;
boolean_t wired;
boolean_t lookup_still_valid;
int map_generation;
vm_page_t old_m;
vm_object_t next_object;
vm_page_t marray[VM_FAULT_READ];
int hardfault = 0;
int hardfault;
int faultcount;
int pagewaitbits;
struct vnode *vp = NULL;
struct proc *p = curproc; /* XXX */
struct faultstate fs;
cnt.v_vm_faults++; /* needs lock XXX */
/*
* Recovery actions
*/
#define FREE_PAGE(m) { \
vm_page_free(m); \
}
hardfault = 0;
#define RELEASE_PAGE(m) { \
PAGE_WAKEUP(m); \
vm_page_activate(m); \
}
#define UNLOCK_MAP { \
if (lookup_still_valid) { \
vm_map_lookup_done(map, entry); \
lookup_still_valid = FALSE; \
} \
}
#define UNLOCK_THINGS { \
vm_object_pip_wakeup(object); \
if (object != first_object) { \
FREE_PAGE(first_m); \
vm_object_pip_wakeup(first_object); \
} \
UNLOCK_MAP; \
if (vp != NULL) { \
vput(vp); \
vp = NULL; \
} \
}
#define UNLOCK_AND_DEALLOCATE { \
UNLOCK_THINGS; \
vm_object_deallocate(first_object); \
}
pagewaitbits = PG_BUSY;
RetryFault:;
faultcount = 0;
fs.map = map;
/*
* Find the backing store object and offset into it to begin the
* search.
*/
if ((result = vm_map_lookup(&map, vaddr,
fault_type, &entry, &first_object,
&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
if ((result = vm_map_lookup(&fs.map, vaddr,
fault_type, &fs.entry, &fs.first_object,
&fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
if ((result != KERN_PROTECTION_FAILURE) ||
((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
return result;
@ -205,9 +211,9 @@ RetryFault:;
* to COW .text. We simply keep .text from ever being COW'ed
* and take the heat that one cannot debug wired .text sections.
*/
result = vm_map_lookup(&map, vaddr,
result = vm_map_lookup(&fs.map, vaddr,
VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
&entry, &first_object, &first_pindex, &prot, &wired);
&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
if (result != KERN_SUCCESS) {
return result;
}
@ -217,13 +223,13 @@ RetryFault:;
* be able to write to the mapping. If we don't make this
* restriction, the bookkeeping would be nearly impossible.
*/
if ((entry->protection & VM_PROT_WRITE) == 0)
entry->max_protection &= ~VM_PROT_WRITE;
if ((fs.entry->protection & VM_PROT_WRITE) == 0)
fs.entry->max_protection &= ~VM_PROT_WRITE;
}
map_generation = map->timestamp;
map_generation = fs.map->timestamp;
if (entry->eflags & MAP_ENTRY_NOFAULT) {
if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
panic("vm_fault: fault on nofault entry, addr: %lx",
vaddr);
}
@ -234,168 +240,145 @@ RetryFault:;
* to be diddled. Since objects reference their shadows (and copies),
* they will stay around as well.
*/
vm_object_reference(first_object);
first_object->paging_in_progress++;
vm_object_reference(fs.first_object);
fs.first_object->paging_in_progress++;
vp = vnode_pager_lock(first_object);
fs.vp = vnode_pager_lock(fs.first_object);
if ((fault_type & VM_PROT_WRITE) &&
(first_object->type == OBJT_VNODE)) {
vm_freeze_copyopts(first_object, first_pindex, first_pindex + 1);
(fs.first_object->type == OBJT_VNODE)) {
vm_freeze_copyopts(fs.first_object,
fs.first_pindex, fs.first_pindex + 1);
}
lookup_still_valid = TRUE;
fs.lookup_still_valid = TRUE;
if (wired)
fault_type = prot;
first_m = NULL;
/*
* INVARIANTS (through entire routine):
*
* 1) At all times, we must either have the object lock or a busy
* page in some object to prevent some other process from trying to
* bring in the same page.
