mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-25 16:13:17 +00:00
Implement WF2Q+ in dummynet.
This commit is contained in:
parent
ec6f2e3c51
commit
5d3fe434f8
Notes:
svn2git
2020-12-20 02:59:44 +00:00
svn path=/head/; revision=61413
File diff suppressed because it is too large
Load Diff
@ -41,11 +41,31 @@
|
||||
* is pretty simple and this makes the code more portable.
|
||||
*/
|
||||
|
||||
typedef u_int32_t dn_key ; /* sorting key */
|
||||
#define DN_KEY_LT(a,b) ((int)((a)-(b)) < 0)
|
||||
#define DN_KEY_LEQ(a,b) ((int)((a)-(b)) <= 0)
|
||||
#define DN_KEY_GT(a,b) ((int)((a)-(b)) > 0)
|
||||
#define DN_KEY_GEQ(a,b) ((int)((a)-(b)) >= 0)
|
||||
/*
|
||||
* The key for the heap is used for two different values
|
||||
1. timer ticks- max 10K/second, so 32 bits are enough
|
||||
2. virtual times. These increase in steps of len/x, where len is the
|
||||
packet length, and x is either the weight of the flow, or the
|
||||
sum of all weights.
|
||||
If we limit to max 1000 flows and a max weight of 100, then
|
||||
x needs 17 bits. The packet size is 16 bits, so we can easily
|
||||
overflow if we do not allow errors.
|
||||
|
||||
*/
|
||||
typedef u_int64_t dn_key ; /* sorting key */
|
||||
#define DN_KEY_LT(a,b) ((int64_t)((a)-(b)) < 0)
|
||||
#define DN_KEY_LEQ(a,b) ((int64_t)((a)-(b)) <= 0)
|
||||
#define DN_KEY_GT(a,b) ((int64_t)((a)-(b)) > 0)
|
||||
#define DN_KEY_GEQ(a,b) ((int64_t)((a)-(b)) >= 0)
|
||||
/* XXX check names of next two macros */
|
||||
#define MAX64(x,y) (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
|
||||
#define MY_M 16 /* number of left shift to obtain a larger precision */
|
||||
/*
|
||||
* XXX With this scaling, max 1000 flows, max weight 100, 1Gbit/s, the
|
||||
* virtual time wraps every 15 days.
|
||||
*/
|
||||
|
||||
#define OFFSET_OF(type, field) ((int)&( ((type *)0)->field) )
|
||||
|
||||
struct dn_heap_entry {
|
||||
dn_key key ; /* sorting key. Topmost element is smallest one */
|
||||
@ -55,6 +75,7 @@ struct dn_heap_entry {
|
||||
struct dn_heap {
|
||||
int size ;
|
||||
int elements ;
|
||||
int offset ; /* XXX if > 0 this is the offset of direct ptr to obj */
|
||||
struct dn_heap_entry *p ; /* really an array of "size" entries */
|
||||
} ;
|
||||
|
||||
@ -66,6 +87,7 @@ struct dn_heap {
|
||||
|
||||
#define MT_DUMMYNET MT_CONTROL
|
||||
|
||||
|
||||
/*
|
||||
* struct dn_pkt identifies a packet in the dummynet queue. The
|
||||
* first part is really an m_hdr for implementation purposes, and some
|
||||
@ -78,7 +100,6 @@ struct dn_pkt {
|
||||
#define dn_next hdr.mh_nextpkt /* next element in queue */
|
||||
#define DN_NEXT(x) (struct dn_pkt *)(x)->dn_next
|
||||
#define dn_m hdr.mh_next /* packet to be forwarded */
|
||||
/* #define dn_dst hdr.mh_len -* dst, for ip_output */
|
||||
#define dn_dir hdr.mh_flags /* action when pkt extracted from a queue */
|
||||
#define DN_TO_IP_OUT 1
|
||||
#define DN_TO_IP_IN 2
|
||||
@ -91,51 +112,153 @@ struct dn_pkt {
|
||||
int flags ; /* flags, for ip_output (IPv6 ?) */
|
||||
};
|
||||
|
||||
struct dn_queue {
|
||||
struct dn_pkt *head, *tail;
|
||||
} ;
|
||||
/*
|
||||
* Overall structure (with WFQ):
|
||||
|
||||
We have 3 data structures definining a pipe and associated queues:
|
||||
+ dn_pipe, which contains the main configuration parameters related
|
||||
to delay and bandwidth
|
||||
+ dn_flow_set which contains WFQ configuration, flow
|
||||
masks, plr and RED configuration
|
||||
+ dn_flow_queue which is the per-flow queue.
