mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-20 15:43:16 +00:00
Many changes, including the following major ones:
- Rearrange the list of functions into categories. - Remove the ulps column. It was appropriate for only some of the functions in the list, and correct for even fewer of them. - Add some new paragraphs, and remove some old ones about NaNs that may do more harm than good. - Document precisions other than double-precision.
This commit is contained in:
parent
3382533d46
commit
52611c608e
Notes:
svn2git
2020-12-20 02:59:44 +00:00
svn path=/head/; revision=140681
@ -73,84 +73,133 @@ and
|
||||
.Ft "long double"
|
||||
.Fn acosl "long double x" ,
|
||||
respectively.
|
||||
.Pp
|
||||
The programs are accurate to within the numbers
|
||||
of
|
||||
.Em ulp Ns s
|
||||
tabulated below; an
|
||||
.Em ulp
|
||||
is one
|
||||
.Em U Ns nit
|
||||
in the
|
||||
.Em L Ns ast
|
||||
.Em P Ns lace .
|
||||
.Bl -column "nexttoward" "remainder with partial quotient"
|
||||
.Em "Name Description Error Bound (ULPs)"
|
||||
.\" XXX Many of these error bounds are wrong for the current implementation!
|
||||
acos inverse trigonometric function ???
|
||||
acosh inverse hyperbolic function ???
|
||||
asin inverse trigonometric function ???
|
||||
asinh inverse hyperbolic function ???
|
||||
atan inverse trigonometric function ???
|
||||
atanh inverse hyperbolic function ???
|
||||
atan2 inverse trigonometric function ???
|
||||
cbrt cube root 1
|
||||
ceil integer no less than 0
|
||||
copysign copy sign bit 0
|
||||
cos trigonometric function 1
|
||||
cosh hyperbolic function ???
|
||||
erf error function 1
|
||||
erfc complementary error function 1
|
||||
exp exponential base e 1
|
||||
.\" exp2 exponential base 2 ???
|
||||
expm1 exp(x)\-1 1
|
||||
fabs absolute value 0
|
||||
fdim positive difference 1
|
||||
floor integer no greater than 0
|
||||
fma multiply-add 1
|
||||
fmax maximum function 0
|
||||
fmin minimum function 0
|
||||
fmod remainder function ???
|
||||
frexp extract mantissa and exponent 0
|
||||
hypot Euclidean distance 1
|
||||
ilogb exponent extraction 0
|
||||
j0 bessel function ???
|
||||
j1 bessel function ???
|
||||
jn bessel function ???
|
||||
ldexp multiply by power of 2 0
|
||||
lgamma log gamma function 1
|
||||
llrint round to integer 0
|
||||
llround round to nearest integer 0
|
||||
log natural logarithm 1
|
||||
log10 logarithm to base 10 1
|
||||
log1p log(1+x) 1
|
||||
.\" log2 base 2 logarithm 0
|
||||
logb exponent extraction 0
|
||||
lrint round to integer 0
|
||||
lround round to nearest integer 0
|
||||
modf extract fractional part 0
|
||||
.\" nan return quiet \*(Na) 0
|
||||
nearbyint round to integer 0
|
||||
nextafter next representable value 0
|
||||
.\" nexttoward next representable value 0
|
||||
pow exponential x**y 60-500
|
||||
remainder remainder 0
|
||||
.\" remquo remainder with partial quotient ???
|
||||
rint round to nearest integer 0
|
||||
round round to nearest integer 0
|
||||
scalbln exponent adjustment 0
|
||||
scalbn exponent adjustment 0
|
||||
sin trigonometric function 1
|
||||
sinh hyperbolic function ???
|
||||
sqrt square root 1
|
||||
tan trigonometric function 1
|
||||
tanh hyperbolic function ???
|
||||
tgamma gamma function 1
|
||||
trunc round towards zero 0
|
||||
y0 bessel function ???
|
||||
y1 bessel function ???
|
||||
yn bessel function ???
|
||||
.de Cl
|
||||
. Bl -column "isgreaterequal" "bessel function of the second kind of the order 0"
|
||||
.Em "Name Description"
|
||||
..