*
* Note that we cannot hold any locks during the pager access or when
* waiting for memory, so we use a busy page then.
*
* Note also that we aren't as concerned about more than one thead
* attempting to pager_data_unlock the same page at once, so we don't
* hold the page as busy then, but do record the highest unlock value
* so far. [Unlock requests may also be delivered out of order.]
*
* 2) Once we have a busy page, we must remove it from the pageout
* queues, so that the pageout daemon will not grab it away.
*
* 3) To prevent another process from racing us down the shadow chain
* and entering a new page in the top object before we do, we must
* keep a busy page in the top object while following the shadow
* chain.
*
* 4) We must increment paging_in_progress on any object for which
* we have a busy page, to prevent vm_object_collapse from removing
* the busy page without our noticing.
*/
fs.first_m = NULL;
/*
* Search for the page at object/offset.
*/
object = first_object;
pindex = first_pindex;
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
/*
* See whether this page is resident
*/
while (TRUE) {
if (object->flags & OBJ_DEAD) {
UNLOCK_AND_DEALLOCATE;
if (fs.object->flags & OBJ_DEAD) {
unlock_and_deallocate(&fs);
return (KERN_PROTECTION_FAILURE);
}
m = vm_page_lookup(object, pindex);
if (m != NULL) {
fs.m = vm_page_lookup(fs.object, fs.pindex);
if (fs.m != NULL) {
int queue;
/*
* If the page is being brought in, wait for it and
* then retry.
*/
if ((m->flags & PG_BUSY) || (m->busy && (m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
if ((fs.m->flags & PG_BUSY) ||
(fs.m->busy &&
(fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
int s;
UNLOCK_THINGS;
unlock_things(&fs);
s = splvm();
if ((m->flags & PG_BUSY) || (m->busy && (m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
m->flags |= PG_WANTED | PG_REFERENCED;
if ((fs.m->flags & PG_BUSY) ||
(fs.m->busy &&
(fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
fs.m->flags |= PG_WANTED | PG_REFERENCED;
cnt.v_intrans++;
tsleep(m, PSWP, "vmpfw", 0);
tsleep(fs.m, PSWP, "vmpfw", 0);
}
splx(s);
vm_object_deallocate(first_object);
vm_object_deallocate(fs.first_object);
goto RetryFault;
}
queue = m->queue;
vm_page_unqueue_nowakeup(m);
queue = fs.m->queue;
vm_page_unqueue_nowakeup(fs.m);
/*
* Mark page busy for other processes, and the pagedaemon.
*/
if (((queue - m->pc) == PQ_CACHE) &&
if (((queue - fs.m->pc) == PQ_CACHE) &&
(cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
vm_page_activate(m);
UNLOCK_AND_DEALLOCATE;
vm_page_activate(fs.m);
unlock_and_deallocate(&fs);
VM_WAIT;
goto RetryFault;
}
m->flags |= PG_BUSY;
if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
m->object != kernel_object && m->object != kmem_object) {
fs.m->flags |= PG_BUSY;
if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
fs.m->object != kernel_object && fs.m->object != kmem_object) {
goto readrest;
}
break;
}
if (((object->type != OBJT_DEFAULT) &&
if (((fs.object->type != OBJT_DEFAULT) &&
(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
|| (object == first_object)) {
|| (fs.object == fs.first_object)) {
if (pindex >= object->size) {
UNLOCK_AND_DEALLOCATE;
if (fs.pindex >= fs.object->size) {
unlock_and_deallocate(&fs);
return (KERN_PROTECTION_FAILURE);
}
/*
* Allocate a new page for this object/offset pair.