|
||||
Multiple dn_flow_set can be linked to the same pipe, and multiple
|
||||
dn_flow_queue can be linked to the same dn_flow_set.
|
||||
|
||||
During configuration we set the dn_flow_set and dn_pipe parameters.
|
||||
At runtime: packets are sent to the dn_flow_set (either WFQ ones, or
|
||||
the one embedded in the dn_pipe for fixed-rate flows) which in turn
|
||||
dispatches them to the appropriate dn_flow_queue (created dynamically
|
||||
according to the masks).
|
||||
The transmit clock for fixed rate flows (ready_event) selects the
|
||||
dn_flow_queue to be used to transmit the next packet. For WF2Q,
|
||||
wfq_ready_event() extract a pipe which in turn selects the right
|
||||
flow using a number of heaps defined into the pipe.
|
||||
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* We use per flow queues. Hashing is used to select the right slot,
|
||||
* then we scan the list to match the flow-id.
|
||||
* The pipe is shared as it is only a delay line and thus one is enough.
|
||||
*/
|
||||
struct dn_flow_queue {
|
||||
struct dn_flow_queue *next ;
|
||||
struct ipfw_flow_id id ;
|
||||
struct dn_pipe *p ; /* parent pipe */
|
||||
struct dn_queue r;
|
||||
long numbytes ;
|
||||
struct dn_pkt *head, *tail ; /* queue of packets */
|
||||
u_int len ;
|
||||
u_int len_bytes ;
|
||||
long numbytes ; /* credit for transmission (dynamic queues) */
|
||||
|
||||
u_int64_t tot_pkts ; /* statistics counters */
|
||||
u_int64_t tot_bytes ;
|
||||
u_int32_t drops ;
|
||||
int hash_slot ; /* debugging/diagnostic */
|
||||
|
||||
/* RED parameters */
|
||||
int avg ; /* average queue length est. (scaled) */
|
||||
int count ; /* arrivals since last RED drop */
|
||||
int random ; /* random value (scaled) */
|
||||
u_int32_t q_time ; /* start of queue idle time */
|
||||
|
||||
/* WF2Q+ support */
|
||||
struct dn_flow_set *fs ; /* parent flow set */
|
||||
int blh_pos ; /* position in backlogged_heap */
|
||||
dn_key sched_time ; /* current time when queue enters ready_heap */
|
||||
|
||||
dn_key S,F ; /* start-time, finishing time */
|
||||
} ;
|
||||
|
||||
struct dn_flow_set {
|
||||
struct dn_flow_set *next; /* next flow set in all_flow_sets list */
|
||||
|
||||
u_short fs_nr ; /* flow_set number */
|
||||
u_short flags_fs;
|
||||
#define DN_HAVE_FLOW_MASK 0x0001
|
||||
#define DN_IS_PIPE 0x4000
|
||||
#define DN_IS_QUEUE 0x8000
|
||||
#define DN_IS_RED 0x0002
|
||||
#define DN_IS_GENTLE_RED 0x0004
|
||||
#define DN_QSIZE_IS_BYTES 0x0008 /* queue measured in bytes */
|
||||
|
||||
struct dn_pipe *pipe ; /* pointer to parent pipe */
|
||||
u_short parent_nr ; /* parent pipe#, 0 if local to a pipe */
|
||||
|
||||
int weight ; /* WFQ queue weight */
|
||||
int qsize ; /* queue size in slots or bytes */
|
||||
int plr ; /* pkt loss rate (2^31-1 means 100%) */
|
||||
|
||||
struct ipfw_flow_id flow_mask ;
|
||||
/* hash table of queues onto this flow_set */
|
||||
int rq_size ; /* number of slots */
|
||||
int rq_elements ; /* active elements */
|
||||
struct dn_flow_queue **rq; /* array of rq_size entries */
|
||||
u_int32_t last_expired ; /* do not expire too frequently */
|
||||
/* XXX some RED parameters as well ? */
|
||||
int backlogged ; /* #active queues for this flowset */
|
||||
|
||||
/* RED parameters */
|
||||
#define SCALE_RED 16
|
||||
#define SCALE(x) ( (x) << SCALE_RED )
|
||||
#define SCALE_VAL(x) ( (x) >> SCALE_RED )
|
||||
#define SCALE_MUL(x,y) ( ( (x) * (y) ) >> SCALE_RED )
|
||||
int w_q ; /* queue weight (scaled) */
|
||||
int max_th ; /* maximum threshold for queue (scaled) */
|
||||
int min_th ; /* minimum threshold for queue (scaled) */
|
||||
int max_p ; /* maximum value for p_b (scaled) */
|
||||
u_int c_1 ; /* max_p/(max_th-min_th) (scaled) */
|
||||
u_int c_2 ; /* max_p*min_th/(max_th-min_th) (scaled) */
|
||||
u_int c_3 ; /* for GRED, (1-max_p)/max_th (scaled) */
|
||||
u_int c_4 ; /* for GRED, 1 - 2*max_p (scaled) */
|
||||
u_int * w_q_lookup ; /* lookup table for computing (1-w_q)^t */
|
||||
u_int lookup_depth ; /* depth of lookup table */
|
||||
int lookup_step ; /* granularity inside the lookup table */
|
||||
int lookup_weight ; /* equal to (1-w_q)^t / (1-w_q)^(t+1) */
|
||||
int avg_pkt_size ; /* medium packet size */
|
||||
int max_pkt_size ; /* max packet size */
|
||||
} ;
|
||||
|
||||
/*
|
||||
* Pipe descriptor. Contains global parameters, delay-line queue,
|
||||
* and the hash array of the per-flow queues.
