1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-15 15:06:42 +00:00

Virgin import of GCC 2.95.1's libstdc++

This commit is contained in:
David E. O'Brien 1999-10-16 03:52:48 +00:00
parent b50366c383
commit 7b57a2734b
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/vendor/gcc/dist/; revision=52277
88 changed files with 19814 additions and 11268 deletions

View File

@ -1,17 +1,272 @@
Sun Mar 14 02:38:07 PST 1999 Jeff Law (law@cygnus.com)
Mon Aug 16 01:29:24 PDT 1999 Jeff Law (law@cygnus.com)
* egcs-1.1.2 Released.
* gcc-2.95.1 Released.
Thu Feb 25 02:21:22 1999 Jeffrey A Law (law@cygnus.com)
Thu Aug 5 02:00:13 1999 Loren Rittle <ljrittle@acm.org>
* Makefile.in (MARLINK, MSHLINK): Handle library version
number components with more than one numeric digit.
Mon Aug 2 00:40:10 1999 Jeffrey A Law (law@cygnus.com)
1999-07-16 Markus Gyger (mgyger@gmu.edu)
* stdexcepti.cc (__out_of_range): Use std:: qualifier for names
in std.
(__length_error): Likewise.
Wed Jul 28 21:39:31 PDT 1999 Jeff Law (law@cygnus.com)
* gcc-2.95 Released.
Sun Jul 25 23:40:51 PDT 1999 Jeff Law (law@cygnus.com)
* gcc-2.95 Released.
Sat Jul 17 23:49:59 1999 Jeffrey A Law (law@cygnus.com)
* Makefile.in (INTERFACE): Bump to 3.
Fri Jul 9 01:20:23 1999 Jeffrey A Law (law@cygnus.com)
* Makefile.in (VERSION): Bump to 2.10.0.
Tue Jun 8 00:21:11 1999 Jeffrey A Law (law@cygnus.com)
* configure.in (*-*-freebsd2*): Add missing '*' at end of configure
string.
1999-06-05 Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
* std/std_valarray.h: Don't #include unconditionally <alloca.h>
1999-06-05 Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
* std/std_valarray.h: New file.
* std/slice.h: New file.
* std/slice_array.h: New file.
* std/gslice.h: New file.
* std/gslice_array.h: New file.
* std/mask_array.h: New file.
* std/indirect_array.h: New file.
* std/valarray_array.h: New file.
* std/valarray_array.tcc: New file.
* std/valarray_meta.h: New file.
* valarray.cc: New file.
* valarray: New file
* Makefile.in (OBJS): add valarray.o
(HEADERS): add valarray
(valarray.o): define dependency on valarray.cc
(install): make it possible to install valarray file.
Wed Jun 2 00:21:54 1999 Robert Lipe <robertlipe@usa.net>
* std/bastring.h (class basic_string:Rep): Encode xlock opcode
as .bytes instead of mnemonics.
1999-05-20 Angela Marie Thomas <angela@cygnus.com>
* configure.in: Test for ${compiler_name}.exe as well.
1999-05-15 Mark Kettenis <kettenis@gnu.org>
* configure.in: Add shared library support for the Hurd
(*-*-gnu*).
* config/gnu.ml: New file.
1999-05-12 Jason Merrill <jason@yorick.cygnus.com>
* configure.in (compiler_name): Don't do the skip-this-dir thing
if we're reconfiguring.
1999-05-07 Ulrich Drepper <drepper@cygnus.com>
* std/bastring.h (class basic_string::Rep): Make release member
function thread-safe for ix86 (x>=4) and UltraSPARC.
* stlinst.cc: Make it possible to compile with __USE_MALLOC.
Mon Apr 26 02:24:47 1999 "Loren J. Rittle" <rittle@supra.rsch.comm.mot.com>
* config/freebsd.ml (LIBS): Add ARLINK.
* config/openbsd.ml (LIBS): Add ARLINK.
Fri Apr 2 15:12:14 1999 H.J. Lu (hjl@gnu.org)
* libstdc++/configure.in (gxx_include_dir): Handle it.
* libstdc++/Makefile.in: Likewise.
Wed Mar 24 22:36:45 1999 Mumit Khan <khan@xraylith.wisc.edu>
* configure.in (EXEEXT): Define.
(compiler_name): Use.
Thu Mar 11 01:07:55 1999 Franz Sirl <Franz.Sirl-kernel@lauterbach.com>
* configure.in: Add mh-*pic handling for alpha, arm, powerpc
Fri Mar 5 02:16:39 1999 Doug Rabson <dfr@freebsd.org>
* configure.in: Support shared libs on FreeBSD 3.x and 4.x
* config/freebsd.ml: A copy of config/linux.ml since they are both
ELF and both have a shared libm.
1999-02-24 Jason Merrill <jason@yorick.cygnus.com>
* configure.in: Fix INSTALLDIR sed pattern for Solaris sed.
Sat Feb 20 13:17:17 1999 Jeffrey A Law (law@cygnus.com)
* string, std/straits.h, std/bastring.h: Revert recent change. Needs
some libiberty support before it can be re-enabled.
Thu Feb 18 19:53:17 1999 Marc Espie <espie@cvs.openbsd.org>
Thu Feb 18 19:53:17 1999 Marc Espie <espie@cvs.openbsd.org>
* configure.in: Handle OpenBSD with and without threads.
* config/openbsd.ml: New file.
* config/openbsd.mt: New file.
Mon Nov 23 09:44:26 1998 Richard Henderson <rth@cygnus.com>
1999-02-04 Ulrich Drepper <drepper@cygnus.com>
* configure.in: Append mh-ppcpic and mh-elfalphapic as appropriate.
* configure.in: Recognize --enable-threads=posix for all
platforms.
* config/posix.mt: New file.
* configure.in: Add fragments for Solaris defining macro specifying
thread library to be used.
* config/sol2pth.mt: New file
* config/sol2solth.mt: New file.
* stl/stl_alloc.h: Add support for Solaris thread library.
* stl/stl_config.h: Recognize _SOLTHREADS and define internal macros
appropriately.
1999-01-28 Baron Roberts <baron@sgi.com>
* string: Uncomment wstring declaration.
* std/straits.h: Remove #if 0/#endif from around
struct string_char_traits <wchar_t>.
#include <cwchar>.
Add missing definition for wchar_t move method.
Add empty() method for trait-based empty string return.
* std/bastring.h (c_str): Change return of "" to return of
traits::empty() call so that proper empty string is returned
based on the character type (i.e. "" or L"").
1999-02-07 Jason Merrill <jason@yorick.cygnus.com>
* Makefile.in (stuff2): Tweak.
1999-02-04 Ulrich Drepper <drepper@cygnus.com>
* configure.in: Recognize --enable-threads=posix for all
platforms.
* config/posix.mt: New file.
* configure.in: Add fragments for Solaris defining macro specifying
thread library to be used.
* config/sol2pth.mt: New file
* config/sol2solth.mt: New file.
* stl/stl_alloc.h: Add support for Solaris thread library.
* stl/stl_config.h: Recognize _SOLTHREADS and define internal macros
appropriately.
Sat Jan 30 08:05:46 1999 Mumit Khan <khan@xraylith.wisc.edu>
* config/x86-interix.ml: New file.
* configure.in (i[3456]86-*-interix*): Add shared library support.
1999-01-13 Ulrich Drepper <drepper@cygnus.com>
* configure.in: Test for "ln -s" and set LN_S in generated Makefile.
* Makefile.in: Use $(LN_S) instead of explicitly ln -s.
Sun Jan 03 03:16:02 1999 Robert Lipe <robertlipe@usa.net>
* configure.in: (*-*-sysv5, *-*-*udk*): Treat like sysv4.
Tue Dec 8 00:59:09 1998 Marc Espie <Marc.Espie@liafa.jussieu.fr>
* Makefile.in: Be more selective about what files to install.
1998-11-30 Ulrich Drepper <drepper@cygnus.com>
* std/bastring.cc (operator>>): Correct cast in last patch.
(getline): Likewise.
1998-11-27 Alexandre Oliva <oliva@dcc.unicamp.br>
* Makefile.in (HEADERS): Install bitset.
1998-11-26 Manfred Hollstein <manfred@s-direktnet.de>
* configure.in (compiler_name): Add check to detect if this
language's compiler has been built.
1998-11-23 Ulrich Drepper <drepper@cygnus.com>
* std/bastring.cc (operator>>): Cast new character to char before
adding to string.
(getline): Likewise.
Thu Sep 17 01:29:46 1998 H.J. Lu (hjl@gnu.org)
* Makefile.in ($(ARLINK), $(SHLINK)): Don't rely on 'ln -f'.
* Makefile.in (install): Don't rely on 'ln -f'.
1998-09-09 Manfred Hollstein <manfred@s-direktnet.de>
* Makefile.in (install): Initialize RELINSTALLDIR correctly
even for multilib and cross configurations.
* configure.in (INSTALLDIR): Don't change INSTALLDIR's init
value if --enable-version-specific-runtime-libs has been specified.
Wed Sep 2 21:11:15 1998 H.J. Lu (hjl@gnu.org)
* Makefile.in (RELINSTALLDIR): New. Use it to make symlinks.
* configure.in: Fix INSTALLDIR replacement for cross-compile.
Sun Aug 30 22:17:41 1998 H.J. Lu (hjl@gnu.org)
* Makefile.in (INTERFACE): New, set to 2.
(ARLIB): Set to libstdc++.a.$(VERSION)
(ARLINK, MARLINK): New macros.
(LIBS): Add $(ARLINK).
($(ARLINK), marlink): New targets.
(install): Don't check $(libsubdir). Handle versioned libraries.
* config/linux.ml (ARLIB, MARLINK, SHLIB, MSHLINK): New macros.
(LIBS): Add marlink $(ARLINK).
* config/aix.ml (ARLIB): Set to libstdc++-ar.a.$(VERSION)
(ARLINK): New macros.
(BUILD_LIBS): Add $(ARLINK).
* config/dec-osf.ml (LIBS): Add $(ARLINK).
* config/elf.ml (LIBS): Likewise.
* config/elfshlibm.ml (LIBS): Likewise.
* config/hpux.ml (LIBS): Likewise.
* config/iris5.ml (LIBS): Likewise.
* config/sol2shm.ml (LIBS): Likewise.
* config/sunos4.ml (LIBS): Likewise.
* configure.in: Use ${topsrcdir}/config.if to put
LIBSTDCXX_INTERFACE, CXX_INTERFACE, LIBC_INTERFACE in
${package_makefile_frag}.
1998-08-25 Martin von Löwis <loewis@informatik.hu-berlin.de>
* stdexcept: Remove __HONOR_STD.
1998-08-23 Mark Mitchell <mark@markmitchell.com>
* sinst.cc: Don't explicitly instantiation string_char_traits<char>.
* cinst.cc: Likewiwse, for complex<float>, complex<double>,
complex<long double>.
1998-08-17 Mark Mitchell <mark@markmitchell.com>
@ -262,7 +517,7 @@ Tue Sep 9 19:47:07 1997 Jason Merrill <jason@yorick.cygnus.com>
Wed Aug 27 00:04:33 1997 Alexandre Oliva (oliva@dcc.unicamp.br)
* Makefile.in: create correct multiple links to
* Makefile.in: Create correct multiple links to
shared libstdc++.
Tue Aug 26 12:24:01 1997 H.J. Lu (hjl@gnu.ai.mit.edu)