*/
m = vm_page_alloc(object, pindex,
(vp || object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
fs.m = vm_page_alloc(fs.object, fs.pindex,
(fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
if (m == NULL) {
UNLOCK_AND_DEALLOCATE;
if (fs.m == NULL) {
unlock_and_deallocate(&fs);
VM_WAIT;
goto RetryFault;
}
}
readrest:
if (object->type != OBJT_DEFAULT &&
if (fs.object->type != OBJT_DEFAULT &&
(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) {
int rv;
int reqpage;
int ahead, behind;
if (first_object->behavior == OBJ_RANDOM) {
if (fs.first_object->behavior == OBJ_RANDOM) {
ahead = 0;
behind = 0;
} else {
behind = (vaddr - entry->start) >> PAGE_SHIFT;
behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
if (behind > VM_FAULT_READ_BEHIND)
behind = VM_FAULT_READ_BEHIND;
ahead = ((entry->end - vaddr) >> PAGE_SHIFT) - 1;
ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
if (ahead > VM_FAULT_READ_AHEAD)
ahead = VM_FAULT_READ_AHEAD;
}
if ((first_object->type != OBJT_DEVICE) &&
(first_object->behavior == OBJ_SEQUENTIAL)) {
if ((fs.first_object->type != OBJT_DEVICE) &&
(fs.first_object->behavior == OBJ_SEQUENTIAL)) {
vm_pindex_t firstpindex, tmppindex;
if (first_pindex <
if (fs.first_pindex <
2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1))
firstpindex = 0;
else
firstpindex = first_pindex -
firstpindex = fs.first_pindex -
2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1);
for(tmppindex = first_pindex - 1;
for(tmppindex = fs.first_pindex - 1;
tmppindex >= firstpindex;
--tmppindex) {
vm_page_t mt;
mt = vm_page_lookup( first_object, tmppindex);
mt = vm_page_lookup( fs.first_object, tmppindex);
if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
break;
if (mt->busy ||
@ -430,16 +413,16 @@ RetryFault:;
* vm_page_t passed to the routine.
*/
faultcount = vm_fault_additional_pages(
m, behind, ahead, marray, &reqpage);
fs.m, behind, ahead, marray, &reqpage);
/*
* Call the pager to retrieve the data, if any, after
* releasing the lock on the map.
*/
UNLOCK_MAP;
unlock_map(&fs);
rv = faultcount ?
vm_pager_get_pages(object, marray, faultcount,
vm_pager_get_pages(fs.object, marray, faultcount,
reqpage) : VM_PAGER_FAIL;
if (rv == VM_PAGER_OK) {
@ -453,9 +436,9 @@ RetryFault:;
* is responsible for disposition of old page
* if moved.
*/
m = vm_page_lookup(object, pindex);
if( !m) {
UNLOCK_AND_DEALLOCATE;
fs.m = vm_page_lookup(fs.object, fs.pindex);
if(!fs.m) {
unlock_and_deallocate(&fs);
goto RetryFault;
}
@ -487,14 +470,16 @@ RetryFault:;
* around having the machine panic on a kernel space
* fault w/ I/O error.
*/
if (((map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
(rv == VM_PAGER_BAD)) {
FREE_PAGE(m);
UNLOCK_AND_DEALLOCATE;
vm_page_free(fs.m);
fs.m = NULL;
unlock_and_deallocate(&fs);
return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
}
if (object != first_object) {
FREE_PAGE(m);
if (fs.object != fs.first_object) {
vm_page_free(fs.m);
fs.m = NULL;
/*
* XXX - we cannot just fall out at this
* point, m has been freed and is invalid!
@ -505,45 +490,47 @@ RetryFault:;
* We get here if the object has default pager (or unwiring) or the
* pager doesn't have the page.
*/
if (object == first_object)
first_m = m;
if (fs.object == fs.first_object)
fs.first_m = fs.m;
/*
* Move on to the next object. Lock the next object before
* unlocking the current one.
*/
pindex += OFF_TO_IDX(object->backing_object_offset);
next_object = object->backing_object;
fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
next_object = fs.object->backing_object;
if (next_object == NULL) {
/*
* If there's no object left, fill the page in the top
* object with zeros.