|
||||
.Ss Algebraic Functions
|
||||
.Cl
|
||||
cbrt cube root
|
||||
fma fused multiply-add
|
||||
hypot Euclidean distance
|
||||
sqrt square root
|
||||
.El
|
||||
.Ss Classification Functions
|
||||
.Cl
|
||||
fpclassify classify a floating-point value
|
||||
isfinite determine whether a value is finite
|
||||
isinf determine whether a value is infinite
|
||||
isnan determine whether a value is \*(Na
|
||||
isnormal determine whether a value is normalized
|
||||
.El
|
||||
.Ss Exponent Manipulation Functions
|
||||
.Cl
|
||||
frexp extract exponent and mantissa
|
||||
ilogb extract exponent
|
||||
ldexp multiply by power of 2
|
||||
scalbln adjust exponent
|
||||
scalbn adjust exponent
|
||||
.El
|
||||
.Ss Extremum- and Sign-Related Functions
|
||||
.Cl
|
||||
copysign copy sign bit
|
||||
fabs absolute value
|
||||
fdim positive difference
|
||||
fmax maximum function
|
||||
fmin minimum function
|
||||
signbit extract sign bit
|
||||
.El
|
||||
.\" .Ss Not a Number
|
||||
.\" .Cl
|
||||
.\" nan return quiet \*(Na) 0
|
||||
.\" .El
|
||||
.Ss Residue and Rounding Functions
|
||||
.Cl
|
||||
ceil integer no less than
|
||||
floor integer no greater than
|
||||
fmod positive remainder
|
||||
llrint round to integer in fixed-point format
|
||||
llround round to nearest integer in fixed-point format
|
||||
lrint round to integer in fixed-point format
|
||||
lround round to nearest integer in fixed-point format
|
||||
modf extract integer and fractional parts
|
||||
nearbyint round to integer (silent)
|
||||
nextafter next representable value
|
||||
.\" nexttoward next representable value (silent)
|
||||
remainder remainder
|
||||
.\" remquo remainder with partial quotient
|
||||
rint round to integer
|
||||
round round to nearest integer
|
||||
trunc integer no greater in magnitude than
|
||||
.El
|
||||
.Pp
|
||||
The
|
||||
.Fn ceil ,
|
||||
.Fn floor ,
|
||||
.Fn llround ,
|
||||
.Fn lround ,
|
||||
.Fn round ,
|
||||
and
|
||||
.Fn trunc
|
||||
functions round in predetermined directions, whereas
|
||||
.Fn llrint ,
|
||||
.Fn lrint ,
|
||||
and
|
||||
.Fn rint
|
||||
round according to the current (dynamic) rounding mode.
|
||||
For more information on controlling the dynamic rounding mode, see
|
||||
.Xr fenv 3
|
||||
and
|
||||
.Xr fesetround 3 .
|
||||
.Ss Silent Order Predicates
|
||||
.Cl
|
||||
isgreater greater than relation
|
||||
isgreaterequal greater than or equal to relation
|
||||
isless less than relation
|
||||
islessequal less than or equal to relation
|
||||
islessgreater less than or greater than relation
|
||||
isunordered unordered relation
|
||||
.El
|
||||
.Ss Transcendental Functions
|
||||
.Cl
|
||||
acos inverse cosine
|
||||
acosh inverse hyperbolic cosine
|
||||
asin inverse sine
|
||||
asinh inverse hyperbolic sine
|
||||
atan inverse tangent
|
||||
atanh inverse hyperbolic tangent
|
||||
atan2 atan(y/x); complex argument
|
||||
cos cosine
|
||||
cosh hyperbolic cosine
|
||||
erf error function
|
||||
erfc complementary error function
|
||||
exp exponential base e
|
||||
.\" exp2 exponential base 2
|
||||
expm1 exp(x)\-1
|
||||
j0 Bessel function of the first kind of the order 0
|
||||
j1 Bessel function of the first kind of the order 1
|
||||
jn Bessel function of the first kind of the order n
|
||||
lgamma log gamma function
|
||||
log natural logarithm
|
||||
log10 logarithm to base 10
|
||||
log1p log(1+x)
|
||||
.\" log2 base 2 logarithm
|
||||
pow exponential x**y
|
||||
sin trigonometric function
|
||||
sinh hyperbolic function
|
||||
tan trigonometric function
|
||||
tanh hyperbolic function
|
||||
tgamma gamma function
|
||||
y0 Bessel function of the second kind of the order 0
|
||||
y1 Bessel function of the second kind of the order 1
|
||||
yn Bessel function of the second kind of the order n
|
||||
.El
|
||||
.Pp
|
||||
Unlike the algebraic functions listed earlier, the routines
|
||||
in this section may not produce a result that is correctly rounded.