|
||||
* Pipe descriptor. Contains global parameters, delay-line queue.
|
||||
*
|
||||
* For WF2Q support it also has 3 heaps holding dn_flow_queue:
|
||||
* not_eligible_heap, for queues whose start time is higher
|
||||
* than the virtual time. Sorted by start time.
|
||||
* scheduler_heap, for queues eligible for scheduling. Sorted by
|
||||
* finish time.
|
||||
* backlogged_heap, all flows in the two heaps above, sorted by
|
||||
* start time. This is used to compute the virtual time.
|
||||
*
|
||||
*/
|
||||
struct dn_pipe { /* a pipe */
|
||||
struct dn_pipe *next ;
|
||||
|
||||
u_short pipe_nr ; /* number */
|
||||
u_short flags ; /* to speed up things */
|
||||
#define DN_HAVE_FLOW_MASK 8
|
||||
int pipe_nr ; /* number */
|
||||
int bandwidth; /* really, bytes/tick. */
|
||||
int queue_size ;
|
||||
int queue_size_bytes ;
|
||||
int delay ; /* really, ticks */
|
||||
int plr ; /* pkt loss rate (2^31-1 means 100%) */
|
||||
|
||||
struct dn_queue p ;
|
||||
struct ipfw_flow_id flow_mask ;
|
||||
int rq_size ;
|
||||
int rq_elements ;
|
||||
struct dn_flow_queue **rq ; /* array of rq_size entries */
|
||||
struct dn_pkt *head, *tail ; /* packets in delay line */
|
||||
|
||||
/* WF2Q+ */
|
||||
struct dn_heap scheduler_heap ; /* top extract - key Finish time*/
|
||||
struct dn_heap not_eligible_heap; /* top extract- key Start time */
|
||||
struct dn_heap backlogged_heap ; /* random extract - key Start time */
|
||||
|
||||
dn_key V ; /* virtual time */
|
||||
int sum; /* sum of weights of all active sessions */
|
||||
int numbytes; /* bit i can transmit (more or less). */
|
||||
|
||||
dn_key sched_time ; /* first time pipe is scheduled in ready_heap */
|
||||
|
||||
/* the tx clock can come from an interface. In this case, the
|
||||
* name is below, and the pointer is filled when the rule is
|
||||
* configured. We identify this by setting the if_name to a
|
||||
* non-empty string.
|
||||
*/
|
||||
char if_name[16];
|
||||
struct ifnet *ifp ;
|
||||
int ready ; /* set if ifp != NULL and we got a signal from it */
|
||||
|
||||
struct dn_flow_set fs ; /* used with fixed-rate flows */
|
||||
};
|
||||
|
||||
#ifdef _KERNEL
|
||||
|
@ -444,6 +444,10 @@ ipfw_report(struct ip_fw *f, struct ip *ip,
|
||||
snprintf(SNPARGS(action2, 0), "Pipe %d",
|
||||
f->fw_skipto_rule);
|
||||
break;
|
||||
case IP_FW_F_QUEUE:
|
||||
snprintf(SNPARGS(action2, 0), "Queue %d",
|
||||
f->fw_skipto_rule);
|
||||
break;
|
||||
#endif
|
||||
#ifdef IPFIREWALL_FORWARD
|
||||
case IP_FW_F_FWD:
|
||||
@ -664,7 +668,10 @@ lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction)
|
||||
break ;
|
||||
default:
|
||||
#if 0
|
||||
/* reset or some invalid combination */
|
||||
/*
|
||||
* reset or some invalid combination, but can also
|
||||
* occur if we use keep-state the wrong way.
