1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-08 13:28:05 +00:00

Import libcxxrt / libc++ into a vendor branch.

Approved by:	dim (mentor)
This commit is contained in:
David Chisnall 2011-11-22 17:30:41 +00:00
commit 6ec4e3f257
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/vendor/libcxxrt/dist/; revision=227825
svn path=/vendor/libcxxrt/9802a7e430e08b90bf0e92d24abff095fa72ec21/; revision=227826; tag=vendor/libcxxrt/9802a7e430e08b90bf0e92d24abff095fa72ec21
17 changed files with 7801 additions and 0 deletions

22
CMakeLists.txt Normal file
View File

@ -0,0 +1,22 @@
set(CXXRT_SOURCES
dynamic_cast.cc
exception.cc
guard.cc
stdexcept.cc
typeinfo.cc
memory.cc
auxhelper.cc
libelftc_dem_gnu3.c
)
add_library(cxxrt-static STATIC ${CXXRT_SOURCES})
add_library(cxxrt-shared SHARED ${CXXRT_SOURCES})
set_target_properties(cxxrt-static cxxrt-shared PROPERTIES
OUTPUT_NAME "cxxrt"
)

5
abi_namespace.h Normal file
View File

@ -0,0 +1,5 @@
/**
* The namespace used for the ABI declarations. This is currently defined to
* be the same as GNU libsupc++, however this may change in the future.
*/
#define ABI_NAMESPACE __cxxabiv1

41
auxhelper.cc Normal file
View File

@ -0,0 +1,41 @@
/**
* aux.cc - Compiler helper functions.
*
* The functions declared in this file are intended to be called only by code
* that is automatically generated by C++ compilers for some common cases.
*/
#include <stdlib.h>
#include "stdexcept.h"
/**
* Called to generate a bad cast exception. This function is intended to allow
* compilers to insert code generating this exception without needing to
* duplicate the code for throwing the exception in every call site.
*/
extern "C" void __cxa_bad_cast()
{
throw std::bad_cast();
}
/**
* Called to generate a bad typeid exception. This function is intended to
* allow compilers to insert code generating this exception without needing to
* duplicate the code for throwing the exception in every call site.
*/
extern "C" void __cxa_bad_typeid()
{
throw std::bad_typeid();
}
/**
* Compilers may (but are not required to) set any pure-virtual function's
* vtable entry to this function. This makes debugging slightly easier, as
* users can add a breakpoint on this function to tell if they've accidentally
* called a pure-virtual function.
*/
extern "C" void __cxa_pure_virtual()
{
abort();
}