|
||||
In general, an unbounded number of digits of a value taken by a
|
||||
transcendental function may be needed to determine the correctly rounded
|
||||
result.
|
||||
.Sh NOTES
|
||||
Virtually all modern floating-point units attempt to support
|
||||
IEEE Standard 754 for Binary Floating-Point Arithmetic.
|
||||
@ -162,34 +211,15 @@ properties of arithmetic operations relating to precision, rounding,
|
||||
and exceptional cases, as described below.
|
||||
.Ss IEEE STANDARD 754 Floating-Point Arithmetic
|
||||
.\" XXX mention single- and extended-/quad- precisions
|
||||
Properties of IEEE 754 Double-Precision:
|
||||
.Bd -ragged -offset indent -compact
|
||||
Wordsize: 64 bits, 8 bytes.
|
||||
.Pp
|
||||
Radix: Binary.
|
||||
.Pp
|
||||
Precision: 53 significant bits,
|
||||
roughly like 16 significant decimals.
|
||||
.Bd -ragged -offset indent -compact
|
||||
If x and x' are consecutive positive Double-Precision
|
||||
numbers (they differ by 1
|
||||
.Em ulp ) ,
|
||||
then
|
||||
.Bd -ragged -compact
|
||||
1.1e\-16 < 0.5**53 < (x'\-x)/x \(<= 0.5**52 < 2.3e\-16.
|
||||
.Ed
|
||||
.Ed
|
||||
.Pp
|
||||
.Bl -column "XXX" -compact
|
||||
Range: Overflow threshold = 2.0**1024 = 1.8e308
|
||||
Underflow threshold = 0.5**1022 = 2.2e\-308
|
||||
.Bl -column "" -compact
|
||||
Overflow and underflow:
|
||||
.El
|
||||
.Bd -ragged -offset indent -compact
|
||||
Overflow goes by default to a signed \*(If.
|
||||
Underflow is
|
||||
.Em Gradual ,
|
||||
rounding to the nearest
|
||||
integer multiple of 0.5**1074 = 4.9e\-324.
|
||||
.Em gradual .
|
||||
.Ed
|
||||
.Pp
|
||||
Zero is represented ambiguously as +0 or \-0.
|
||||
@ -206,7 +236,7 @@ cannot be affected by the sign of zero; but if
|
||||
finite x = y then \*(If = 1/(x\-y) \(!= \-1/(y\-x) = \-\*(If.
|
||||
.Ed
|
||||
.Pp
|
||||
\*(If is signed.
|
||||
Infinity is signed.
|
||||
.Bd -ragged -offset indent -compact
|
||||
It persists when added to itself
|
||||
or to any finite number.
|
||||
@ -220,12 +250,11 @@ are, like 0/0 and sqrt(\-3),
|
||||
invalid operations that produce \*(Na. ...
|
||||
.Ed
|
||||
.Pp
|
||||
Reserved operands:
|
||||
Reserved operands (\*(Nas):
|
||||
.Bd -ragged -offset indent -compact
|
||||
there are 2**53\-2 of them, all
|
||||
called \*(Na
|
||||
An \*(Na is
|
||||
.Em ( N Ns ot Em a N Ns umber ) .
|
||||
Some, called Signaling \*(Nas, trap any floating-point operation
|
||||
Some \*(Nas, called Signaling \*(Nas, trap any floating-point operation
|
||||
performed upon them; they are used to mark missing
|
||||
or uninitialized values, or nonexistent elements
|
||||
of arrays.
|
||||
@ -234,11 +263,6 @@ the default results of Invalid Operations, and
|
||||
propagate through subsequent arithmetic operations.