|
||||
*/
|
||||
if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
|
||||
printf("invalid state: 0x%x\n", q->state);
|
||||
#endif
|
||||
@ -745,6 +752,8 @@ static void
|
||||
install_state(struct ip_fw_chain *chain)
|
||||
{
|
||||
struct ipfw_dyn_rule *q ;
|
||||
static int last_log ;
|
||||
|
||||
u_long type = ((struct ip_fw_ext *)chain->rule)->dyn_type ;
|
||||
|
||||
DEB(printf("-- install state type %d 0x%08lx %u -> 0x%08lx %u\n",
|
||||
@ -754,12 +763,18 @@ install_state(struct ip_fw_chain *chain)
|
||||
|
||||
q = lookup_dyn_rule(&last_pkt, NULL) ;
|
||||
if (q != NULL) {
|
||||
if (last_log == time_second)
|
||||
return ;
|
||||
last_log = time_second ;
|
||||
printf(" entry already present, done\n");
|
||||
return ;
|
||||
}
|
||||
if (dyn_count >= dyn_max) /* try remove old ones... */
|
||||
remove_dyn_rule(NULL, 0 /* expire */);
|
||||
if (dyn_count >= dyn_max) {
|
||||
if (last_log == time_second)
|
||||
return ;
|
||||
last_log = time_second ;
|
||||
printf(" Too many dynamic rules, sorry\n");
|
||||
return ;
|
||||
}
|
||||
@ -1226,6 +1241,7 @@ ip_fw_chk(struct ip **pip, int hlen,
|
||||
goto again ;
|
||||
#ifdef DUMMYNET
|
||||
case IP_FW_F_PIPE:
|
||||
case IP_FW_F_QUEUE:
|
||||
return(f->fw_pipe_nr | IP_FW_PORT_DYNT_FLAG);
|
||||
#endif
|
||||
#ifdef IPFIREWALL_FORWARD
|
||||
@ -1557,7 +1573,7 @@ check_ipfw_struct(struct ip_fw *frwl)
|
||||
return (EINVAL);
|
||||
}
|
||||
if (frwl->fw_flg == IP_FW_F_CHECK_S) {
|
||||
printf("check dynamic rules...\n");
|
||||
/* check-state */
|
||||
return 0 ;
|
||||
}
|
||||
/* Must apply to incoming or outgoing (or both) */
|
||||
@ -1651,6 +1667,7 @@ check_ipfw_struct(struct ip_fw *frwl)
|
||||
#endif
|
||||
#ifdef DUMMYNET
|
||||
case IP_FW_F_PIPE: /* piping through 0 is invalid */
|
||||
case IP_FW_F_QUEUE: /* piping through 0 is invalid */
|
||||
#endif
|
||||
if (frwl->fw_divert_port == 0) {
|
||||
dprintf(("%s can't divert to port 0\n", err_prefix));
|
||||
|
@ -69,7 +69,7 @@ struct ip_fw {
|
||||
union ip_fw_if fw_in_if, fw_out_if; /* Incoming and outgoing interfaces */
|
||||
union {
|
||||
u_short fu_divert_port; /* Divert/tee port (options IPDIVERT) */
|
||||
u_short fu_pipe_nr; /* pipe number (option DUMMYNET) */
|
||||
u_short fu_pipe_nr; /* queue number (option DUMMYNET) */
|
||||
u_short fu_skipto_rule; /* SKIPTO command rule number */
|
||||
u_short fu_reject_code; /* REJECT response code */
|
||||
struct sockaddr_in fu_fwd_ip;
|
||||
@ -81,7 +81,7 @@ struct ip_fw {
|
||||
* match all ports)
|
||||
*/
|
||||
u_char fw_nports;
|
||||
void *pipe_ptr; /* Pipe ptr in case of dummynet pipe */
|
||||
void *pipe_ptr; /* flow_set ptr for dummynet pipe */
|
||||
void *next_rule_ptr ; /* next rule in case of match */
|
||||
uid_t fw_uid; /* uid to match */
|
||||
gid_t fw_gid; /* gid to match */
|
||||
@ -167,6 +167,7 @@ struct ipfw_dyn_rule {
|
||||
#define IP_FW_F_SKIPTO 0x00000006 /* This is a skipto rule */
|
||||
#define IP_FW_F_FWD 0x00000007 /* This is a "change forwarding address" rule */
|
||||
#define IP_FW_F_PIPE 0x00000008 /* This is a dummynet rule */
|
||||
#define IP_FW_F_QUEUE 0x00000009 /* This is a dummynet queue */
|
||||
|
||||
#define IP_FW_F_IN 0x00000100 /* Check inbound packets */
|
||||
#define IP_FW_F_OUT 0x00000200 /* Check outbound packets */
|
||||
|
Loading…
Reference in New Issue
Block a user