207
cxxabi.h Normal file
View File

@ -0,0 +1,207 @@
#ifndef __CXXABI_H_
#define __CXXABI_H_
#include <stdint.h>
#include <unwind.h>
namespace std
{
class type_info;
}
/*
* The cxxabi.h header provides a set of public definitions for types and
* functions defined by the Itanium C++ ABI specification. For reference, see
* the ABI specification here:
*
* http://sourcery.mentor.com/public/cxx-abi/abi.html
*
* All deviations from this specification, unless otherwise noted, are
* accidental.
*/
#ifdef __cplusplus
namespace __cxxabiv1 {
extern "C" {
#endif
/**
* Function type to call when an unexpected exception is encountered.
*/
typedef void (*unexpected_handler)();
/**
* Function type to call when an unrecoverable condition is encountered.
*/
typedef void (*terminate_handler)();
/**
* Structure used as a header on thrown exceptions. This is the same layout as
* defined by the Itanium ABI spec, so should be interoperable with any other
* implementation of this spec, such as GNU libsupc++.
*
* This structure is allocated when an exception is thrown. Unwinding happens
* in two phases, the first looks for a handler and the second installs the
* context. This structure stores a cache of the handler location between
* phase 1 and phase 2. Unfortunately, cleanup information is not cached, so
* must be looked up in both phases. This happens for two reasons. The first
* is that we don't know how many frames containing cleanups there will be, and
* we should avoid dynamic allocation during unwinding (the exception may be
* reporting that we've run out of memory). The second is that finding
* cleanups is much cheaper than finding handlers, because we don't have to
* look at the type table at all.
*
* Note: Several fields of this structure have not-very-informative names.
* These are taken from the ABI spec and have not been changed to make it
* easier for people referring to to the spec while reading this code.
*/
struct __cxa_exception
{
#if __LP64__
/**
* Reference count. Used to support the C++11 exception_ptr class. This
* is prepended to the structure in 64-bit mode and squeezed in to the
* padding left before the 64-bit aligned _Unwind_Exception at the end in
* 32-bit mode.
*
* Note that it is safe to extend this structure at the beginning, rather
* than the end, because the public API for creating it returns the address
* of the end (where the exception object can be stored).
*/
uintptr_t referenceCount;
#endif
/** Type info for the thrown object. */
std::type_info *exceptionType;
/** Destructor for the object, if one exists. */
void (*exceptionDestructor) (void *);
/** Handler called when an exception specification is violated. */
unexpected_handler unexpectedHandler;
/** Hander called to terminate. */
terminate_handler terminateHandler;
/**
* Next exception in the list. If an exception is thrown inside a catch
* block and caught in a nested catch, this points to the exception that
* will be handled after the inner catch block completes.
*/
__cxa_exception *nextException;
/**
* The number of handlers that currently have references to this
* exception. The top (non-sign) bit of this is used as a flag to indicate
* that the exception is being rethrown, so should not be deleted when its
* handler count reaches 0 (which it doesn't with the top bit set).
*/
int handlerCount;
/**
* The selector value to be returned when installing the catch handler.
* Used at the call site to determine which catch() block should execute.
* This is found in phase 1 of unwinding then installed in phase 2.
*/
int handlerSwitchValue;
/**
* The action record for the catch. This is cached during phase 1
* unwinding.
*/
const char *actionRecord;
/**
* Pointer to the language-specific data area (LSDA) for the handler
* frame. This is unused in this implementation, but set for ABI
* compatibility in case we want to mix code in very weird ways.
*/
const char *languageSpecificData;
/** The cached landing pad for the catch handler.*/
void *catchTemp;
/**
* The pointer that will be returned as the pointer to the object. When
* throwing a class and catching a virtual superclass (for example), we
* need to adjust the thrown pointer to make it all work correctly.
*/
void *adjustedPtr;
#if !__LP64__
/**
* Reference count. Used to support the C++11 exception_ptr class. This
* is prepended to the structure in 64-bit mode and squeezed in to the
* padding left before the 64-bit aligned _Unwind_Exception at the end in
* 32-bit mode.
*
* Note that it is safe to extend this structure at the beginning, rather
* than the end, because the public API for creating it returns the address
* of the end (where the exception object can be stored)
*/
uintptr_t referenceCount;
#endif
/** The language-agnostic part of the exception header. */
_Unwind_Exception unwindHeader;
};
/**
* ABI-specified globals structure. Returned by the __cxa_get_globals()
* function and its fast variant. This is a per-thread structure - every
* thread will have one lazily allocated.
*
* This structure is defined by the ABI, so may be used outside of this
* library.
*/
struct __cxa_eh_globals
{
/**
* A linked list of exceptions that are currently caught. There may be
* several of these in nested catch() blocks.
*/
__cxa_exception *caughtExceptions;
/**
* The number of uncaught exceptions.
*/
unsigned int uncaughtExceptions;
};
/**
* ABI function returning the __cxa_eh_globals structure.
*/
__cxa_eh_globals *__cxa_get_globals(void);
/**
* Version of __cxa_get_globals() assuming that __cxa_get_globals() has already
* been called at least once by this thread.
*/
__cxa_eh_globals *__cxa_get_globals_fast(void);
/**
* Throws an exception returned by __cxa_current_primary_exception(). This
* exception may have been caught in another thread.
*/
void __cxa_rethrow_primary_exception(void* thrown_exception);
/**
* Returns the current exception in a form that can be stored in an
* exception_ptr object and then rethrown by a call to
* __cxa_rethrow_primary_exception().
*/
void *__cxa_current_primary_exception(void);
/**
* Increments the reference count of an exception. Called when an
* exception_ptr is copied.
*/
void __cxa_increment_exception_refcount(void* thrown_exception);
/**
* Decrements the reference count of an exception. Called when an
* exception_ptr is deleted.
*/
void __cxa_decrement_exception_refcount(void* thrown_exception);
/**
* Demangles a C++ symbol or type name. The buffer, if non-NULL, must be
* allocated with malloc() and must be *n bytes or more long. This function
* may call realloc() on the value pointed to by buf, and will return the
* length of the string via *n.
*
* The value pointed to by status is set to one of the following:
*
* 0: success
* -1: memory allocation failure
* -2: invalid mangled name
* -3: invalid arguments
*/
char* __cxa_demangle(const char* mangled_name,
char* buf,
size_t* n,
int* status);
#ifdef __cplusplus
} // extern "C"
} // namespace
namespace abi = __cxxabiv1;
#endif /* __cplusplus */
#endif /* __CXXABI_H_ */