*/
if (object != first_object) {
vm_object_pip_wakeup(object);
if (fs.object != fs.first_object) {
vm_object_pip_wakeup(fs.object);
object = first_object;
pindex = first_pindex;
m = first_m;
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
fs.m = fs.first_m;
}
first_m = NULL;
fs.first_m = NULL;
if ((m->flags & PG_ZERO) == 0)
vm_page_zero_fill(m);
if ((fs.m->flags & PG_ZERO) == 0) {
vm_page_zero_fill(fs.m);
cnt.v_ozfod++;
}
cnt.v_zfod++;
break;
} else {
if (object != first_object) {
vm_object_pip_wakeup(object);
if (fs.object != fs.first_object) {
vm_object_pip_wakeup(fs.object);
}
object = next_object;
object->paging_in_progress++;
fs.object = next_object;
fs.object->paging_in_progress++;
}
}
#if defined(DIAGNOSTIC)
if ((m->flags & PG_BUSY) == 0)
if ((fs.m->flags & PG_BUSY) == 0)
panic("vm_fault: not busy after main loop");
#endif
@ -552,7 +539,7 @@ RetryFault:;
* is held.]
*/
old_m = m; /* save page that would be copied */
old_m = fs.m; /* save page that would be copied */
/*
* If the page is being written, but isn't already owned by the
@ -560,7 +547,7 @@ RetryFault:;
* top-level object.
*/
if (object != first_object) {
if (fs.object != fs.first_object) {
/*
* We only really need to copy if we want to write it.
*/
@ -575,75 +562,76 @@ RetryFault:;
* first object. Note that we must mark the page dirty in the
* first object so that it will go out to swap when needed.
*/
if (map_generation == map->timestamp &&
if (map_generation == fs.map->timestamp &&
/*
* Only one shadow object
*/
(object->shadow_count == 1) &&
(fs.object->shadow_count == 1) &&
/*
* No COW refs, except us
*/
(object->ref_count == 1) &&
(fs.object->ref_count == 1) &&
/*
* Noone else can look this object up
*/
(object->handle == NULL) &&
(fs.object->handle == NULL) &&
/*
* No other ways to look the object up
*/
((object->type == OBJT_DEFAULT) ||
(object->type == OBJT_SWAP)) &&
((fs.object->type == OBJT_DEFAULT) ||
(fs.object->type == OBJT_SWAP)) &&
/*
* We don't chase down the shadow chain
*/
(object == first_object->backing_object) &&
(fs.object == fs.first_object->backing_object) &&
/*
* grab the lock if we need to
*/
(lookup_still_valid ||
(((entry->eflags & MAP_ENTRY_IS_A_MAP) == 0) &&
lockmgr(&map->lock,
(fs.lookup_still_valid ||
(((fs.entry->eflags & MAP_ENTRY_IS_A_MAP) == 0) &&
lockmgr(&fs.map->lock,
LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0))) {
lookup_still_valid = 1;
fs.lookup_still_valid = 1;
/*
* get rid of the unnecessary page
*/
vm_page_protect(first_m, VM_PROT_NONE);
FREE_PAGE(first_m);
vm_page_protect(fs.first_m, VM_PROT_NONE);
vm_page_free(fs.first_m);
fs.first_m = NULL;
/*
* grab the page and put it into the process'es object
*/
vm_page_rename(m, first_object, first_pindex);
first_m = m;
m->dirty = VM_PAGE_BITS_ALL;
m = NULL;
vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
fs.first_m = fs.m;
fs.m->dirty = VM_PAGE_BITS_ALL;
fs.m = NULL;
cnt.v_cow_optim++;
} else {
/*
* Oh, well, lets copy it.
*/
vm_page_copy(m, first_m);
vm_page_copy(fs.m, fs.first_m);
}
if (m) {
vm_page_activate(m);
/*
* We no longer need the old page or object.
*/
PAGE_WAKEUP(m);
if (fs.m) {
/*
* We no longer need the old page or object.
*/
release_page(&fs);
}
vm_object_pip_wakeup(object);
vm_object_pip_wakeup(fs.object);
/*
* Only use the new page below...
*/
cnt.v_cow_faults++;
m = first_m;
object = first_object;
pindex = first_pindex;
fs.m = fs.first_m;
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
} else {
prot &= ~VM_PROT_WRITE;
@ -655,8 +643,8 @@ RetryFault:;
* lookup.