View File

@ -14,9 +14,12 @@
# along with this library; see the file COPYING. If not, write to the Free
# Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
VERSION = 2.9.0
VERSION = 2.10.0
INTERFACE = 3
OBJS = cstringi.o stdexcepti.o cstdlibi.o cmathi.o stlinst.o
gxx_include_dir=${includedir}/g++
OBJS = cstringi.o stdexcepti.o cstdlibi.o cmathi.o stlinst.o valarray.o
SUBLIBS = $(STAMP)-string $(STAMP)-complx
# C++ headers with no extension
@ -25,19 +28,21 @@ HEADERS= cassert cctype cerrno cfloat ciso646 climits clocale cmath complex \
cwchar cwctype string stdexcept \
algorithm deque functional hash_map hash_set iterator list map \
memory numeric pthread_alloc queue rope set slist stack utility \
vector fstream iomanip iostream strstream iosfwd
vector fstream iomanip iostream strstream iosfwd bitset valarray
ARLIB = libstdc++.a
ARLIB = libstdc++.a.$(VERSION)
ARLINK = libstdc++.a
MARLINK = libstdc++.a.`echo $(VERSION) | sed 's/\([0-9]*[.][0-9]*\).*/\1/'`
SHLIB = libstdc++.so.$(VERSION)
SHARLIB = libstdc++-sh.a
SHLINK = libstdc++.so
MSHLINK = libstdc++.so.`echo $(VERSION) | sed 's/\([0-9][.][0-9]\).*/\1/'`
SHFLAGS =
MSHLINK = libstdc++.so.`echo $(VERSION) | sed 's/\([0-9]*[.][0-9]*\).*/\1/'`
SHFLAGS =
SHDEPS =
STAMP = bigstmp
LIBS = $(ARLIB)
LIBS = $(ARLIB) $(ARLINK)
#### package, host, target, and site dependent Makefile fragments come in here.
##
@ -85,6 +90,13 @@ $(ARLIB): stdlist
mv t$(ARLIB) $(ARLIB)
$(RANLIB) $(ARLIB)
$(ARLINK):
-rm -f $(ARLINK)
$(LN_S) $(ARLIB) $(ARLINK) || cp $(ARLIB) $(ARLINK)
marlink:
@$(MAKE) $(MARLINK) "ARLINK=$(MARLINK)"
$(SHLIB): piclist
$(CC) $(LIBCXXFLAGS) $(SHFLAGS) -shared -o $(SHLIB) `cat piclist` $(SHDEPS)
@ -95,7 +107,8 @@ $(SHARLIB): $(SHLIB)
$(RANLIB) $(SHARLIB)
$(SHLINK):
ln -f -s $(SHLIB) $(SHLINK)
-rm -f $(SHLINK)
$(LN_S) $(SHLIB) $(SHLINK) || cp $(ARLIB) $(ARLINK)
mshlink:
@$(MAKE) $(MSHLINK) "SHLINK=$(MSHLINK)"
@ -117,6 +130,7 @@ cstdlibi.o: cstdlibi.cc
cmathi.o: cmathi.cc
stdexcepti.o: stdexcepti.cc
stlinst.o: stlinst.cc
valarray.o: valarray.cc
# Later do wide strings, too.
stmp-string: ${srcdir}/sinst.cc ${srcdir}/std/bastring.h \
@ -256,7 +270,7 @@ install:
fi ; \
chmod a-x $(gxx_include_dir)/$$FILE ; \
done ; \
for FILE in *.h std/*.*; do \
for FILE in *.h std/*.h std/*.cc std/*.tcc; do \
rm -f $(gxx_include_dir)/$$FILE ; \
$(INSTALL_DATA) $$FILE $(gxx_include_dir)/$$FILE ; \
chmod a-x $(gxx_include_dir)/$$FILE ; \
@ -270,20 +284,68 @@ install:
else true ; \
fi
rootme=`pwd`/ ; export rootme ; \
if [ x$(libsubdir) = x ] || [ x$(enable_version_specific_runtime_libs) != xyes ]; then \
if [ x$(enable_version_specific_runtime_libs) != xyes ]; then \
INSTALLDIR=$(libdir); \
else \
INSTALLDIR=$(libsubdir); \
fi; \
rm -f $${INSTALLDIR}$(MULTISUBDIR)/$(SHLINK) ; \
INSTALLLINKDIR=$(libsubdir); \
if [ $${INSTALLLINKDIR}$(MULTISUBDIR) = $${INSTALLDIR}$(MULTISUBDIR) ]; then \
RELINSTALLDIR=; \
elif [ x$(MULTISUBDIR) = x ]; then \
if [ $(build_alias) = $(target_alias) ]; then \
RELINSTALLDIR=../../../; \
else \
RELINSTALLDIR=../../../../$(target_alias)/lib/; \
fi; \
else \
if [ $(build_alias) = $(target_alias) ]; then \
RELINSTALLDIR=../../..`echo $(MULTISUBDIR) | sed -e 's,/[^/]*,/..,g'`$(MULTISUBDIR)/; \
else \
RELINSTALLDIR=../../../..`echo $(MULTISUBDIR) | sed -e 's,/[^/]*,/..,g'`/$(target_alias)/lib$(MULTISUBDIR)/; \
fi; \
fi; \
if [ $(build_alias) != $(target_alias) ]; then \
case $$RELINSTALLDIR in \
../../../|../../../../) \
RELINSTALLDIR=../$${RELINSTALLDIR}$(target_alias)/lib/;; \
esac; \
fi; \
rm -f $${INSTALLLINKDIR}$(MULTISUBDIR)/$(SHLINK) ; \
rm -f $${INSTALLLINKDIR}$(MULTISUBDIR)/$(ARLINK) ; \
for FILE in $(LIBS) ; do \
rm -f $${INSTALLDIR}$(MULTISUBDIR)/$$FILE ; \
if [ $$FILE = $(SHLINK) ] ; then \
ln -f -s $(SHLIB) $${INSTALLDIR}$(MULTISUBDIR)/$$FILE ; \
if [ -f $${INSTALLDIR}/$(MSHLINK) ]; then \
rm -f $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE ; \
$(LN_S) $${RELINSTALLDIR}$(MSHLINK) $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE \
|| cp $${RELINSTALLDIR}$(MSHLINK) $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE ; \
else \
rm -f $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE ; \
$(LN_S) $${RELINSTALLDIR}$(SHLIB) $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE \
|| cp $${RELINSTALLDIR}$(SHLIB) $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE ; \
fi; \
elif [ $$FILE = $(ARLINK) ] ; then \
if [ -f $${INSTALLDIR}/$(MARLINK) ]; then \
rm -f $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE ; \
$(LN_S) $${RELINSTALLDIR}$(MARLINK) $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE \
|| cp $${RELINSTALLDIR}$(MARLINK) $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE ; \
else \
rm -f $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE ; \
$(LN_S) $${RELINSTALLDIR}$(ARLIB) $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE \
|| cp $${RELINSTALLDIR}$(ARLIB) $${INSTALLLINKDIR}$(MULTISUBDIR)/$$FILE ; \
fi; \
elif [ $$FILE = mshlink ]; then \
for FILE in $(MSHLINK) ; do \
rm -f $${INSTALLDIR}$(MULTISUBDIR)/$$FILE ; \
ln -f -s $(SHLIB) $${INSTALLDIR}$(MULTISUBDIR)/$$FILE ; \
$(LN_S) $(SHLIB) $${INSTALLDIR}$(MULTISUBDIR)/$$FILE \
|| cp $(SHLIB) $${INSTALLDIR}$(MULTISUBDIR)/$$FILE ; \
done; \
elif [ $$FILE = marlink ]; then \
for FILE in $(MARLINK) ; do \
rm -f $${INSTALLDIR}$(MULTISUBDIR)/$$FILE ; \
$(LN_S) $(ARLIB) $${INSTALLDIR}$(MULTISUBDIR)/$$FILE \
|| cp $(ARLIB) $${INSTALLDIR}$(MULTISUBDIR)/$$FILE ; \
done; \
elif [ $$FILE = $(SHLIB) ]; then \
$(INSTALL_PROGRAM) $$FILE $${INSTALLDIR}$(MULTISUBDIR)/$$FILE ; \
@ -301,8 +363,7 @@ install:
.PHONY: force
force:
# Remove these for public releases.
MYCXXFLAGS = -g -O2 -Wpointer-arith -Wnested-externs -Woverloaded-virtual -Wbad-function-cast -Winline -Wwrite-strings
MYCXXFLAGS = -g -O2 -Wpointer-arith -Wnested-externs -Woverloaded-virtual -Wbad-function-cast -Winline -Wwrite-strings -pedantic -Wno-long-long
MYCFLAGS = -g -O2 -Wpointer-arith -Wnested-externs
.PHONY: stuff
@ -316,7 +377,8 @@ stuff1:
touch ../../gcc/libgcc2.ready
stuff2:
-$(MAKE) -C ../../gcc/ libgcc.a
-$(MAKE) check CXXFLAGS="$(MYCXXFLAGS)" CFLAGS="$(MYCFLAGS)"
$(MAKE) -C ../../gcc/ libgcc.a
$(MAKE) CXXFLAGS="$(MYCXXFLAGS)" CFLAGS="$(MYCFLAGS)"
-$(MAKE) check
-$(MAKE) -C ../libio check
-$(MAKE) -C ../../gcc check-g++

View File

@ -32,7 +32,6 @@ typedef complex<f> c;
typedef const c& ccr;
#ifdef MAIN
template class complex<f>;
template c& __doapl (c*, ccr);
template c& __doaml (c*, ccr);
template c& __doami (c*, ccr);

View File

@ -1,8 +1,9 @@
# AIX has wierd shared/non-shared libraries.
ARLIB = libstdc++-ar.a
ARLIB = libstdc++-ar.a.$(VERSION)
ARLINK = libstdc++-ar.a
SHLINK = libstdc++.a
LIBS = $(ARLIB) $(SHLIB) $(SHLINK)
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK)
DEPLIBS = ../$(SHLIB)
SHDEPS = -lm
SHFLAGS = -Wl,-unix

View File

@ -1,6 +1,6 @@
# We don't need -fpic on the alpha, so let's install both the shared and
# non-shared versions.
LIBS = $(ARLIB) $(SHLIB) $(SHLINK)
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK)
DEPLIBS = ../$(SHLIB)
SHDEPS = -lm

View File

@ -1,7 +1,7 @@
# Elf without shared libm -- we have to link with the archive library, even
# for programs that don't use complex.
LIBS = $(ARLIB) $(SHLIB) $(SHLINK)
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK)
SHFLAGS = -h $(SHLIB)
DEPLIBS = ../$(SHLIB)
LDLIBS = -L.. -lstdc++ -lm

View File

@ -1,6 +1,6 @@
# Elf with shared libm, so we can link it into the shared libstdc++.
LIBS = $(ARLIB) $(SHLIB) $(SHLINK)
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK)
SHFLAGS = -h $(SHLIB)
SHDEPS = -lm
DEPLIBS = ../$(SHLIB)

View File

@ -0,0 +1,6 @@
# Elf with shared libm, so we can link it into the shared libstdc++.
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK) mshlink
SHFLAGS = -Wl,-soname,$(MSHLINK)
SHDEPS = -lm
DEPLIBS = ../$(SHLIB)

View File

@ -0,0 +1,6 @@
# Elf with shared libm, so we can link it into the shared libstdc++.
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK)
SHFLAGS = -Wl,-soname,$(SHLIB)
SHDEPS = -lm
DEPLIBS = ../$(SHLIB)

View File

@ -1,6 +1,6 @@
# HPUX uses the .sl suffix for shared libraries.
SHLIB = libstdc++.sl
LIBS = $(ARLIB) $(SHLIB)
LIBS = $(ARLIB) $(ARLINK) $(SHLIB)
DEPLIBS = ../$(SHLIB)
SHFLAGS = $(PICFLAG)

View File

@ -1,6 +1,6 @@
# We don't need -fpic on IRIX, so let's install both the shared and
# non-shared versions.
LIBS = $(ARLIB) $(SHLIB) $(SHLINK)
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK)
DEPLIBS = ../$(SHLIB)
SHDEPS = -lm