|
||||
If x \(!= x then x is \*(Na; every other predicate
|
||||
(x > y, x = y, x < y, ...) is FALSE if \*(Na is involved.
|
||||
.Pp
|
||||
NOTE: Trichotomy is violated by \*(Na.
|
||||
Besides being FALSE, predicates that entail ordered
|
||||
comparison, rather than mere (in)equality,
|
||||
signal Invalid Operation when \*(Na is involved.
|
||||
.Ed
|
||||
.Pp
|
||||
Rounding:
|
||||
@ -251,6 +275,13 @@ and when the rounding error is exactly half an
|
||||
.Em ulp
|
||||
then
|
||||
the rounded value's least significant bit is zero.
|
||||
(An
|
||||
.Em ulp
|
||||
is one
|
||||
.Em U Ns nit
|
||||
in the
|
||||
.Em L Ns ast
|
||||
.Em P Ns lace . )
|
||||
This kind of rounding is usually the best kind,
|
||||
sometimes provably so; for instance, for every
|
||||
x = 1.0, 2.0, 3.0, 4.0, ..., 2.0**52, we find
|
||||
@ -263,10 +294,6 @@ proved best for every circumstance, so IEEE 754
|
||||
provides rounding towards zero or towards
|
||||
+\*(If or towards \-\*(If
|
||||
at the programmer's option.
|
||||
And the
|
||||
same kinds of rounding are specified for
|
||||
Binary-Decimal Conversions, at least for magnitudes
|
||||
between roughly 1.0e\-10 and 1.0e37.
|
||||
.Ed
|
||||
.Pp
|
||||
Exceptions:
|
||||
@ -292,6 +319,131 @@ response will serve most instances satisfactorily,
|
||||
the unsatisfactory instances cannot justify aborting
|
||||
computation every time the exception occurs.
|
||||
.Ed
|
||||
.Ss Data Formats
|
||||
Single-precision:
|
||||
.Bd -ragged -offset indent -compact
|
||||
Type name:
|
||||
.Vt float
|
||||
.Pp
|
||||
Wordsize: 32 bits.
|
||||
.Pp
|
||||
Precision: 24 significant bits,
|
||||
roughly like 7 significant decimals.
|
||||
.Bd -ragged -offset indent -compact
|
||||
If x and x' are consecutive positive single-precision
|
||||
numbers (they differ by 1
|
||||
.Em ulp ) ,
|
||||
then
|
||||
.Bd -ragged -compact
|
||||
5.9e\-08 < 0.5**24 < (x'\-x)/x \(<= 0.5**23 < 1.2e\-07.
|
||||
.Ed
|
||||
.Ed
|
||||
.Pp
|
||||
.Bl -column "XXX" -compact
|
||||
Range: Overflow threshold = 2.0**128 = 3.4e38
|
||||
Underflow threshold = 0.5**126 = 1.2e\-38
|
||||
.El
|
||||
.Bd -ragged -offset indent -compact
|
||||
Underflowed results round to the nearest
|
||||
integer multiple of 0.5**149 = 1.4e\-45.
|
||||
.Ed
|
||||
.Ed
|
||||
.Pp
|
||||
Double-precision:
|
||||
.Bd -ragged -offset indent -compact
|
||||
Type name:
|
||||
.Vt double
|
||||
.Bd -ragged -offset indent -compact
|
||||
On some architectures,
|
||||
.Vt long double
|
||||
is the the same as
|
||||
.Vt double .
|
||||
.Ed
|
||||
.Pp
|
||||
Wordsize: 64 bits.
|
||||
.Pp
|
||||
Precision: 53 significant bits,
|
||||
roughly like 16 significant decimals.
|
||||
.Bd -ragged -offset indent -compact
|
||||
If x and x' are consecutive positive double-precision
|
||||
numbers (they differ by 1
|
||||
.Em ulp ) ,
|
||||
then
|
||||
.Bd -ragged -compact
|
||||
1.1e\-16 < 0.5**53 < (x'\-x)/x \(<= 0.5**52 < 2.3e\-16.