*/
if (!lookup_still_valid &&
(map->timestamp != map_generation)) {
if (!fs.lookup_still_valid &&
(fs.map->timestamp != map_generation)) {
vm_object_t retry_object;
vm_pindex_t retry_pindex;
vm_prot_t retry_prot;
@ -674,9 +662,9 @@ RetryFault:;
* needs_copy, we enter the mapping without write permission,
* and will merely take another fault.
*/
result = vm_map_lookup(&map, vaddr, fault_type & ~VM_PROT_WRITE,
&entry, &retry_object, &retry_pindex, &retry_prot, &wired);
map_generation = map->timestamp;
result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
&fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
map_generation = fs.map->timestamp;
/*
* If we don't need the page any longer, put it on the active
@ -685,16 +673,16 @@ RetryFault:;
*/
if (result != KERN_SUCCESS) {
RELEASE_PAGE(m);
UNLOCK_AND_DEALLOCATE;
release_page(&fs);
unlock_and_deallocate(&fs);
return (result);
}
lookup_still_valid = TRUE;
fs.lookup_still_valid = TRUE;
if ((retry_object != first_object) ||
(retry_pindex != first_pindex)) {
RELEASE_PAGE(m);
UNLOCK_AND_DEALLOCATE;
if ((retry_object != fs.first_object) ||
(retry_pindex != fs.first_pindex)) {
release_page(&fs);
unlock_and_deallocate(&fs);
goto RetryFault;
}
/*
@ -716,30 +704,30 @@ RetryFault:;
*/
if (prot & VM_PROT_WRITE) {
m->flags |= PG_WRITEABLE;
m->object->flags |= OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY;
fs.m->flags |= PG_WRITEABLE;
fs.m->object->flags |= OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY;
/*
* If the fault is a write, we know that this page is being
* written NOW. This will save on the pmap_is_modified() calls
* later.
*/
if (fault_flags & VM_FAULT_DIRTY) {
m->dirty = VM_PAGE_BITS_ALL;
fs.m->dirty = VM_PAGE_BITS_ALL;
}
}
UNLOCK_THINGS;
m->valid = VM_PAGE_BITS_ALL;
m->flags &= ~PG_ZERO;
unlock_things(&fs);
fs.m->valid = VM_PAGE_BITS_ALL;
fs.m->flags &= ~PG_ZERO;
pmap_enter(map->pmap, vaddr, VM_PAGE_TO_PHYS(m), prot, wired);
pmap_enter(fs.map->pmap, vaddr, VM_PAGE_TO_PHYS(fs.m), prot, wired);
if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
pmap_prefault(map->pmap, vaddr, entry);
pmap_prefault(fs.map->pmap, vaddr, fs.entry);
}
m->flags |= PG_MAPPED|PG_REFERENCED;
fs.m->flags |= PG_MAPPED|PG_REFERENCED;
if (fault_flags & VM_FAULT_HOLD)
vm_page_hold(m);
vm_page_hold(fs.m);
/*
* If the page is not wired down, then put it where the pageout daemon
@ -747,11 +735,11 @@ RetryFault:;
*/
if (fault_flags & VM_FAULT_WIRE_MASK) {
if (wired)
vm_page_wire(m);
vm_page_wire(fs.m);
else
vm_page_unwire(m);
vm_page_unwire(fs.m);
} else {
vm_page_activate(m);
vm_page_activate(fs.m);
}
if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
@ -766,8 +754,8 @@ RetryFault:;
* Unlock everything, and return
*/
PAGE_WAKEUP(m);
vm_object_deallocate(first_object);
PAGE_WAKEUP(fs.m);
vm_object_deallocate(fs.first_object);
return (KERN_SUCCESS);
@ -1090,7 +1078,7 @@ vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
if (rtm == NULL) {
for (j = 0; j < i; j++) {
FREE_PAGE(marray[j]);
vm_page_free(marray[j]);
}
marray[0] = m;
*reqpage = 0;