View File

@ -1,6 +1,11 @@
# Elf with shared libm, so we can link it into the shared libstdc++.
LIBS = $(ARLIB) $(SHLIB) $(SHLINK) mshlink
ARLIB = libstdc++-$(LIBSTDCXX_INTERFACE)$(LIBC_INTERFACE)$(CXX_INTERFACE)-$(VERSION).a
MARLINK = libstdc++$(LIBC_INTERFACE)$(CXX_INTERFACE).a.$(LIBSTDCXX_INTERFACE)
SHLIB = libstdc++-$(LIBSTDCXX_INTERFACE)$(LIBC_INTERFACE)$(CXX_INTERFACE)-$(VERSION).so
MSHLINK = libstdc++$(LIBC_INTERFACE)$(CXX_INTERFACE).so.$(LIBSTDCXX_INTERFACE)
LIBS = $(ARLIB) marlink $(ARLINK) $(SHLIB) mshlink $(SHLINK)
SHFLAGS = -Wl,-soname,$(MSHLINK)
SHDEPS = -lm
DEPLIBS = ../$(SHLIB)

View File

@ -1,6 +1,6 @@
# Base shared lib for OpenBSD i386
LIBS = $(ARLIB) $(SHLIB) $(SHLINK) mshlink
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK) mshlink
SHFLAGS = -nostdlib -Wl,-Bshareable,-Bforcearchive
SHDEPS = -lm
DEPLIBS = ../$(SHLIB)

View File

@ -0,0 +1 @@
MT_CFLAGS = -D_PTHREADS

View File

@ -0,0 +1 @@
MT_CFLAGS = -D_PTHREADS

View File

@ -1,6 +1,6 @@
# Solaris2 with shared libm, so we can link it into the shared libstdc++.
LIBS = $(ARLIB) $(SHLIB) $(SHLINK)
LIBS = $(ARLIB) $(ARLINK) $(SHLIB) $(SHLINK)
SHFLAGS = -h $(SHLIB)
SHDEPS = -lm
DEPLIBS = ../$(SHLIB)

View File

@ -0,0 +1 @@
MT_CFLAGS = -D_SOLTHREADS

View File

@ -2,7 +2,7 @@
# library, even for programs that don't use complex.
# SunOS requires a version number in shared library filenames.
LIBS = $(ARLIB) $(SHLIB)
LIBS = $(ARLIB) $(ARLINK) $(SHLIB)
SHFLAGS = $(PICFLAG)
DEPLIBS = ../$(SHLIB)
LDLIBS = -L.. -lstdc++ -lm

View File

@ -0,0 +1,9 @@
# x86 Interix. SHLINK is defined to be .dummy to avoid running into
# the lack of symbolic links.
SHLINK = .dummy
SHLIB = libstdc++.so
LIBS = $(ARLIB) $(SHLIB)
DEPLIBS = ../$(SHLIB)
SHFLAGS = $(PICFLAG)

View File

@ -2,6 +2,25 @@
# necessary for a configure script to process the program in
# this directory. For more information, look at ../configure.
# If the language specific compiler does not exist, but the "gcc" directory
# does, we do not build anything. Note, $r is set by the top-level Makefile.
# Note that when we look for the compiler, we search both with and without
# extension to handle cross and canadian cross builds.
# Note that if $norecursion is set we're being called from config.status,
# so don't check for the compiler; we might be doing a make clean.
compiler_name=cc1plus
rm -f skip-this-dir
if test -n "$r" && [ -z "$norecursion" ] ; then
if test -d "$r"/gcc; then
if test -f "$r"/gcc/$compiler_name \
|| test -f "$r"/gcc/$compiler_name.exe; then
true
else
echo "rm -f multilib.out" > skip-this-dir
fi
fi
fi
if [ "${srcdir}" = "." ] ; then
if [ "${with_target_subdir}" != "." ] ; then
topsrcdir=${with_multisrctop}../..
@ -39,14 +58,12 @@ esac
if [ "${shared}" = "yes" ]; then
case "${target}" in
alpha*-*-linux*) frags=../../config/mh-elfalphapic ;;
arm*-*-*) frags=../../config/mh-armpic ;;
hppa*-*-*) frags=../../config/mh-papic ;;
i[3456]86-*-*) frags=../../config/mh-x86pic ;;
alpha*-*-linux*) frags=../../config/mh-elfalphapic ;;
# There doesn't seem to be a simpler way to say all-ppc except AIX
*-*-aix*) ;;
powerpc*-* | ppc*-*) frags=../../config/mh-ppcpic ;;
powerpc*-*-aix*) ;;
powerpc*-*-*) frags=../../config/mh-ppcpic ;;
*-*-*) frags=../../config/mh-${target_cpu}pic ;;
esac
case "${target}" in
@ -54,12 +71,16 @@ if [ "${shared}" = "yes" ]; then
*-*-hpux*) frags="${frags} hpux.ml" ;;
*-*-irix[56]*) frags="${frags} irix5.ml" ;;
*-*-linux*aout*) ;;
*-*-freebsd2*) ;;
*-*-freebsd*) frags="${frags} freebsd.ml" ;;
*-*-linux*) frags="${frags} linux.ml" ;;
*-*-openbsd*) frags="${frags} openbsd.ml" ;;
*-*-sysv4*) frags="${frags} elf.ml" ;;
*-*-sysv[45]*|*-*-udk*) frags="${frags} elf.ml" ;;
*-*-solaris*) frags="${frags} sol2shm.ml" ;;
*-*-sunos4*) frags="${frags} sunos4.ml" ;;
*-*-aix*) frags="${frags} aix.ml" ;;
i[3456]86-*-interix*) frags="${frags} x86-interix.ml" ;;
*-*-gnu*) frags="${frags} gnu.ml" ;;
esac
fi
@ -73,6 +94,15 @@ case "${target}" in
xyes|xposix) frags="${frags} openbsd.mt" ;;
esac;;
m68k-motorola-sysv) frags="${frags} delta.mt" ;;
*-*-solaris*)
case "x${enable_threads}" in
xposix) frags="${frags} sol2pth.mt" ;;
xsolaris) frags="${frags} sol2solth.mt" ;;
esac ;;
*)
case "x${enable_threads}" in
xposix) frags="${frags} posix.mt" ;;
esac ;;
esac
for frag in ${frags}; do
@ -105,15 +135,69 @@ EXTRA_DISTCLEAN='target-mkfrag'
(. ${srcdir}/${TO_TOPDIR}libio/config.shared) >${package_makefile_frag} 2>${package_makefile_rules_frag}
. ${topsrcdir}/config.if
echo "
LIBSTDCXX_INTERFACE=${libstdcxx_interface}
CXX_INTERFACE=${cxx_interface}
LIBC_INTERFACE=${libc_interface}
" >> ${package_makefile_frag}
# This duplicated the AC_PROG_LN_S macro in GNU autoconf.
rm -f conttestdata
if ln -s X conftestdata 2>/dev/null
then
rm -f conftestdata
LN_S="ln -s"
else
LN_S=ln
fi
echo "
LN_S=$LN_S
" >> ${package_makefile_frag}
# post-target:
# If cross-compiling, we install in $(tooldir).
# If cross-compiling, we install in $(tooldir)/lib or in $(libsubdir)
# depending on --enable-version-specific-runtime-libs.
if [ -n "${with_cross_host}" ] ; then
rm -f Makefile.tem
sed \
-e 's|\(INSTALLDIR[ ]*=[ ]*\)[^ ;]*|\1$(tooldir)/lib|' \
-e 's|^\([ ]*INSTALLDIR[ ]*=[ ]*\)\$(libdir)|\1$(tooldir)/lib|' \
Makefile >Makefile.tem
mv -f Makefile.tem Makefile
fi
# enable multilib-ing by default.
if [ -z "${enable_multilib}" ]; then
enable_multilib=yes
fi
. ${topsrcdir}/config-ml.in
gxx_include_dir=
# Specify the g++ header file directory
# Check whether --with-gxx-include-dir or --without-gxx-include-dir was given.
if test "${with_gxx_include_dir+set}" = set; then
withval="$with_gxx_include_dir"
case "${withval}" in
yes)
echo "configure.in: error: bad value ${withval} given for g++ include directory" 1>&2
exit 1
;;
no) ;;
*) gxx_include_dir=$with_gxx_include_dir ;;
esac
fi
if test x${gxx_include_dir} = x; then
if test x${enable_version_specific_runtime_libs} = xyes; then
gxx_include_dir='${libsubdir}/include/g++'
else
gxx_include_dir='${prefix}/include/g++'-${libstdcxx_interface}
fi
fi
rm -f Makefile.tem
sed -e "s%^gxx_include_dir[ ]*=.*$%gxx_include_dir=${gxx_include_dir}%" \
Makefile >Makefile.tem
mv -f Makefile.tem Makefile

View File

@ -42,8 +42,11 @@ typedef char c;
typedef wchar_t c;
#endif
#ifdef TRAITS
#if defined(TRAITS) && !defined(C)
template class string_char_traits <c>;
#else
/* string_char_traits<char> is already explicitly specialized in
std/straits.h. */
#endif
typedef basic_string <c> s;

View File

@ -39,7 +39,7 @@ operator delete (void * ptr)
{
Allocator::deallocate(ptr, sizeof(Rep) +
reinterpret_cast<Rep *>(ptr)->res *
sizeof (charT));
sizeof (charT));
}
template <class charT, class traits, class Allocator>
@ -450,7 +450,7 @@ operator>> (istream &is, basic_string <charT, traits, Allocator> &s)
sb->sungetc ();
break;
}
s += ch;
s += static_cast<charT> (ch);
if (--w == 1)
break;
}
@ -496,7 +496,7 @@ getline (istream &is, basic_string <charT, traits, Allocator>& s, charT delim)
if (ch == delim)
break;
s += ch;
s += static_cast<charT> (ch);
if (s.length () == s.npos - 1)
{

View File

@ -73,7 +73,41 @@ class basic_string
charT* data () { return reinterpret_cast<charT *>(this + 1); }
charT& operator[] (size_t s) { return data () [s]; }
charT* grab () { if (selfish) return clone (); ++ref; return data (); }
#if defined __i486__ || defined __i586__ || defined __i686__
void release ()
{
size_t __val;
// This opcode exists as a .byte instead of as a mnemonic for the
// benefit of SCO OpenServer 5. The system assembler (which is
// essentially required on this target) can't assemble xaddl in
//COFF mode.
asm (".byte 0xf0, 0x0f, 0xc1, 0x02" // lock; xaddl %eax, (%edx)
: "=a" (__val)
: "0" (-1), "m" (ref), "d" (&ref)
: "memory");
if (__val == 1)
delete this;
}
#elif defined __sparcv9__
void release ()
{
size_t __newval, __oldval = ref;
do
{
__newval = __oldval - 1;
__asm__ ("cas [%4], %2, %0"
: "=r" (__oldval), "=m" (ref)
: "r" (__oldval), "m" (ref), "r"(&(ref)), "0" (__newval));
}
while (__newval != __oldval);
if (__oldval == 0)
delete this;
}
#else
void release () { if (--ref == 0) delete this; }
#endif
inline static void * operator new (size_t, size_t);
inline static void operator delete (void *);