1551
doxygen_config Normal file

File diff suppressed because it is too large Load Diff

451
dwarf_eh.h Normal file
View File

@ -0,0 +1,451 @@
/**
* dwarf_eh.h - Defines some helper functions for parsing DWARF exception
* handling tables.
*
* This file contains various helper functions that are independent of the
* language-specific code. It can be used in any personality function for the
* Itanium ABI.
*/
#include <assert.h>
// TODO: Factor out Itanium / ARM differences. We probably want an itanium.h
// and arm.h that can be included by this file depending on the target ABI.
// _GNU_SOURCE must be defined for unwind.h to expose some of the functions
// that we want. If it isn't, then we define it and undefine it to make sure
// that it doesn't impact the rest of the program.
#ifndef _GNU_SOURCE
# define _GNU_SOURCE 1
# include <unwind.h>
# undef _GNU_SOURCE
#else
# include <unwind.h>
#endif
#include <stdint.h>
/// Type used for pointers into DWARF data
typedef unsigned char *dw_eh_ptr_t;
// Flag indicating a signed quantity
#define DW_EH_PE_signed 0x08
/// DWARF data encoding types.
enum dwarf_data_encoding
{
/// Unsigned, little-endian, base 128-encoded (variable length).
DW_EH_PE_uleb128 = 0x01,
/// Unsigned 16-bit integer.
DW_EH_PE_udata2 = 0x02,
/// Unsigned 32-bit integer.
DW_EH_PE_udata4 = 0x03,
/// Unsigned 64-bit integer.
DW_EH_PE_udata8 = 0x04,
/// Signed, little-endian, base 128-encoded (variable length)
DW_EH_PE_sleb128 = DW_EH_PE_uleb128 | DW_EH_PE_signed,
/// Signed 16-bit integer.
DW_EH_PE_sdata2 = DW_EH_PE_udata2 | DW_EH_PE_signed,
/// Signed 32-bit integer.
DW_EH_PE_sdata4 = DW_EH_PE_udata4 | DW_EH_PE_signed,
/// Signed 32-bit integer.
DW_EH_PE_sdata8 = DW_EH_PE_udata8 | DW_EH_PE_signed
};
/**
* Returns the encoding for a DWARF EH table entry. The encoding is stored in
* the low four of an octet. The high four bits store the addressing mode.
*/
static inline enum dwarf_data_encoding get_encoding(unsigned char x)
{
return (enum dwarf_data_encoding)(x & 0xf);
}
/**
* DWARF addressing mode constants. When reading a pointer value from a DWARF
* exception table, you must know how it is stored and what the addressing mode
* is. The low four bits tell you the encoding, allowing you to decode a
* number. The high four bits tell you the addressing mode, allowing you to
* turn that number into an address in memory.
*/
enum dwarf_data_relative
{
/// Value is omitted
DW_EH_PE_omit = 0xff,
/// Absolute pointer value
DW_EH_PE_absptr = 0x00,
/// Value relative to program counter
DW_EH_PE_pcrel = 0x10,
/// Value relative to the text segment
DW_EH_PE_textrel = 0x20,
/// Value relative to the data segment
DW_EH_PE_datarel = 0x30,
/// Value relative to the start of the function
DW_EH_PE_funcrel = 0x40,
/// Aligned pointer (Not supported yet - are they actually used?)
DW_EH_PE_aligned = 0x50,
/// Pointer points to address of real value
DW_EH_PE_indirect = 0x80
};
/**
* Returns the addressing mode component of this encoding.
*/
static inline enum dwarf_data_relative get_base(unsigned char x)
{
return (enum dwarf_data_relative)(x & 0x70);
}
/**
* Returns whether an encoding represents an indirect address.
*/
static int is_indirect(unsigned char x)
{
return ((x & DW_EH_PE_indirect) == DW_EH_PE_indirect);
}
/**
* Returns the size of a fixed-size encoding. This function will abort if
* called with a value that is not a fixed-size encoding.
*/
static inline int dwarf_size_of_fixed_size_field(unsigned char type)
{
switch (get_encoding(type))
{
default: abort();
case DW_EH_PE_sdata2:
case DW_EH_PE_udata2: return 2;
case DW_EH_PE_sdata4:
case DW_EH_PE_udata4: return 4;
case DW_EH_PE_sdata8:
case DW_EH_PE_udata8: return 8;
case DW_EH_PE_absptr: return sizeof(void*);
}
}
/**
* Read an unsigned, little-endian, base-128, DWARF value. Updates *data to
* point to the end of the value. Stores the number of bits read in the value
* pointed to by b, allowing you to determine the value of the highest bit, and
* therefore the sign of a signed value.
*
* This function is not intended to be called directly. Use read_sleb128() or
* read_uleb128() for reading signed and unsigned versions, respectively.
*/
static uint64_t read_leb128(dw_eh_ptr_t *data, int *b)
{
uint64_t uleb = 0;
unsigned int bit = 0;
unsigned char digit = 0;
// We have to read at least one octet, and keep reading until we get to one
// with the high bit unset
do
{
// This check is a bit too strict - we should also check the highest
// bit of the digit.
assert(bit < sizeof(uint64_t) * 8);
// Get the base 128 digit
digit = (**data) & 0x7f;
// Add it to the current value
uleb += digit << bit;
// Increase the shift value
bit += 7;
// Proceed to the next octet
(*data)++;
// Terminate when we reach a value that does not have the high bit set
// (i.e. which was not modified when we mask it with 0x7f)
} while ((*(*data - 1)) != digit);
*b = bit;
return uleb;
}
/**
* Reads an unsigned little-endian base-128 value starting at the address
* pointed to by *data. Updates *data to point to the next byte after the end
* of the variable-length value.
*/
static int64_t read_uleb128(dw_eh_ptr_t *data)
{
int b;
return read_leb128(data, &b);
}
/**
* Reads a signed little-endian base-128 value starting at the address pointed
* to by *data. Updates *data to point to the next byte after the end of the
* variable-length value.
*/
static int64_t read_sleb128(dw_eh_ptr_t *data)
{
int bits;
// Read as if it's signed
uint64_t uleb = read_leb128(data, &bits);
// If the most significant bit read is 1, then we need to sign extend it
if ((uleb >> (bits-1)) == 1)
{
// Sign extend by setting all bits in front of it to 1
uleb |= ((int64_t)-1) << bits;
}
return (int64_t)uleb;
}
/**
* Reads a value using the specified encoding from the address pointed to by
* *data. Updates the value of *data to point to the next byte after the end
* of the data.
*/
static uint64_t read_value(char encoding, dw_eh_ptr_t *data)
{
enum dwarf_data_encoding type = get_encoding(encoding);
uint64_t v;
switch (type)
{
// Read fixed-length types
#define READ(dwarf, type) \
case dwarf:\
v = (uint64_t)(*(type*)(*data));\
*data += sizeof(type);\
break;
READ(DW_EH_PE_udata2, uint16_t)
READ(DW_EH_PE_udata4, uint32_t)
READ(DW_EH_PE_udata8, uint64_t)
READ(DW_EH_PE_sdata2, int16_t)
READ(DW_EH_PE_sdata4, int32_t)
READ(DW_EH_PE_sdata8, int64_t)
READ(DW_EH_PE_absptr, intptr_t)
#undef READ
// Read variable-length types
case DW_EH_PE_sleb128:
v = read_sleb128(data);
break;
case DW_EH_PE_uleb128:
v = read_uleb128(data);
break;
default: abort();
}
return v;
}
/**
* Resolves an indirect value. This expects an unwind context, an encoding, a
* decoded value, and the start of the region as arguments. The returned value
* is a pointer to the address identified by the encoded value.
*
* If the encoding does not specify an indirect value, then this returns v.