|
||||
.Ed
|
||||
.Ed
|
||||
.Pp
|
||||
.Bl -column "XXX" -compact
|
||||
Range: Overflow threshold = 2.0**1024 = 1.8e308
|
||||
Underflow threshold = 0.5**1022 = 2.2e\-308
|
||||
.El
|
||||
.Bd -ragged -offset indent -compact
|
||||
Underflowed results round to the nearest
|
||||
integer multiple of 0.5**1074 = 4.9e\-324.
|
||||
.Ed
|
||||
.Ed
|
||||
.Pp
|
||||
Extended-precision:
|
||||
.Bd -ragged -offset indent -compact
|
||||
Type name:
|
||||
.Vt long double
|
||||
(when supported by the hardware)
|
||||
.Pp
|
||||
Wordsize: 96 bits.
|
||||
.Pp
|
||||
Precision: 64 significant bits,
|
||||
roughly like 19 significant decimals.
|
||||
.Bd -ragged -offset indent -compact
|
||||
If x and x' are consecutive positive double-precision
|
||||
numbers (they differ by 1
|
||||
.Em ulp ) ,
|
||||
then
|
||||
.Bd -ragged -compact
|
||||
1.0e\-19 < 0.5**63 < (x'\-x)/x \(<= 0.5**62 < 2.2e\-19.
|
||||
.Ed
|
||||
.Ed
|
||||
.Pp
|
||||
.Bl -column "XXX" -compact
|
||||
Range: Overflow threshold = 2.0**16384 = 1.2e4932
|
||||
Underflow threshold = 0.5**16382 = 3.4e\-4932
|
||||
.El
|
||||
.Bd -ragged -offset indent -compact
|
||||
Underflowed results round to the nearest
|
||||
integer multiple of 0.5**16451 = 5.7e\-4953.
|
||||
.Ed
|
||||
.Ed
|
||||
.Pp
|
||||
Quad-extended-precision:
|
||||
.Bd -ragged -offset indent -compact
|
||||
Type name:
|
||||
.Vt long double
|
||||
(when supported by the hardware)
|
||||
.Pp
|
||||
Wordsize: 128 bits.
|
||||
.Pp
|
||||
Precision: 113 significant bits,
|
||||
roughly like 34 significant decimals.
|
||||
.Bd -ragged -offset indent -compact
|
||||
If x and x' are consecutive positive double-precision
|
||||
numbers (they differ by 1
|
||||
.Em ulp ) ,
|
||||
then
|
||||
.Bd -ragged -compact
|
||||
9.6e\-35 < 0.5**113 < (x'\-x)/x \(<= 0.5**112 < 2.0e\-34.
|
||||
.Ed
|
||||
.Ed
|
||||
.Pp
|
||||
.Bl -column "XXX" -compact
|
||||
Range: Overflow threshold = 2.0**16384 = 1.2e4932
|
||||
Underflow threshold = 0.5**16382 = 3.4e\-4932
|
||||
.El
|
||||
.Bd -ragged -offset indent -compact
|
||||
Underflowed results round to the nearest
|
||||
integer multiple of 0.5**16494 = 6.5e\-4966.
|
||||
.Ed
|
||||
.Ed
|
||||
.Ss Additional Information Regarding Exceptions
|
||||
.Pp
|
||||
For each kind of floating-point exception, IEEE 754
|
||||
provides a Flag that is raised each time its exception
|
||||
@ -381,7 +533,6 @@ execution had not been stopped.
|
||||
.It
|
||||
\&... Other ways lie beyond the scope of this document.
|
||||
.El
|
||||
.Ed
|
||||
.Pp
|
||||
Ideally, each
|
||||
elementary function should act as if it were indivisible, or
|
||||
@ -472,6 +623,11 @@ or IEEE 754 floating-point.
|
||||
Most of this library was replaced with FDLIBM, developed at Sun
|
||||
Microsystems, in
|
||||
.Fx 1.1.5 .
|
||||
Additional routines, including ones for
|
||||
.Vt float
|
||||
and
|
||||
.Vt long double
|
||||
values, were written for or imported into subsequent versions of FreeBSD.
|
||||
.Sh BUGS
|
||||
Several functions required by
|
||||
.St -isoC-99
|
||||
|
Loading…
Reference in New Issue
Block a user