View File

@ -0,0 +1,111 @@
// The template and inlines for the -*- C++ -*- gslice class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __GSLICE__
#define __GSLICE__
extern "C++" {
struct _Indexer {
size_t _M_count;
size_t _M_start;
valarray<size_t> _M_size;
valarray<size_t> _M_stride;
valarray<size_t> _M_index;
_Indexer(size_t, const valarray<size_t>&, const valarray<size_t>&);
void _M_increment_use() { ++_M_count; }
size_t _M_decrement_use() { return --_M_count; }
};
class gslice
{
public:
gslice ();
gslice (size_t, const valarray<size_t>&, const valarray<size_t>&);
gslice(const gslice&);
~gslice();
gslice& operator= (const gslice&);
size_t start () const;
valarray<size_t> size () const;
valarray<size_t> stride () const;
private:
_Indexer* _M_index;
template<typename _Tp> friend class valarray;
};
inline size_t
gslice::start () const
{ return _M_index ? _M_index->_M_start : 0; }
inline valarray<size_t>
gslice::size () const
{ return _M_index ? _M_index->_M_size : valarray<size_t>(); }
inline valarray<size_t>
gslice::stride () const
{ return _M_index ? _M_index->_M_stride : valarray<size_t>(); }
inline gslice::gslice () : _M_index(0) {}
inline
gslice::gslice(size_t __o, const valarray<size_t>& __l,
const valarray<size_t>& __s)
: _M_index(new _Indexer(__o, __l, __s)) {}
inline
gslice::gslice(const gslice& __g) : _M_index(__g._M_index)
{ if (_M_index) _M_index->_M_increment_use(); }
inline
gslice::~gslice()
{ if (_M_index && _M_index->_M_decrement_use() == 0) delete _M_index; }
inline gslice&
gslice::operator= (const gslice& __g)
{
if (__g._M_index) __g._M_index->_M_increment_use();
if (_M_index && _M_index->_M_decrement_use() == 0) delete _M_index;
_M_index = __g._M_index;
return *this;
}
} // extern "C++"
#endif // __GSLICE__
// Local Variables:
// mode:c++
// End:

View File

@ -0,0 +1,170 @@
// The template and inlines for the -*- C++ -*- gslice_array class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __GSLICE_ARRAY__
#define __GSLICE_ARRAY__
extern "C++" {
template<typename _Tp> class gslice_array
{
public:
typedef _Tp value_type;
void operator= (const valarray<_Tp>&) const;
void operator*= (const valarray<_Tp>&) const;
void operator/= (const valarray<_Tp>&) const;
void operator%= (const valarray<_Tp>&) const;
void operator+= (const valarray<_Tp>&) const;
void operator-= (const valarray<_Tp>&) const;
void operator^= (const valarray<_Tp>&) const;
void operator&= (const valarray<_Tp>&) const;
void operator|= (const valarray<_Tp>&) const;
void operator<<=(const valarray<_Tp>&) const;
void operator>>=(const valarray<_Tp>&) const;
void operator=(const _Tp&);
template<class _Dom>
void operator= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator*= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator/= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator%= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator+= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator-= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator^= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator&= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator|= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator<<= (const _Expr<_Dom,_Tp>&) const;
template<class _Dom>
void operator>>= (const _Expr<_Dom,_Tp>&) const;
private:
_Array<_Tp> _M_array;
const valarray<size_t>& _M_index;
friend class valarray<_Tp>;
gslice_array (_Array<_Tp>, const valarray<size_t>&);
// this constructor needs to be implemented.
gslice_array (const gslice_array&);
// not implemented
gslice_array();
gslice_array& operator= (const gslice_array&);
};
template<typename _Tp>
inline
gslice_array<_Tp>::gslice_array (_Array<_Tp> __a,
const valarray<size_t>& __i)
: _M_array (__a), _M_index (__i) {}
template<typename _Tp>
inline
gslice_array<_Tp>::gslice_array (const gslice_array<_Tp>& __a)
: _M_array (__a._M_array), _M_index (__a._M_index) {}
template<typename _Tp>
inline void
gslice_array<_Tp>::operator= (const _Tp& __t)
{
__valarray_fill (_M_array, _Array<size_t>(_M_index),
_M_index.size(), __t);
}
template<typename _Tp>
inline void
gslice_array<_Tp>::operator= (const valarray<_Tp>& __v) const
{
__valarray_copy (_Array<_Tp> (__v), __v.size (),
_M_array, _Array<size_t>(_M_index));
}
template<typename _Tp>
template<class E>
inline void
gslice_array<_Tp>::operator= (const _Expr<E, _Tp>& __e) const
{
__valarray_copy (__e, _M_index.size(), _M_array,
_Array<size_t>(_M_index));
}
#undef _DEFINE_VALARRAY_OPERATOR
#define _DEFINE_VALARRAY_OPERATOR(op, name) \
template<typename _Tp> \
inline void \
gslice_array<_Tp>::operator##op##= (const valarray<_Tp>& __v) const \
{ \
_Array_augmented_##name (_M_array, _Array<size_t>(_M_index), \
_Array<_Tp> (__v), __v.size ()); \
} \
\
template<typename _Tp> template<class E> \
inline void \
gslice_array<_Tp>::operator##op##= (const _Expr<E, _Tp>& __e) const \
{ \
_Array_augmented_##name (_M_array, _Array<size_t>(_M_index), __e, \
_M_index.size()); \
}
_DEFINE_VALARRAY_OPERATOR(*, multiplies)
_DEFINE_VALARRAY_OPERATOR(/, divides)
_DEFINE_VALARRAY_OPERATOR(%, modulus)
_DEFINE_VALARRAY_OPERATOR(+, plus)
_DEFINE_VALARRAY_OPERATOR(-, minus)
_DEFINE_VALARRAY_OPERATOR(^, xor)
_DEFINE_VALARRAY_OPERATOR(&, and)
_DEFINE_VALARRAY_OPERATOR(|, or)
_DEFINE_VALARRAY_OPERATOR(<<, shift_left)
_DEFINE_VALARRAY_OPERATOR(>>, shift_right)
#undef _DEFINE_VALARRAY_OPERATOR
} // extern "C++"
#endif // __GSLICE_ARRAY__
// Local Variables:
// mode:c++
// End:

View File

@ -0,0 +1,157 @@
// The template and inlines for the -*- C++ -*- indirect_array class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __INDIRECT_ARRAY__
#define __INDIRECT_ARRAY__
extern "C++" {
template <class _Tp> class indirect_array
{
public:
typedef _Tp value_type;
void operator= (const valarray<_Tp>&) const;
void operator*= (const valarray<_Tp>&) const;
void operator/= (const valarray<_Tp>&) const;
void operator%= (const valarray<_Tp>&) const;
void operator+= (const valarray<_Tp>&) const;
void operator-= (const valarray<_Tp>&) const;
void operator^= (const valarray<_Tp>&) const;
void operator&= (const valarray<_Tp>&) const;
void operator|= (const valarray<_Tp>&) const;
void operator<<= (const valarray<_Tp>&) const;
void operator>>= (const valarray<_Tp>&) const;
void operator= (const _Tp&);
template<class _Dom>
void operator= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator*= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator/= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator%= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator+= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator-= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator^= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator&= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator|= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator<<= (const _Expr<_Dom, _Tp>&) const;
template<class _Dom>
void operator>>= (const _Expr<_Dom, _Tp>&) const;
private:
indirect_array (const indirect_array&);
indirect_array (_Array<_Tp>, size_t, _Array<size_t>);
friend class valarray<_Tp>;
friend class gslice_array<_Tp>;
const size_t _M_sz;
const _Array<size_t> _M_index;
const _Array<_Tp> _M_array;
// not implemented
indirect_array ();
indirect_array& operator= (const indirect_array&);
};
template<typename _Tp>
inline indirect_array<_Tp>::indirect_array(const indirect_array<_Tp>& __a)
: _M_sz (__a._M_sz), _M_index (__a._M_index),
_M_array (__a._M_array) {}
template<typename _Tp>
inline
indirect_array<_Tp>::indirect_array (_Array<_Tp> __a, size_t __s,
_Array<size_t> __i)
: _M_sz (__s), _M_index (__i), _M_array (__a) {}
template<typename _Tp>
inline void
indirect_array<_Tp>::operator= (const _Tp& __t)
{ __valarray_fill(_M_array, _M_index, _M_sz, __t); }
template<typename _Tp>
inline void
indirect_array<_Tp>::operator= (const valarray<_Tp>& __v) const
{ __valarray_copy (_Array<_Tp> (__v), _M_sz, _M_array, _M_index); }
template<typename _Tp>
template<class _Dom>
inline void
indirect_array<_Tp>::operator= (const _Expr<_Dom,_Tp>& __e) const
{ __valarray_copy (__e, _M_sz, _M_array, _M_index); }
#undef _DEFINE_VALARRAY_OPERATOR
#define _DEFINE_VALARRAY_OPERATOR(op, name) \
template<typename _Tp> \
inline void \
indirect_array<_Tp>::operator##op##= (const valarray<_Tp>& __v) const \
{ \
_Array_augmented_##name (_M_array, _M_index, _Array<_Tp> (__v), _M_sz); \
} \
\
template<typename _Tp> template<class _Dom> \
inline void \
indirect_array<_Tp>::operator##op##= (const _Expr<_Dom,_Tp>& __e) const \
{ \
_Array_augmented_##name (_M_array, _M_index, __e, _M_sz); \
}
_DEFINE_VALARRAY_OPERATOR(*, multiplies)
_DEFINE_VALARRAY_OPERATOR(/, divides)
_DEFINE_VALARRAY_OPERATOR(%, modulus)
_DEFINE_VALARRAY_OPERATOR(+, plus)
_DEFINE_VALARRAY_OPERATOR(-, minus)
_DEFINE_VALARRAY_OPERATOR(^, xor)
_DEFINE_VALARRAY_OPERATOR(&, and)
_DEFINE_VALARRAY_OPERATOR(|, or)
_DEFINE_VALARRAY_OPERATOR(<<, shift_left)
_DEFINE_VALARRAY_OPERATOR(>>, shift_right)
#undef _DEFINE_VALARRAY_OPERATOR
} // extern "C++"
#endif // __INDIRECT_ARRAY__
// Local Variables:
// mode:c++
// End:

View File

@ -0,0 +1,154 @@
// The template and inlines for the -*- C++ -*- mask_array class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __MASK_ARRAY__
#define __MASK_ARRAY__
extern "C++" {
template <class _T> class mask_array
{
public:
typedef _T value_type;
void operator= (const valarray<_T>&) const;
void operator*= (const valarray<_T>&) const;
void operator/= (const valarray<_T>&) const;
void operator%= (const valarray<_T>&) const;
void operator+= (const valarray<_T>&) const;
void operator-= (const valarray<_T>&) const;
void operator^= (const valarray<_T>&) const;
void operator&= (const valarray<_T>&) const;
void operator|= (const valarray<_T>&) const;
void operator<<=(const valarray<_T>&) const;
void operator>>=(const valarray<_T>&) const;
void operator= (const _T&);
template<class _Dom>
void operator= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator*= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator/= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator%= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator+= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator-= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator^= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator&= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator|= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator<<=(const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator>>=(const _Expr<_Dom,_T>&) const;
private:
mask_array (_Array<_T>, size_t, _Array<bool>);
friend class valarray<_T>;
const size_t _M_sz;
const _Array<bool> _M_mask;
const _Array<_T> _M_array;
mask_array (const mask_array&);
// not implemented
mask_array ();
mask_array& operator= (const mask_array&);
};
template<typename _Tp>
inline mask_array<_Tp>::mask_array (const mask_array<_Tp>& a)
: _M_sz (a._M_sz), _M_mask (a._M_mask), _M_array (a._M_array) {}
template<typename _T>
inline
mask_array<_T>::mask_array (_Array<_T> __a, size_t __s, _Array<bool> __m)
: _M_sz (__s), _M_mask (__m), _M_array (__a) {}
template<typename _T>
inline void
mask_array<_T>::operator= (const _T& __t)
{ __valarray_fill (_M_array, _M_sz, _M_mask, __t); }
template<typename _T>
inline void
mask_array<_T>::operator= (const valarray<_T>& __v) const
{ __valarray_copy (_Array<_T> (__v), __v.size (), _M_array, _M_mask); }
template<typename _T>
template<class E>
inline void
mask_array<_T>::operator= (const _Expr<E, _T>& __e) const
{ __valarray_copy (__e, __e.size (), _M_array, _M_mask); }
#undef _DEFINE_VALARRAY_OPERATOR
#define _DEFINE_VALARRAY_OPERATOR(op, name) \
template<typename _T> \
inline void \
mask_array<_T>::operator##op##= (const valarray<_T>& __v) const \
{ \
_Array_augmented_##name (_M_array, _M_mask, \
_Array<_T> (__v), __v.size ()); \
} \
\
template<typename _T> template<class E> \
inline void \
mask_array<_T>::operator##op##= (const _Expr<E, _T>& __e) const \
{ \
_Array_augmented_##name (_M_array, _M_mask, __e, __e.size ()); \
}
_DEFINE_VALARRAY_OPERATOR(*, multiplies)
_DEFINE_VALARRAY_OPERATOR(/, divides)
_DEFINE_VALARRAY_OPERATOR(%, modulus)
_DEFINE_VALARRAY_OPERATOR(+, plus)
_DEFINE_VALARRAY_OPERATOR(-, minus)
_DEFINE_VALARRAY_OPERATOR(^, xor)
_DEFINE_VALARRAY_OPERATOR(&, and)
_DEFINE_VALARRAY_OPERATOR(|, or)
_DEFINE_VALARRAY_OPERATOR(<<, shift_left)
_DEFINE_VALARRAY_OPERATOR(>>, shift_right)
#undef _DEFINE_VALARRAY_OPERATOR
} // extern "C++"
#endif // __MASK_ARRAY__
// Local Variables:
// mode:c++
// End:

View File

@ -0,0 +1,76 @@
// The template and inlines for the -*- C++ -*- slice class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __SLICE__
#define __SLICE__
extern "C++" {
class slice
{
public:
slice ();
slice (size_t, size_t, size_t);
size_t start () const;
size_t size () const;
size_t stride () const;
private:
size_t _M_off; // offset
size_t _M_sz; // size
size_t _M_st; // stride unit
};
inline slice::slice () {}
inline slice::slice (size_t __o, size_t __d, size_t __s)
: _M_off (__o), _M_sz (__d), _M_st (__s) {}
inline size_t
slice::start () const
{ return _M_off; }
inline size_t
slice::size () const
{ return _M_sz; }
inline size_t
slice::stride () const
{ return _M_st; }
} // extern "C++"
#endif // __SLICE__
// Local Variables:
// mode:c++
// End:

View File

@ -0,0 +1,156 @@
// The template and inlines for the -*- C++ -*- slice_array class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __SLICE_ARRAY__
#define __SLICE_ARRAY__
extern "C++" {
template<typename _T>
class slice_array
{
public:
typedef _T value_type;
void operator= (const valarray<_T>&) const;
void operator*= (const valarray<_T>&) const;
void operator/= (const valarray<_T>&) const;
void operator%= (const valarray<_T>&) const;
void operator+= (const valarray<_T>&) const;
void operator-= (const valarray<_T>&) const;
void operator^= (const valarray<_T>&) const;
void operator&= (const valarray<_T>&) const;
void operator|= (const valarray<_T>&) const;
void operator<<= (const valarray<_T>&) const;
void operator>>= (const valarray<_T>&) const;
void operator= (const _T &);
template<class _Dom>
void operator= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator*= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator/= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator%= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator+= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator-= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator^= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator&= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator|= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator<<= (const _Expr<_Dom,_T>&) const;
template<class _Dom>
void operator>>= (const _Expr<_Dom,_T>&) const;
private:
friend class valarray<_T>;
slice_array(_Array<_T>, const slice&);
const size_t _M_sz;
const size_t _M_stride;
const _Array<_T> _M_array;
// this constructor is implemented since we need to return a value.
slice_array (const slice_array&);
// not implemented
slice_array ();
slice_array& operator= (const slice_array&);
};
template<typename _T>
inline slice_array<_T>::slice_array (_Array<_T> __a, const slice& __s)
: _M_sz (__s.size ()), _M_stride (__s.stride ()),
_M_array (__a.begin () + __s.start ()) {}
template<typename _Tp>
inline slice_array<_Tp>::slice_array(const slice_array<_Tp>& a)
: _M_sz(a._M_sz), _M_stride(a._M_stride), _M_array(a._M_array) {}
template<typename _T>
inline void
slice_array<_T>::operator= (const _T& __t)
{ __valarray_fill (_M_array, _M_sz, _M_stride, __t); }
template<typename _T>
inline void
slice_array<_T>::operator= (const valarray<_T>& __v) const
{ __valarray_copy (_Array<_T> (__v), _M_array, _M_sz, _M_stride); }
template<typename _T>
template<class _Dom>
inline void
slice_array<_T>::operator= (const _Expr<_Dom,_T>& __e) const
{ __valarray_copy (__e, _M_sz, _M_array, _M_stride); }
#undef _DEFINE_VALARRAY_OPERATOR
#define _DEFINE_VALARRAY_OPERATOR(op, name) \
template<typename _T> \
inline void \
slice_array<_T>::operator##op##= (const valarray<_T>& __v) const \
{ \
_Array_augmented_##name (_M_array, _M_sz, _M_stride, _Array<_T> (__v));\
} \
\
template<typename _T> template<class _Dom> \
inline void \
slice_array<_T>::operator##op##= (const _Expr<_Dom,_T>& __e) const \
{ \
_Array_augmented_##name (_M_array, _M_stride, __e, _M_sz); \
}
_DEFINE_VALARRAY_OPERATOR(*, multiplies)
_DEFINE_VALARRAY_OPERATOR(/, divides)
_DEFINE_VALARRAY_OPERATOR(%, modulus)
_DEFINE_VALARRAY_OPERATOR(+, plus)
_DEFINE_VALARRAY_OPERATOR(-, minus)
_DEFINE_VALARRAY_OPERATOR(^, xor)
_DEFINE_VALARRAY_OPERATOR(&, and)
_DEFINE_VALARRAY_OPERATOR(|, or)
_DEFINE_VALARRAY_OPERATOR(<<, shift_left)
_DEFINE_VALARRAY_OPERATOR(>>, shift_right)
#undef _DEFINE_VALARRAY_OPERATOR
} // extern "C++"
#endif // __SLICE_ARRAY__
// Local Variables:
// mode:c++
// End:

View File

@ -0,0 +1,728 @@
// The template and inlines for the -*- C++ -*- valarray class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __STD_VALARRAY__
#define __STD_VALARRAY__
#define _G_NO_VALARRAY_TEMPLATE_EXPORT 1
#include <cstddef>
#include <cmath>
#include <cstdlib>
#include <numeric>
#include <functional>
#include <algorithm>
#ifndef alloca
#ifdef __GNUC__
#define alloca __builtin_alloca
#else /* not GNU C. */
#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) || defined (__sparc) || defined (__sgi)
#include <alloca.h>
#else /* not sparc */
#if defined (MSDOS) && !defined (__TURBOC__)
#include <malloc.h>
#else /* not MSDOS, or __TURBOC__ */
#if defined(_AIX)
#include <malloc.h>
#pragma alloca
#else /* not MSDOS, __TURBOC__, or _AIX */
#ifdef __hpux
#endif /* __hpux */
#endif /* not _AIX */
#endif /* not MSDOS, or __TURBOC__ */
#endif /* not sparc. */
#endif /* not GNU C. */
#endif /* alloca not defined. */
extern "C" {
void* alloca(size_t);
}
extern "C++" {
template<class _Clos, typename _Tp> class _Expr;
template<typename _Tp1, typename _Tp2> class _ValArray;
template<template<class> class _Oper,
template<class, class> class _Meta, class _Dom> struct _UnClos;
template<template<class> class _Oper,
template<class, class> class _Meta1,
template<class, class> class _Meta2,
class _Dom1, class _Dom2> class _BinClos;
template<template<class, class> class _Meta, class _Dom> class _SClos;
template<template<class, class> class _Meta, class _Dom> class _GClos;
template<template<class, class> class _Meta, class _Dom> class _IClos;
template<template<class, class> class _Meta, class _Dom> class _ValFunClos;
template<template<class, class> class _Meta, class _Dom> class _RefFunClos;
template<class _Tp> struct _Unary_plus;
template<class _Tp> struct _Bitwise_and;
template<class _Tp> struct _Bitwise_or;
template<class _Tp> struct _Bitwise_xor;
template<class _Tp> struct _Bitwise_not;
template<class _Tp> struct _Shift_left;
template<class _Tp> struct _Shift_right;
template<class _Tp> class valarray; // An array of type _Tp
class slice; // BLAS-like slice out of an array
template<class _Tp> class slice_array;
class gslice; // generalized slice out of an array
template<class _Tp> class gslice_array;
template<class _Tp> class mask_array; // masked array
template<class _Tp> class indirect_array; // indirected array
} // extern "C++"
#include <std/valarray_array.h>
#include <std/valarray_meta.h>
extern "C++" {
template<class _Tp> class valarray
{
public:
typedef _Tp value_type;
// _lib.valarray.cons_ construct/destroy:
valarray();
explicit valarray(size_t);
valarray(const _Tp&, size_t);
valarray(const _Tp* __restrict__, size_t);
valarray(const valarray&);
valarray(const slice_array<_Tp>&);
valarray(const gslice_array<_Tp>&);
valarray(const mask_array<_Tp>&);
valarray(const indirect_array<_Tp>&);
template<class _Dom>
valarray(const _Expr<_Dom,_Tp>& __e);
~valarray();
// _lib.valarray.assign_ assignment:
valarray<_Tp>& operator=(const valarray<_Tp>&);
valarray<_Tp>& operator=(const _Tp&);
valarray<_Tp>& operator=(const slice_array<_Tp>&);
valarray<_Tp>& operator=(const gslice_array<_Tp>&);
valarray<_Tp>& operator=(const mask_array<_Tp>&);
valarray<_Tp>& operator=(const indirect_array<_Tp>&);
template<class _Dom> valarray<_Tp>&
operator= (const _Expr<_Dom,_Tp>&);
// _lib.valarray.access_ element access:
_Tp operator[](size_t) const;
_Tp& operator[](size_t);
// _lib.valarray.sub_ subset operations:
_Expr<_SClos<_ValArray,_Tp>, _Tp> operator[](slice) const;
slice_array<_Tp> operator[](slice);
_Expr<_GClos<_ValArray,_Tp>, _Tp> operator[](const gslice&) const;
gslice_array<_Tp> operator[](const gslice&);
valarray<_Tp> operator[](const valarray<bool>&) const;
mask_array<_Tp> operator[](const valarray<bool>&);
_Expr<_IClos<_ValArray, _Tp>, _Tp>
operator[](const valarray<size_t>&) const;
indirect_array<_Tp> operator[](const valarray<size_t>&);
// _lib.valarray.unary_ unary operators:
_Expr<_UnClos<_Unary_plus,_ValArray,_Tp>,_Tp> operator+ () const;
_Expr<_UnClos<negate,_ValArray,_Tp>,_Tp> operator- () const;
_Expr<_UnClos<_Bitwise_not,_ValArray,_Tp>,_Tp> operator~ () const;
_Expr<_UnClos<logical_not,_ValArray,_Tp>,bool> operator! () const;
// _lib.valarray.cassign_ computed assignment:
valarray<_Tp>& operator*= (const _Tp&);
valarray<_Tp>& operator/= (const _Tp&);
valarray<_Tp>& operator%= (const _Tp&);
valarray<_Tp>& operator+= (const _Tp&);
valarray<_Tp>& operator-= (const _Tp&);
valarray<_Tp>& operator^= (const _Tp&);
valarray<_Tp>& operator&= (const _Tp&);
valarray<_Tp>& operator|= (const _Tp&);
valarray<_Tp>& operator<<=(const _Tp&);
valarray<_Tp>& operator>>=(const _Tp&);
valarray<_Tp>& operator*= (const valarray<_Tp>&);
valarray<_Tp>& operator/= (const valarray<_Tp>&);
valarray<_Tp>& operator%= (const valarray<_Tp>&);
valarray<_Tp>& operator+= (const valarray<_Tp>&);
valarray<_Tp>& operator-= (const valarray<_Tp>&);
valarray<_Tp>& operator^= (const valarray<_Tp>&);
valarray<_Tp>& operator|= (const valarray<_Tp>&);
valarray<_Tp>& operator&= (const valarray<_Tp>&);
valarray<_Tp>& operator<<=(const valarray<_Tp>&);
valarray<_Tp>& operator>>=(const valarray<_Tp>&);
template<class _Dom>
valarray<_Tp>& operator*= (const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator/= (const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator%= (const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator+= (const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator-= (const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator^= (const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator|= (const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator&= (const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator<<=(const _Expr<_Dom,_Tp>&);
template<class _Dom>
valarray<_Tp>& operator>>=(const _Expr<_Dom,_Tp>&);
// _lib.valarray.members_ member functions:
size_t size() const;
_Tp sum() const;
_Tp min() const;
_Tp max() const;
// FIXME: Extension
_Tp product () const;
valarray<_Tp> shift (int) const;
valarray<_Tp> cshift(int) const;
_Expr<_ValFunClos<_ValArray,_Tp>,_Tp> apply(_Tp func(_Tp)) const;
_Expr<_RefFunClos<_ValArray,_Tp>,_Tp> apply(_Tp func(const _Tp&)) const;
void resize(size_t __size, _Tp __c = _Tp());
private:
size_t _M_size;
_Tp* __restrict__ _M_data;
friend class _Array<_Tp>;
};
template<typename _Tp> struct _Unary_plus : unary_function<_Tp,_Tp> {
_Tp operator() (const _Tp& __t) const { return __t; }
};
template<typename _Tp> struct _Bitwise_and : binary_function<_Tp,_Tp,_Tp> {
_Tp operator() (_Tp __x, _Tp __y) const { return __x & __y; }
};
template<typename _Tp> struct _Bitwise_or : binary_function<_Tp,_Tp,_Tp> {
_Tp operator() (_Tp __x, _Tp __y) const { return __x | __y; }
};
template<typename _Tp> struct _Bitwise_xor : binary_function<_Tp,_Tp,_Tp> {
_Tp operator() (_Tp __x, _Tp __y) const { return __x ^ __y; }
};
template<typename _Tp> struct _Bitwise_not : unary_function<_Tp,_Tp> {
_Tp operator() (_Tp __t) const { return ~__t; }
};
template<typename _Tp> struct _Shift_left : unary_function<_Tp,_Tp> {
_Tp operator() (_Tp __x, _Tp __y) const { return __x << __y; }
};
template<typename _Tp> struct _Shift_right : unary_function<_Tp,_Tp> {
_Tp operator() (_Tp __x, _Tp __y) const { return __x >> __y; }
};
template<typename _Tp>
inline _Tp
valarray<_Tp>::operator[] (size_t __i) const
{ return _M_data[__i]; }
template<typename _Tp>
inline _Tp&
valarray<_Tp>::operator[] (size_t __i)
{ return _M_data[__i]; }
} // extern "C++"
#include <std/slice.h>
#include <std/slice_array.h>
#include <std/gslice.h>
#include <std/gslice_array.h>
#include <std/mask_array.h>
#include <std/indirect_array.h>
extern "C++" {
template<typename _Tp>
inline valarray<_Tp>::valarray () : _M_size (0), _M_data (0) {}
template<typename _Tp>
inline valarray<_Tp>::valarray (size_t __n)
: _M_size (__n), _M_data (new _Tp[__n]) {}
template<typename _Tp>
inline valarray<_Tp>::valarray (const _Tp& __t, size_t __n)
: _M_size (__n), _M_data (new _Tp[__n])
{ __valarray_fill (_M_data, _M_size, __t); }
template<typename _Tp>
inline valarray<_Tp>::valarray (const _Tp* __restrict__ __pT, size_t __n)
: _M_size (__n), _M_data (new _Tp[__n])
{ __valarray_copy (__pT, __n, _M_data); }
template<typename _Tp>
inline valarray<_Tp>::valarray (const valarray<_Tp>& __v)
: _M_size (__v._M_size), _M_data (new _Tp[__v._M_size])
{ __valarray_copy (__v._M_data, _M_size, _M_data); }
template<typename _Tp>
inline valarray<_Tp>::valarray (const slice_array<_Tp>& __sa)
: _M_size (__sa._M_sz), _M_data (new _Tp[__sa._M_sz])
{ __valarray_copy (__sa._M_array, __sa._M_sz, __sa._M_stride,
_Array<_Tp>(_M_data)); }
template<typename _Tp>
inline valarray<_Tp>::valarray (const gslice_array<_Tp>& __ga)
: _M_size (__ga._M_index.size()), _M_data (new _Tp[_M_size])
{ __valarray_copy (__ga._M_array, _Array<size_t>(__ga._M_index),
_Array<_Tp>(_M_data), _M_size); }
template<typename _Tp>
inline valarray<_Tp>::valarray (const mask_array<_Tp>& __ma)
: _M_size (__ma._M_sz), _M_data (new _Tp[__ma._M_sz])
{ __valarray_copy (__ma._M_array, __ma._M_mask,
_Array<_Tp>(_M_data), _M_size); }
template<typename _Tp>
inline valarray<_Tp>::valarray (const indirect_array<_Tp>& __ia)
: _M_size (__ia._M_sz), _M_data (new _Tp[__ia._M_sz])
{ __valarray_copy (__ia._M_array, __ia._M_index,
_Array<_Tp>(_M_data), _M_size); }
template<typename _Tp> template<class _Dom>
inline valarray<_Tp>::valarray (const _Expr<_Dom, _Tp>& __e)
: _M_size (__e.size ()), _M_data (new _Tp[_M_size])
{ __valarray_copy (__e, _M_size, _Array<_Tp>(_M_data)); }
template<typename _Tp>
inline valarray<_Tp>::~valarray () { delete[] _M_data; }
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator= (const valarray<_Tp>& __v)
{
__valarray_copy(__v._M_data, _M_size, _M_data);
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator= (const _Tp& __t)
{
__valarray_fill (_M_data, _M_size, __t);
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator= (const slice_array<_Tp>& __sa)
{
__valarray_copy (__sa._M_array, __sa._M_sz,
__sa._M_stride, _Array<_Tp>(_M_data));
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator= (const gslice_array<_Tp>& __ga)
{
__valarray_copy (__ga._M_array, _Array<size_t>(__ga._M_index),
_Array<_Tp>(_M_data), _M_size);