*/
static uint64_t resolve_indirect_value(_Unwind_Context *c,
unsigned char encoding,
int64_t v,
dw_eh_ptr_t start)
{
switch (get_base(encoding))
{
case DW_EH_PE_pcrel:
v += (uint64_t)start;
break;
case DW_EH_PE_textrel:
v += (uint64_t)_Unwind_GetTextRelBase(c);
break;
case DW_EH_PE_datarel:
v += (uint64_t)_Unwind_GetDataRelBase(c);
break;
case DW_EH_PE_funcrel:
v += (uint64_t)_Unwind_GetRegionStart(c);
default:
break;
}
// If this is an indirect value, then it is really the address of the real
// value
// TODO: Check whether this should really always be a pointer - it seems to
// be a GCC extensions, so not properly documented...
if (is_indirect(encoding))
{
v = (uint64_t)(uintptr_t)*(void**)v;
}
return v;
}
/**
* Reads an encoding and a value, updating *data to point to the next byte.
*/
static inline void read_value_with_encoding(_Unwind_Context *context,
dw_eh_ptr_t *data,
uint64_t *out)
{
dw_eh_ptr_t start = *data;
unsigned char encoding = *((*data)++);
// If this value is omitted, skip it and don't touch the output value
if (encoding == DW_EH_PE_omit) { return; }
*out = read_value(encoding, data);
*out = resolve_indirect_value(context, encoding, *out, start);
}
/**
* Structure storing a decoded language-specific data area. Use parse_lsda()
* to generate an instance of this structure from the address returned by the
* generic unwind library.
*
* You should not need to inspect the fields of this structure directly if you
* are just using this header. The structure stores the locations of the
* various tables used for unwinding exceptions and is used by the functions
* for reading values from these tables.
*/
struct dwarf_eh_lsda
{
/// The start of the region. This is a cache of the value returned by
/// _Unwind_GetRegionStart().
dw_eh_ptr_t region_start;
/// The start of the landing pads table.
dw_eh_ptr_t landing_pads;
/// The start of the type table.
dw_eh_ptr_t type_table;
/// The encoding used for entries in the type tables.
unsigned char type_table_encoding;
/// The location of the call-site table.
dw_eh_ptr_t call_site_table;
/// The location of the action table.
dw_eh_ptr_t action_table;
/// The encoding used for entries in the call-site table.
unsigned char callsite_encoding;
};
/**
* Parse the header on the language-specific data area and return a structure
* containing the addresses and encodings of the various tables.
*/
static inline struct dwarf_eh_lsda parse_lsda(_Unwind_Context *context,
unsigned char *data)
{
struct dwarf_eh_lsda lsda;
lsda.region_start = (dw_eh_ptr_t)(uintptr_t)_Unwind_GetRegionStart(context);
// If the landing pads are relative to anything other than the start of
// this region, find out where. This is @LPStart in the spec, although the
// encoding that GCC uses does not quite match the spec.
uint64_t v = (uint64_t)(uintptr_t)lsda.region_start;
read_value_with_encoding(context, &data, &v);
lsda.landing_pads = (dw_eh_ptr_t)(uintptr_t)v;
// If there is a type table, find out where it is. This is @TTBase in the
// spec. Note: we find whether there is a type table pointer by checking
// whether the leading byte is DW_EH_PE_omit (0xff), which is not what the
// spec says, but does seem to be how G++ indicates this.
lsda.type_table = 0;
lsda.type_table_encoding = *data++;
if (lsda.type_table_encoding != DW_EH_PE_omit)
{
v = read_uleb128(&data);
dw_eh_ptr_t type_table = data;
type_table += v;
lsda.type_table = type_table;
//lsda.type_table = (uintptr_t*)(data + v);
}
lsda.callsite_encoding = (enum dwarf_data_encoding)(*(data++));
// Action table is immediately after the call site table
lsda.action_table = data;
uintptr_t callsite_size = (uintptr_t)read_uleb128(&data);
lsda.action_table = data + callsite_size;
// Call site table is immediately after the header
lsda.call_site_table = (dw_eh_ptr_t)data;
return lsda;
}
/**
* Structure representing an action to be performed while unwinding. This
* contains the address that should be unwound to and the action record that
* provoked this action.
*/
struct dwarf_eh_action
{
/**
* The address that this action directs should be the new program counter
* value after unwinding.
*/
dw_eh_ptr_t landing_pad;
/// The address of the action record.
dw_eh_ptr_t action_record;
};
/**
* Look up the landing pad that corresponds to the current invoke.
* Returns true if record exists. The context is provided by the generic
* unwind library and the lsda should be the result of a call to parse_lsda().
*
* The action record is returned via the result parameter.
*/
static bool dwarf_eh_find_callsite(struct _Unwind_Context *context,
struct dwarf_eh_lsda *lsda,
struct dwarf_eh_action *result)
{
result->action_record = 0;
result->landing_pad = 0;
// The current instruction pointer offset within the region
uint64_t ip = _Unwind_GetIP(context) - _Unwind_GetRegionStart(context);
unsigned char *callsite_table = (unsigned char*)lsda->call_site_table;
while (callsite_table <= lsda->action_table)
{
// Once again, the layout deviates from the spec.
uint64_t call_site_start, call_site_size, landing_pad, action;
call_site_start = read_value(lsda->callsite_encoding, &callsite_table);
call_site_size = read_value(lsda->callsite_encoding, &callsite_table);
// Call site entries are sorted, so if we find a call site that's after
// the current instruction pointer then there is no action associated
// with this call and we should unwind straight through this frame
// without doing anything.
if (call_site_start > ip) { break; }
// Read the address of the landing pad and the action from the call
// site table.
landing_pad = read_value(lsda->callsite_encoding, &callsite_table);
action = read_uleb128(&callsite_table);
// We should not include the call_site_start (beginning of the region)
// address in the ip range. For each call site:
//
// address1: call proc
// address2: next instruction
//
// The call stack contains address2 and not address1, address1 can be
// at the end of another EH region.
if (call_site_start < ip && ip <= call_site_start + call_site_size)
{
if (action)
{
// Action records are 1-biased so both no-record and zeroth
// record can be stored.
result->action_record = lsda->action_table + action - 1;
}
// No landing pad means keep unwinding.
if (landing_pad)
{
// Landing pad is the offset from the value in the header
result->landing_pad = lsda->landing_pads + landing_pad;
}
return true;
}
}
return false;
}
/// Defines an exception class from 8 bytes (endian independent)
#define EXCEPTION_CLASS(a,b,c,d,e,f,g,h) \
(((uint64_t)a << 56) +\
((uint64_t)b << 48) +\
((uint64_t)c << 40) +\
((uint64_t)d << 32) +\
((uint64_t)e << 24) +\
((uint64_t)f << 16) +\
((uint64_t)g << 8) +\
((uint64_t)h))
#define GENERIC_EXCEPTION_CLASS(e,f,g,h) \
((uint32_t)e << 24) +\
((uint32_t)f << 16) +\
((uint32_t)g << 8) +\
((uint32_t)h)

133
dynamic_cast.cc Normal file
View File

@ -0,0 +1,133 @@
#include "typeinfo.h"
#include <stdio.h>
using namespace ABI_NAMESPACE;
/**
* Vtable header.
*/
struct vtable_header
{
/** Offset of the leaf object. */
ptrdiff_t leaf_offset;
/** Type of the object. */
const __class_type_info *type;
};
/**
* Simple macro that does pointer arithmetic in bytes but returns a value of
* the same type as the original.
*/
#define ADD_TO_PTR(x, off) (__typeof__(x))(((char*)x) + off)
bool __class_type_info::can_cast_to(const struct __class_type_info *other) const
{
return this == other;
}
void *__class_type_info::cast_to(void *obj, const struct __class_type_info *other) const
{
if (this == other)
{
return obj;
}
return 0;
}
bool __si_class_type_info::can_cast_to(const struct __class_type_info *other) const
{
return this == other || __base_type->can_cast_to(other);
}
void *__si_class_type_info::cast_to(void *obj, const struct __class_type_info *other) const
{
if (this == other)
{
return obj;
}
return __base_type->cast_to(obj, other);
}
bool __vmi_class_type_info::can_cast_to(const struct __class_type_info *other) const
{
if (this == other)
{
return true;
}
for (unsigned int i=0 ; i<__base_count ; i++)
{
const __base_class_type_info *info = &__base_info[i];
if(info->isPublic() && info->__base_type->can_cast_to(other))
{
return true;
}
}
return false;
}
void *__vmi_class_type_info::cast_to(void *obj, const struct __class_type_info *other) const
{
if (this == other)
{
return obj;
}
for (unsigned int i=0 ; i<__base_count ; i++)
{
const __base_class_type_info *info = &__base_info[i];
ptrdiff_t offset = info->offset();
// If this is a virtual superclass, the offset is stored in the
// object's vtable at the offset requested; 2.9.5.6.c:
//
// 'For a non-virtual base, this is the offset in the object of the
// base subobject. For a virtual base, this is the offset in the
// virtual table of the virtual base offset for the virtual base
// referenced (negative).'
if (info->isVirtual())
{
// Object's vtable
ptrdiff_t *off = *(ptrdiff_t**)obj;
// Offset location in vtable
off = ADD_TO_PTR(off, offset);
offset = *off;
}
void *cast = ADD_TO_PTR(obj, offset);
if (info->__base_type == other)
{
return cast;
}
if ((cast = info->__base_type->cast_to(cast, other)))
{
return cast;
}
}
return 0;
}
/**
* ABI function used to implement the dynamic_cast<> operator. Some cases of
* this operator are implemented entirely in the compiler (e.g. to void*).
* This function implements the dynamic casts of the form dynamic_cast<T>(v).
* This will be translated to a call to this function with the value v as the
* first argument. The type id of the static type of v is the second argument
* and the type id of the destination type (T) is the third argument.
*
* The third argument is a hint about the compiler's guess at the correct
* pointer offset. If this value is negative, then -1 indicates no hint, -2
* that src is not a public base of dst, and -3 that src is a multiple public
* base type but never a virtual base type
*/
extern "C" void* __dynamic_cast(const void *sub,
const __class_type_info *src,
const __class_type_info *dst,
ptrdiff_t src2dst_offset)
{
char *vtable_location = *(char**)sub;
const vtable_header *header =
(const vtable_header*)(vtable_location - sizeof(vtable_header));
void *leaf = ADD_TO_PTR((void*)sub, header->leaf_offset);
return header->type->cast_to(leaf, dst);
}

1283
exception.cc Normal file

File diff suppressed because it is too large Load Diff

80
guard.cc Normal file
View File

@ -0,0 +1,80 @@
/**
* guard.cc: Functions for thread-safe static initialisation.
*
* Static values in C++ can be initialised lazily their first use. This file
* contains functions that are used to ensure that two threads attempting to
* initialize the same static do not call the constructor twice. This is
* important because constructors can have side effects, so calling the
* constructor twice may be very bad.
*
* Statics that require initialisation are protected by a 64-bit value. Any
* platform that can do 32-bit atomic test and set operations can use this
* value as a low-overhead lock. Because statics (in most sane code) are
* accessed far more times than they are initialised, this lock implementation
* is heavily optimised towards the case where the static has already been
* initialised.
*/
#include <stdint.h>
#include <pthread.h>
/**
* Returns a pointer to the low 32 bits in a 64-bit value, respecting the
* platform's byte order.
*/
static int32_t *low_32_bits(volatile int64_t *ptr)
{
int32_t *low= (int32_t*)ptr;
// Test if the machine is big endian - constant propagation at compile time
// should eliminate this completely.
int one = 1;
if (*(char*)&one != 1)
{
low++;
}
return low;
}
/**
* Acquires a lock on a guard, returning 0 if the object has already been
* initialised, and 1 if it has not. If the object is already constructed then
* this function just needs to read a byte from memory and return.
*/
extern "C" int __cxa_guard_acquire(volatile int64_t *guard_object)
{
char first_byte = (*guard_object) >> 56;
if (1 == first_byte) { return 0; }
int32_t *lock = low_32_bits(guard_object);
// Simple spin lock using the low 32 bits. We assume that concurrent
// attempts to initialize statics are very rare, so we don't need to
// optimise for the case where we have lots of threads trying to acquire
// the lock at the same time.
while (!__sync_bool_compare_and_swap_4(lock, 0, 1))
{
sched_yield();
}
// We have to test the guard again, in case another thread has performed
// the initialisation while we were trying to acquire the lock.
first_byte = (*guard_object) >> 56;
return (1 != first_byte);
}
/**
* Releases the lock without marking the object as initialised. This function
* is called if initialising a static causes an exception to be thrown.
*/
extern "C" void __cxa_guard_abort(int64_t *guard_object)
{
int32_t *lock = low_32_bits(guard_object);
*lock = 0;
}
/**
* Releases the guard and marks the object as initialised. This function is
* called after successful initialisation of a static.
*/
extern "C" void __cxa_guard_release(int64_t *guard_object)
{
// Set the first byte to 1
*guard_object |= ((int64_t)1) << 56;
__cxa_guard_abort(guard_object);
}

3473
libelftc_dem_gnu3.c Normal file

File diff suppressed because it is too large Load Diff

111
memory.cc Normal file
View File

@ -0,0 +1,111 @@
/**
* memory.cc - Contains stub definition of C++ new/delete operators.
*
* These definitions are intended to be used for testing and are weak symbols
* to allow them to be replaced by definitions from a STL implementation.
* These versions simply wrap malloc() and free(), they do not provide a
* C++-specific allocator.
*/
#include <stddef.h>
#include <stdlib.h>
#include "stdexcept.h"
namespace std
{
struct nothrow_t {};
}
/// The type of the function called when allocation fails.
typedef void (*new_handler)();
/**
* The function to call when allocation fails. By default, there is no
* handler and a bad allocation exception is thrown if an allocation fails.
*/
static new_handler new_handl;
namespace std
{
/**
* Sets a function to be called when there is a failure in new.
*/
__attribute__((weak))
new_handler set_new_handler(new_handler handler)
{
return __sync_lock_test_and_set(&new_handl, handler);
}
}
__attribute__((weak))
void* operator new(size_t size)
{
void * mem = malloc(size);
while (0 == mem)
{
if (0 != new_handl)
{
new_handl();
}
else
{
throw std::bad_alloc();
}
mem = malloc(size);
}
return mem;
}
__attribute__((weak))
void* operator new(size_t size, const std::nothrow_t &) throw()
{
void *mem = malloc(size);
while (0 == mem)
{
if (0 != new_handl)
{
try
{
new_handl();
}
catch (...)
{
// nothrow operator new should return NULL in case of
// std::bad_alloc exception in new handler
return NULL;
}
}
else
{
return NULL;
}
mem = malloc(size);
}
return mem;
}
__attribute__((weak))
void operator delete(void * ptr)
{
free(ptr);
}
__attribute__((weak))
void * operator new[](size_t size)
{
return ::operator new(size);
}
__attribute__((weak))
void operator delete[](void * ptr)
{
::operator delete(ptr);
}

60
stdexcept.cc Normal file
View File

@ -0,0 +1,60 @@
/**
* stdexcept.cc - provides stub implementations of the exceptions required by the runtime.
*/
#include "stdexcept.h"
namespace std {
exception::exception() throw() {}
exception::~exception() {}
exception::exception(const exception&) throw() {}
exception& exception::operator=(const exception&) throw()
{
return *this;
}
const char* exception::what() const throw()
{
return "std::exception";
}
bad_alloc::bad_alloc() throw() {}
bad_alloc::~bad_alloc() {}
bad_alloc::bad_alloc(const bad_alloc&) throw() {}
bad_alloc& bad_alloc::operator=(const bad_alloc&) throw()
{
return *this;
}
const char* bad_alloc::what() const throw()
{
return "cxxrt::bad_alloc";
}
bad_cast::bad_cast() throw() {}
bad_cast::~bad_cast() {}
bad_cast::bad_cast(const bad_cast&) throw() {}
bad_cast& bad_cast::operator=(const bad_cast&) throw()
{
return *this;
}
const char* bad_cast::what() const throw()
{
return "std::bad_cast";
}
bad_typeid::bad_typeid() throw() {}
bad_typeid::~bad_typeid() {}
bad_typeid::bad_typeid(const bad_typeid &__rhs) throw() {}
bad_typeid& bad_typeid::operator=(const bad_typeid &__rhs) throw()
{
return *this;
}
const char* bad_typeid::what() const throw()
{
return "std::bad_typeid";
}
} // namespace std

61
stdexcept.h Normal file
View File

@ -0,0 +1,61 @@
/**
* stdexcept.h - provides a stub version of <stdexcept>, which defines enough
* of the exceptions for the runtime to use.
*/
namespace std
{
class exception
{
public:
exception() throw();
exception(const exception&) throw();
exception& operator=(const exception&) throw();
virtual ~exception();
virtual const char* what() const throw();
};
/**
* Bad allocation exception. Thrown by ::operator new() if it fails.
*/
class bad_alloc: public exception
{
public:
bad_alloc() throw();
bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();
~bad_alloc();
virtual const char* what() const throw();
};
/**
* Bad cast exception. Thrown by the __cxa_bad_cast() helper function.
*/
class bad_cast: public exception {
public:
bad_cast() throw();
bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();
virtual ~bad_cast();
virtual const char* what() const throw();
};
/**
* Bad typeidexception. Thrown by the __cxa_bad_typeid() helper function.
*/
class bad_typeid: public exception
{
public:
bad_typeid() throw();
bad_typeid(const bad_typeid &__rhs) throw();
virtual ~bad_typeid();
bad_typeid& operator=(const bad_typeid &__rhs) throw();
virtual const char* what() const throw();
};
} // namespace std

14
terminate.cc Normal file
View File

@ -0,0 +1,14 @@
#include <stdlib.h>
namespace std
{
/**
* Stub implementation of std::terminate. Used when the STL implementation
* doesn't provide one.
*/
__attribute__((weak))
void terminate()
{
abort();
}
}

26
typeinfo Normal file
View File

@ -0,0 +1,26 @@
namespace std
{
/**
* Standard type info class. The layout of this class is specified by the
* ABI.
*/
class type_info
{
public:
/**
* Virtual destructor. This class must have one virtual function to
* ensure that it has a vtable.
*/
virtual ~type_info();
bool operator==(const type_info &) const;
bool operator!=(const type_info &) const;
bool before(const type_info &) const;
const char* name() const;
type_info();
private:
type_info(const type_info& rhs);
type_info& operator= (const type_info& rhs);
const char *__type_name;
};
}

83
typeinfo.cc Normal file
View File

@ -0,0 +1,83 @@
#include "typeinfo.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
using std::type_info;
type_info::~type_info() {}
bool type_info::operator==(const type_info &other) const
{
return __type_name == other.__type_name;
}
bool type_info::operator!=(const type_info &other) const
{
return __type_name != other.__type_name;
}
bool type_info::before(const type_info &other) const
{
return __type_name < other.__type_name;
}
const char* type_info::name() const
{
return __type_name;
}
type_info::type_info (const type_info& rhs)
{
__type_name = rhs.__type_name;
}
type_info& type_info::operator= (const type_info& rhs)
{
return *new type_info(rhs);
}
ABI_NAMESPACE::__fundamental_type_info::~__fundamental_type_info() {}
ABI_NAMESPACE::__array_type_info::~__array_type_info() {}
ABI_NAMESPACE::__function_type_info::~__function_type_info() {}
ABI_NAMESPACE::__enum_type_info::~__enum_type_info() {}
ABI_NAMESPACE::__class_type_info::~__class_type_info() {}
ABI_NAMESPACE::__si_class_type_info::~__si_class_type_info() {}
ABI_NAMESPACE::__vmi_class_type_info::~__vmi_class_type_info() {}
ABI_NAMESPACE::__pbase_type_info::~__pbase_type_info() {}
ABI_NAMESPACE::__pointer_type_info::~__pointer_type_info() {}
ABI_NAMESPACE::__pointer_to_member_type_info::~__pointer_to_member_type_info() {}
// From libelftc
extern "C" char *__cxa_demangle_gnu3(const char *);
extern "C" char* __cxa_demangle(const char* mangled_name,
char* buf,
size_t* n,
int* status)
{
// TODO: We should probably just be linking against libelf-tc, rather than
// copying their code. This requires them to do an actual release,
// however, and for our changes to be pushed upstream. We also need to
// call a different demangling function here depending on the ABI (e.g.
// ARM).
char *demangled = __cxa_demangle_gnu3(mangled_name);
if (NULL != demangled)
{
size_t len = strlen(demangled);
buf = (char*)realloc(buf, len+1);
if (0 != buf)
{
memcpy(buf, demangled, len);
buf[len] = 0;
*n = len;
*status = 0;
}
else
{
*status = -1;
}
free(demangled);
}
else
{
*status = -2;
return NULL;
}
return buf;
}

200
typeinfo.h Normal file
View File

@ -0,0 +1,200 @@
#include <stddef.h>
#include "abi_namespace.h"
#include "typeinfo"
namespace ABI_NAMESPACE
{
/**
* Primitive type info, for intrinsic types.
*/
struct __fundamental_type_info : public std::type_info
{
virtual ~__fundamental_type_info();
};
/**
* Type info for arrays.
*/
struct __array_type_info : public std::type_info
{
virtual ~__array_type_info();
};
/**
* Type info for functions.
*/
struct __function_type_info : public std::type_info
{
virtual ~__function_type_info();
};
/**
* Type info for enums.
*/
struct __enum_type_info : public std::type_info
{
virtual ~__enum_type_info();
};
/**
* Base class for class type info. Used only for tentative definitions.
*/
struct __class_type_info : public std::type_info
{
virtual ~__class_type_info();
/**
* Function implementing dynamic casts.
*/
virtual void *cast_to(void *obj,
const struct __class_type_info *other) const;
/**
* Function returning whether a cast from this type to another type is
* possible.
*/
virtual bool can_cast_to(const struct __class_type_info *other) const;
};
/**
* Single-inheritance class type info. This is used for classes containing
* a single non-virtual base class at offset 0.
*/
struct __si_class_type_info : public __class_type_info
{
virtual ~__si_class_type_info();
const __class_type_info *__base_type;
virtual void *cast_to(void *obj, const struct __class_type_info *other) const;
virtual bool can_cast_to(const struct __class_type_info *other) const;
};
/**
* Type info for base classes. Classes with multiple bases store an array
* of these, one for each superclass.
*/
struct __base_class_type_info
{
const __class_type_info *__base_type;
private:
/**
* The high __offset_shift bits of this store the (signed) offset
* of the base class. The low bits store flags from
* __offset_flags_masks.
*/
long __offset_flags;
/**
* Flags used in the low bits of __offset_flags.
*/
enum __offset_flags_masks
{
/** This base class is virtual. */
__virtual_mask = 0x1,
/** This base class is public. */
__public_mask = 0x2,
/** The number of bits reserved for flags. */
__offset_shift = 8
};
public:
/**
* Returns the offset of the base class.
*/
long offset() const
{
return __offset_flags >> __offset_shift;
}
/**
* Returns the flags.
*/
long flags() const
{
return __offset_flags & ((1 << __offset_shift) - 1);
}
/**
* Returns whether this is a public base class.
*/
bool isPublic() const { return flags() & __public_mask; }
/**
* Returns whether this is a virtual base class.
*/
bool isVirtual() const { return flags() & __virtual_mask; }
};
/**
* Type info for classes with virtual bases or multiple superclasses.
*/
struct __vmi_class_type_info : public __class_type_info
{
virtual ~__vmi_class_type_info();
/** Flags describing this class. Contains values from __flags_masks. */
unsigned int __flags;
/** The number of base classes. */
unsigned int __base_count;
/**
* Array of base classes - this actually has __base_count elements, not
* 1.
*/
__base_class_type_info __base_info[1];
/**
* Flags used in the __flags field.
*/
enum __flags_masks
{
/** The class has non-diamond repeated inheritance. */
__non_diamond_repeat_mask = 0x1,
/** The class is diamond shaped. */
__diamond_shaped_mask = 0x2
};
virtual void *cast_to(void *obj, const struct __class_type_info *other) const;
virtual bool can_cast_to(const struct __class_type_info *other) const;
};
/**
* Base class used for both pointer and pointer-to-member type info.
*/
struct __pbase_type_info : public std::type_info
{
virtual ~__pbase_type_info();
/**
* Flags. Values from __masks.
*/
unsigned int __flags;
/**
* The type info for the pointee.
*/
const std::type_info *__pointee;
/**
* Masks used for qualifiers on the pointer.
*/
enum __masks
{
/** Pointer has const qualifier. */
__const_mask = 0x1,
/** Pointer has volatile qualifier. */
__volatile_mask = 0x2,
/** Pointer has restrict qualifier. */
__restrict_mask = 0x4,
/** Pointer points to an incomplete type. */
__incomplete_mask = 0x8,
/** Pointer is a pointer to a member of an incomplete class. */
__incomplete_class_mask = 0x10
};
};
/**
* Pointer type info.
*/
struct __pointer_type_info : public __pbase_type_info
{
virtual ~__pointer_type_info();
};
/**
* Pointer to member type info.
*/
struct __pointer_to_member_type_info : public __pbase_type_info
{
virtual ~__pointer_to_member_type_info();
/**
* Pointer to the class containing this member.
*/
const __class_type_info *__context;
};
}