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator= (const mask_array<_Tp>& __ma)
{
__valarray_copy (__ma._M_array, __ma._M_mask,
_Array<_Tp>(_M_data), _M_size);
return *this;
}
template<typename _Tp>
inline valarray<_Tp>&
valarray<_Tp>::operator= (const indirect_array<_Tp>& __ia)
{
__valarray_copy (__ia._M_array, __ia._M_index,
_Array<_Tp>(_M_data), _M_size);
return *this;
}
template<typename _Tp> template<class _Dom>
inline valarray<_Tp>&
valarray<_Tp>::operator= (const _Expr<_Dom, _Tp>& __e)
{
__valarray_copy (__e, _M_size, _Array<_Tp>(_M_data));
return *this;
}
template<typename _Tp>
inline _Expr<_SClos<_ValArray,_Tp>, _Tp>
valarray<_Tp>::operator[] (slice __s) const
{
typedef _SClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure, _Tp> (_Closure (_Array<_Tp>(_M_data), __s));
}
template<typename _Tp>
inline slice_array<_Tp>
valarray<_Tp>::operator[] (slice __s)
{
return slice_array<_Tp> (_Array<_Tp>(_M_data), __s);
}
template<typename _Tp>
inline _Expr<_GClos<_ValArray,_Tp>, _Tp>
valarray<_Tp>::operator[] (const gslice& __gs) const
{
typedef _GClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure, _Tp>
(_Closure (_Array<_Tp>(_M_data), __gs._M_index->_M_index));
}
template<typename _Tp>
inline gslice_array<_Tp>
valarray<_Tp>::operator[] (const gslice& __gs)
{
return gslice_array<_Tp>
(_Array<_Tp>(_M_data), __gs._M_index->_M_index);
}
template<typename _Tp>
inline valarray<_Tp>
valarray<_Tp>::operator[] (const valarray<bool>& __m) const
{
size_t __s (0);
size_t __e (__m.size ());
for (size_t __i=0; __i<__e; ++__i)
if (__m[__i]) ++__s;
return valarray<_Tp> (mask_array<_Tp> (_Array<_Tp>(_M_data), __s,
_Array<bool> (__m)));
}
template<typename _Tp>
inline mask_array<_Tp>
valarray<_Tp>::operator[] (const valarray<bool>& __m)
{
size_t __s (0);
size_t __e (__m.size ());
for (size_t __i=0; __i<__e; ++__i)
if (__m[__i]) ++__s;
return mask_array<_Tp> (_Array<_Tp>(_M_data), __s, _Array<bool> (__m));
}
template<typename _Tp>
inline _Expr<_IClos<_ValArray,_Tp>, _Tp>
valarray<_Tp>::operator[] (const valarray<size_t>& __i) const
{
typedef _IClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure, _Tp> (_Closure (*this, __i));
}
template<typename _Tp>
inline indirect_array<_Tp>
valarray<_Tp>::operator[] (const valarray<size_t>& __i)
{
return indirect_array<_Tp> (_Array<_Tp>(_M_data), __i.size(),
_Array<size_t> (__i));
}
template<class _Tp>
inline size_t valarray<_Tp>::size () const { return _M_size; }
template<class _Tp>
inline _Tp
valarray<_Tp>::sum () const
{
return accumulate (_M_data, _M_data + _M_size, _Tp ());
}
template<typename _Tp>
inline _Tp
valarray<_Tp>::product () const
{
return accumulate (_M_data, _M_data+_M_size, _Tp(1), multiplies<_Tp> ());
}
template <class _Tp>
inline valarray<_Tp>
valarray<_Tp>::shift (int __n) const
{
_Tp* const __a = static_cast<_Tp*> (alloca (sizeof(_Tp) * _M_size));
if (! __n) // __n == 0: no shift
__valarray_copy (_M_data, _M_size, __a);
else if (__n > 0) { // __n > 0: shift left
if (__n > _M_size)
__valarray_fill(__a, __n, _Tp());
else {
__valarray_copy (_M_data+__n, _M_size-__n, __a);
__valarray_fill (__a+_M_size-__n, __n, _Tp());
}
}
else { // __n < 0: shift right
__valarray_copy (_M_data, _M_size+__n, __a-__n);
__valarray_fill(__a, -__n, _Tp());
}
return valarray<_Tp> (__a, _M_size);
}
template <class _Tp>
inline valarray<_Tp>
valarray<_Tp>::cshift (int __n) const
{
_Tp* const __a = static_cast<_Tp*> (alloca (sizeof(_Tp) * _M_size));
if (! __n) // __n == 0: no cshift
__valarray_copy(_M_data, _M_size, __a);
else if (__n > 0) { // __n > 0: cshift left
__valarray_copy (_M_data, __n, __a + _M_size-__n);
__valarray_copy (_M_data + __n, _M_size-__n, __a);
}
else { // __n < 0: cshift right
__valarray_copy (_M_data + _M_size + __n, -__n, __a);
__valarray_copy (_M_data, _M_size + __n, __a - __n);
}
return valarray<_Tp> (__a, _M_size);
}
template <class _Tp>
inline void
valarray<_Tp>::resize (size_t __n, _Tp __c)
{
if (_M_size != __n) {
delete[] _M_data;
_M_size = __n;
_M_data = new _Tp[_M_size];
}
__valarray_fill (_M_data, _M_size, __c);
}
template<typename _Tp>
inline _Tp
valarray<_Tp>::min() const
{
return *min_element (_M_data, _M_data+_M_size);
}
template<typename _Tp>
inline _Tp
valarray<_Tp>::max() const
{
return *max_element (_M_data, _M_data+_M_size);
}
template<class _Tp>
inline _Expr<_ValFunClos<_ValArray,_Tp>,_Tp>
valarray<_Tp>::apply (_Tp func (_Tp)) const
{
typedef _ValFunClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure,_Tp> (_Closure (*this, func));
}
template<class _Tp>
inline _Expr<_RefFunClos<_ValArray,_Tp>,_Tp>
valarray<_Tp>::apply (_Tp func (const _Tp &)) const
{
typedef _RefFunClos<_ValArray,_Tp> _Closure;
return _Expr<_Closure,_Tp> (_Closure (*this, func));
}
#define _DEFINE_VALARRAY_UNARY_OPERATOR(_Op, _Name) \
template<typename _Tp> \
inline _Expr<_UnClos<_Name,_ValArray,_Tp>, _Tp> \
valarray<_Tp>::operator##_Op() const \
{ \
typedef _UnClos<_Name,_ValArray,_Tp> _Closure; \
return _Expr<_Closure, _Tp> (_Closure (*this)); \
}
_DEFINE_VALARRAY_UNARY_OPERATOR(+, _Unary_plus)
_DEFINE_VALARRAY_UNARY_OPERATOR(-, negate)
_DEFINE_VALARRAY_UNARY_OPERATOR(~, _Bitwise_not)
#undef _DEFINE_VALARRAY_UNARY_OPERATOR
template<typename _Tp>
inline _Expr<_UnClos<logical_not,_ValArray,_Tp>, bool>
valarray<_Tp>::operator!() const
{
typedef _UnClos<logical_not,_ValArray,_Tp> _Closure;
return _Expr<_Closure, bool> (_Closure (*this));
}
#define _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(_Op, _Name) \
template<class _Tp> \
inline valarray<_Tp> & \
valarray<_Tp>::operator##_Op##= (const _Tp &__t) \
{ \
_Array_augmented_##_Name (_Array<_Tp>(_M_data), _M_size, __t); \
return *this; \
} \
\
template<class _Tp> \
inline valarray<_Tp> & \
valarray<_Tp>::operator##_Op##= (const valarray<_Tp> &__v) \
{ \
_Array_augmented_##_Name (_Array<_Tp>(_M_data), _M_size, \
_Array<_Tp>(__v._M_data)); \
return *this; \
}
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(+, plus)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(-, minus)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(*, multiplies)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(/, divides)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(%, modulus)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(^, xor)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(&, and)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(|, or)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(<<, shift_left)
_DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT(>>, shift_right)
#undef _DEFINE_VALARRAY_AUGMENTED_ASSIGNMENT
#define _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(_Op, _Name) \
template<class _Tp> template<class _Dom> \
inline valarray<_Tp> & \
valarray<_Tp>::operator##_Op##= (const _Expr<_Dom,_Tp> &__e) \
{ \
_Array_augmented_##_Name (_Array<_Tp>(_M_data), __e, _M_size); \
return *this; \
}
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(+, plus)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(-, minus)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(*, multiplies)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(/, divides)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(%, modulus)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(^, xor)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(&, and)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(|, or)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(<<, shift_left)
_DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT(>>, shift_right)
#undef _DEFINE_VALARRAY_EXPR_AUGMENTED_ASSIGNMENT
#define _DEFINE_BINARY_OPERATOR(_Op, _Name) \
template<typename _Tp> \
inline _Expr<_BinClos<_Name,_ValArray,_ValArray,_Tp,_Tp>, _Tp> \
operator##_Op (const valarray<_Tp> &__v, const valarray<_Tp> &__w) \
{ \
typedef _BinClos<_Name,_ValArray,_ValArray,_Tp,_Tp> _Closure; \
return _Expr<_Closure, _Tp> (_Closure (__v, __w)); \
} \
\
template<typename _Tp> \
inline _Expr<_BinClos<_Name,_ValArray,_Constant,_Tp,_Tp>,_Tp> \
operator##_Op (const valarray<_Tp> &__v, const _Tp &__t) \
{ \
typedef _BinClos<_Name,_ValArray,_Constant,_Tp,_Tp> _Closure; \
return _Expr<_Closure, _Tp> (_Closure (__v, __t)); \
} \
\
template<typename _Tp> \
inline _Expr<_BinClos<_Name,_Constant,_ValArray,_Tp,_Tp>,_Tp> \
operator##_Op (const _Tp &__t, const valarray<_Tp> &__v) \
{ \
typedef _BinClos<_Name,_Constant,_ValArray,_Tp,_Tp> _Closure; \
return _Expr<_Closure, _Tp> (_Closure (__t, __v)); \
}
_DEFINE_BINARY_OPERATOR(+, plus)
_DEFINE_BINARY_OPERATOR(-, minus)
_DEFINE_BINARY_OPERATOR(*, multiplies)
_DEFINE_BINARY_OPERATOR(/, divides)
_DEFINE_BINARY_OPERATOR(%, modulus)
_DEFINE_BINARY_OPERATOR(^, _Bitwise_xor)
_DEFINE_BINARY_OPERATOR(&, _Bitwise_and)
_DEFINE_BINARY_OPERATOR(|, _Bitwise_or)
_DEFINE_BINARY_OPERATOR(<<, _Shift_left)
_DEFINE_BINARY_OPERATOR(>>, _Shift_right)
#undef _DEFINE_BINARY_OPERATOR
#define _DEFINE_LOGICAL_OPERATOR(_Op, _Name) \
template<typename _Tp> \
inline _Expr<_BinClos<_Name,_ValArray,_ValArray,_Tp,_Tp>,bool> \
operator##_Op (const valarray<_Tp> &__v, const valarray<_Tp> &__w) \
{ \
typedef _BinClos<_Name,_ValArray,_ValArray,_Tp,_Tp> _Closure; \
return _Expr<_Closure, bool> (_Closure (__v, __w)); \
} \
\
template<class _Tp> \
inline _Expr<_BinClos<_Name,_ValArray,_Constant,_Tp,_Tp>,bool> \
operator##_Op (const valarray<_Tp> &__v, const _Tp &__t) \
{ \
typedef _BinClos<_Name,_ValArray,_Constant,_Tp,_Tp> _Closure; \
return _Expr<_Closure, bool> (_Closure (__v, __t)); \
} \
\
template<class _Tp> \
inline _Expr<_BinClos<_Name,_Constant,_ValArray,_Tp,_Tp>,bool> \
operator##_Op (const _Tp &__t, const valarray<_Tp> &__v) \
{ \
typedef _BinClos<_Name,_Constant,_ValArray,_Tp,_Tp> _Closure; \
return _Expr<_Closure, bool> (_Closure (__t, __v)); \
}
_DEFINE_LOGICAL_OPERATOR(&&, logical_and)
_DEFINE_LOGICAL_OPERATOR(||, logical_or)
_DEFINE_LOGICAL_OPERATOR(==, equal_to)
_DEFINE_LOGICAL_OPERATOR(!=, not_equal_to)
_DEFINE_LOGICAL_OPERATOR(<, less)
_DEFINE_LOGICAL_OPERATOR(>, greater)
_DEFINE_LOGICAL_OPERATOR(<=, less_equal)
_DEFINE_LOGICAL_OPERATOR(>=, greater_equal)
#undef _DEFINE_VALARRAY_OPERATOR
#undef _G_NO_VALARRAY_TEMPLATE_EXPORT
} // extern "C++"
#endif // __STD_VALARRAY__
// Local Variables:
// mode:c++
// End:

View File

@ -0,0 +1,346 @@
// The template and inlines for the -*- C++ -*- internal _Array helper class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __VALARRAY_ARRAY__
#define __VALARRAY_ARRAY__
#include <cstdlib>
#include <cstring>
extern "C++" {
//
// Helper functions on raw pointers
//
// fill plain array __a[<__n>] with __t
template<typename _Tp>
inline void
__valarray_fill (_Tp* __restrict__ __a, size_t __n, const _Tp& __t)
{ while (__n--) *__a++ = __t; }
// fill strided array __a[<__n-1 : __s>] with __t
template<typename _Tp>
inline void
__valarray_fill (_Tp* __restrict__ __a, size_t __n,
size_t __s, const _Tp& __t)
{ for (size_t __i=0; __i<__n; ++__i, __a+=__s) *__a = __t; }
// fill indirect array __a[__i[<__n>]] with __i
template<typename _Tp>
inline void
__valarray_fill(_Tp* __restrict__ __a, const size_t* __restrict__ __i,
size_t __n, const _Tp& __t)
{ for (size_t __j=0; __j<__n; ++__j, ++__i) __a[*__i] = __t; }
// copy plain array __a[<__n>] in __b[<__n>]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a, size_t __n,
_Tp* __restrict__ __b)
{ memcpy (__b, __a, __n * sizeof(_Tp)); }
// copy strided array __a[<__n : __s>] in plain __b[<__n>]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a, size_t __n, size_t __s,
_Tp* __restrict__ __b)
{ for (size_t __i=0; __i<__n; ++__i, ++__b, __a += __s) *__b += *__a; }
// copy plain __a[<__n>] in strided __b[<__n : __s>]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a, _Tp* __restrict__ __b,
size_t __n, size_t __s)
{ for (size_t __i=0; __i<__n; ++__i, ++__a, __b+=__s) *__b = *__a; }
// copy indexed __a[__i[<__n>]] in plain __b[<__n>]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a,
const size_t* __restrict__ __i,
_Tp* __restrict__ __b, size_t __n)
{ for (size_t __j=0; __j<__n; ++__j, ++__b, ++__i) *__b = __a[*__i]; }
// copy plain __a[<__n>] in indexed __b[__i[<__n>]]
template<typename _Tp>
inline void
__valarray_copy (const _Tp* __restrict__ __a, size_t __n,
_Tp* __restrict__ __b, const size_t* __restrict__ __i)
{ for (size_t __j=0; __j<__n; ++__j, ++__a, ++__i) __b[*__i] = *__a; }
//
// Helper class _Array, first layer of valarray abstraction.
// All operations on valarray should be forwarded to this class
// whenever possible. -- gdr
//
template<typename _Tp> struct _Array {
explicit _Array (size_t);
explicit _Array (_Tp* const __restrict__);
explicit _Array (const valarray<_Tp>&);
_Array (const _Tp* __restrict__, size_t);
void free_data() const;
_Tp* begin () const;
_Tp* const __restrict__ _M_data;
};
template<typename _Tp>
inline void
__valarray_fill (_Array<_Tp> __a, size_t __n, const _Tp& __t)
{ __valarray_fill (__a._M_data, __n, __t); }
template<typename _Tp>
inline void
__valarray_fill (_Array<_Tp> __a, size_t __n, size_t __s, const _Tp& __t)
{ __valarray_fill (__a._M_data, __n, __s, __t); }
template<typename _Tp>
inline void
__valarray_fill (_Array<_Tp> __a, _Array<size_t> __i,
size_t __n, const _Tp& __t)
{ __valarray_fill (__a._M_data, __i._M_data, __n, __t); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, size_t __n, _Array<_Tp> __b)
{ __valarray_copy (__a._M_data, __n, __b._M_data); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, size_t __n, size_t __s, _Array<_Tp> __b)
{ __valarray_copy(__a._M_data, __n, __s, __b._M_data); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, _Array<_Tp> __b, size_t __n, size_t __s)
{ __valarray_copy (__a._M_data, __b._M_data, __n, __s); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, _Array<size_t> __i,
_Array<_Tp> __b, size_t __n)
{ __valarray_copy (__a._M_data, __i._M_data, __b._M_data, __n); }
template<typename _Tp>
inline void
__valarray_copy (_Array<_Tp> __a, size_t __n, _Array<_Tp> __b,
_Array<size_t> __i)
{ __valarray_copy (__a._M_data, __n, __b._M_data, __i._M_data); }
template<typename _Tp>
inline
_Array<_Tp>::_Array (size_t __n) : _M_data (new _Tp[__n]) {}
template<typename _Tp>
inline
_Array<_Tp>::_Array (_Tp* const __restrict__ __p) : _M_data (__p) {}
template<typename _Tp>
inline _Array<_Tp>::_Array (const valarray<_Tp>& __v)
: _M_data (__v._M_data) {}
template<typename _Tp>
inline
_Array<_Tp>::_Array (const _Tp* __restrict__ __b, size_t __s)
: _M_data (new _Tp[__s]) { __valarray_copy (__b, __s, _M_data); }
template<typename _Tp>
inline void
_Array<_Tp>::free_data() const { delete[] _M_data; }
template<typename _Tp>
inline _Tp*
_Array<_Tp>::begin () const
{ return _M_data; }
#define _DEFINE_ARRAY_FUNCTION(_Op, _Name) \
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, const _Tp& __t) \
{ \
for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p) \
*__p _Op##= __t; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, _Array<_Tp> __b) \
{ \
_Tp* __p (__a._M_data); \
for (_Tp* __q=__b._M_data; __q<__b._M_data+__n; ++__p, ++__q) \
*__p _Op##= *__q; \
} \
\
template<typename _Tp, class _Dom> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, \
const _Expr<_Dom,_Tp>& __e, size_t __n) \
{ \
_Tp* __p (__a._M_data); \
for (size_t __i=0; __i<__n; ++__i, ++__p) *__p _Op##= __e[__i]; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, size_t __s, \
_Array<_Tp> __b) \
{ \
_Tp* __q (__b._M_data); \
for (_Tp* __p=__a._M_data; __p<__a._M_data+__s*__n; __p+=__s, ++__q) \
*__p _Op##= *__q; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<_Tp> __b, \
size_t __n, size_t __s) \
{ \
_Tp* __q (__b._M_data); \
for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p, __q+=__s) \
*__p _Op##= *__q; \
} \
\
template<typename _Tp, class _Dom> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __s, \
const _Expr<_Dom,_Tp>& __e, size_t __n) \
{ \
_Tp* __p (__a._M_data); \
for (size_t __i=0; __i<__n; ++__i, __p+=__s) *__p _Op##= __e[__i]; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<size_t> __i, \
_Array<_Tp> __b, size_t __n) \
{ \
_Tp* __q (__b._M_data); \
for (size_t* __j=__i._M_data; __j<__i._M_data+__n; ++__j, ++__q) \
__a._M_data[*__j] _Op##= *__q; \
} \
\
template<typename _Tp> \
inline void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, \
_Array<_Tp> __b, _Array<size_t> __i) \
{ \
_Tp* __p (__a._M_data); \
for (size_t* __j=__i._M_data; __j<__i._M_data+__n; ++__j, ++__p) \
*__p _Op##= __b._M_data[*__j]; \
} \
\
template<typename _Tp, class _Dom> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<size_t> __i, \
const _Expr<_Dom, _Tp>& __e, size_t __n) \
{ \
size_t* __j (__i._M_data); \
for (size_t __k=0; __k<__n; ++__k, ++__j) \
__a._M_data[*__j] _Op##= __e[__k]; \
} \
\
template<typename _Tp> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<bool> __m, \
_Array<_Tp> __b, size_t __n) \
{ \
bool* ok (__m._M_data); \
_Tp* __p (__a._M_data); \
for (_Tp* __q=__b._M_data; __q<__b._M_data+__n; ++__q, ++ok, ++__p) { \
while (! *ok) { \
++ok; \
++__p; \
} \
*__p _Op##= *__q; \
} \
} \
\
template<typename _Tp> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, \
_Array<_Tp> __b, _Array<bool> __m) \
{ \
bool* ok (__m._M_data); \
_Tp* __q (__b._M_data); \
for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p, ++ok, ++__q) { \
while (! *ok) { \
++ok; \
++__q; \
} \
*__p _Op##= *__q; \
} \
} \
\
template<typename _Tp, class _Dom> \
void \
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<bool> __m, \
const _Expr<_Dom, _Tp>& __e, size_t __n) \
{ \
bool* ok(__m._M_data); \
_Tp* __p (__a._M_data); \
for (size_t __i=0; __i<__n; ++__i, ++ok, ++__p) { \
while (! *ok) { \
++ok; \
++__p; \
} \
*__p _Op##= __e[__i]; \
} \
}
_DEFINE_ARRAY_FUNCTION(+, plus)
_DEFINE_ARRAY_FUNCTION(-, minus)
_DEFINE_ARRAY_FUNCTION(*, multiplies)
_DEFINE_ARRAY_FUNCTION(/, divides)
_DEFINE_ARRAY_FUNCTION(%, modulus)
_DEFINE_ARRAY_FUNCTION(^, xor)
_DEFINE_ARRAY_FUNCTION(|, or)
_DEFINE_ARRAY_FUNCTION(&, and)
_DEFINE_ARRAY_FUNCTION(<<, shift_left)
_DEFINE_ARRAY_FUNCTION(>>, shift_right)
#undef _DEFINE_ARRAY_FUNCTION
} // extern "C++"
#ifdef _G_NO_VALARRAY_TEMPLATE_EXPORT
# define export
# include <std/valarray_array.tcc>
#endif
#endif // __VALARRAY_ARRAY__
// Local Variables:
// mode:c++
// End:

View File

@ -0,0 +1,130 @@
// The template and inlines for the -*- C++ -*- internal _Array helper class.
// Copyright (C) 1997-1999 Cygnus Solutions
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>
#ifndef __VALARRAY_ARRAY_TCC__
#define __VALARRAY_ARRAY_TCC__
extern "C++" {
export template<typename _Tp>
void
__valarray_fill (_Array<_Tp> __a, size_t __n, _Array<bool> __m, const _Tp& __t)
{
_Tp* __p = __a._M_data;
bool* __ok (__m._M_data);
for (size_t __i=0; __i<__n; ++__i, ++__ok, ++__p) {
while (! *__ok) {
++__ok;
++__p;
}
*__p = __t;
}
}
export template<typename _Tp>
void
__valarray_copy (_Array<_Tp> __a, _Array<bool> __m, _Array<_Tp> __b, size_t __n)
{
_Tp* __p (__a._M_data);
bool* __ok (__m._M_data);
for (_Tp* __q=__b._M_data; __q<__b._M_data+__n; ++__q, ++__ok, ++__p) {
while (! *__ok) {
++__ok;
++__p;
}
*__q = *__p;
}
}
export template<typename _Tp>
void
__valarray_copy (_Array<_Tp> __a, size_t __n, _Array<_Tp> __b, _Array<bool> __m)
{
_Tp* __q (__b._M_data);
bool* __ok (__m._M_data);
for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p, ++__ok, ++__q) {
while (! *__ok) {
++__ok;
++__q;
}
*__q = *__p;
}
}
export template<typename _Tp, class _Dom>
void
__valarray_copy (const _Expr<_Dom, _Tp>& __e, size_t __n, _Array<_Tp> __a)
{
_Tp* __p (__a._M_data);
for (size_t __i=0; __i<__n; ++__i, ++__p) *__p = __e[__i];
}
export template<typename _Tp, class _Dom>
void
__valarray_copy (const _Expr<_Dom, _Tp>& __e, size_t __n,
_Array<_Tp> __a, size_t __s)
{
_Tp* __p (__a._M_data);
for (size_t __i=0; __i<__n; ++__i, __p+=__s) *__p = __e[__i];
}
export template<typename _Tp, class _Dom>
void
__valarray_copy (const _Expr<_Dom, _Tp>& __e, size_t __n,
_Array<_Tp> __a, _Array<size_t> __i)
{
size_t* __j (__i._M_data);
for (size_t __k=0; __k<__n; ++__k, ++__j) __a._M_data[*__j] = __e[__k];
}
export template<typename _Tp, class _Dom>
void
__valarray_copy (const _Expr<_Dom, _Tp>& __e, size_t __n,
_Array<_Tp> __a, _Array<bool> __m)
{
bool* __ok (__m._M_data);
_Tp* __p (__a._M_data);
for (size_t __i=0; __i<__n; ++__i, ++__ok, ++__p) {
while (! *__ok) {
++__ok;
++__p;
}
*__p = __e[__i];
}
}
} // extern "C++"
#endif // __VALARRAY_ARRAY_TCC__
// Local Variables:
// mode:c++
// End:

File diff suppressed because it is too large Load Diff

View File

@ -37,9 +37,7 @@
extern "C++" {
#ifdef __HONOR_STD
namespace std {
#endif
class logic_error : public exception {
string _what;
@ -92,9 +90,7 @@ public:
underflow_error (const string& what_arg): runtime_error (what_arg) { }
};
#ifdef __HONOR_STD
} // namespace std
#endif
} // extern "C++"

View File

@ -12,10 +12,10 @@
void
__out_of_range (const char *s)
{
throw out_of_range (s);
throw std::out_of_range (s);
}
void __length_error (const char *s)
{
throw length_error (s);
throw std::length_error (s);
}

View File

@ -1,6 +1,103 @@
Sun Mar 14 02:38:07 PST 1999 Jeff Law (law@cygnus.com)
Mon Aug 16 01:29:24 PDT 1999 Jeff Law (law@cygnus.com)
* egcs-1.1.2 Released.
* gcc-2.95.1 Released.
Sun Aug 8 21:06:16 1999 Alexandre Oliva <oliva@dcc.unicamp.br>
* pthread_alloc: Solaris' ctype.h defines _U to 01; use _Up as
template parameter instead.
Wed Jul 28 21:39:31 PDT 1999 Jeff Law (law@cygnus.com)
* gcc-2.95 Released.
Sun Jul 25 23:40:51 PDT 1999 Jeff Law (law@cygnus.com)
* gcc-2.95 Released.
1999-07-11 Martin v. Löwis (loewis@informatik.hu-berlin.de)
* stl_function.h (bind1st, bind2nd): Rename __opr to __oper,
as __opr is used internally by egcs.
* stl_numeric.h (__power, power): Likewise.
1999-06-18 Martin von Löwis <loewis@informatik.hu-berlin.de>
* stl_queue.h: Rename _M_c to c, and _M_comp to comp.
1999-06-17 Alexandre Oliva <oliva@dcc.unicamp.br>
* stl_algo.h (transform): Rename __opr to __oper, as __opr is used
internally by egcs.
Reported by Harri Porten <porten@tu-harburg.de>
1999-05-17 Mark Kettenis <kettenis@gnu.org>
* stl_config.h: Only define __STL_PTHREADS with GLIBC >= 2 for
Linux.
Mon May 17 03:33:47 1999 Mumit Khan <khan@xraylith.wisc.edu>
* stl_config.h (__CYGWIN__): Cygwin newlib RTL lacks drand48.
1999-05-07 Ulrich Drepper <drepper@cygnus.com>
* stl_alloc.h: Make it possible to compile with __USE_MALLOC.
Tue Apr 13 00:32:57 1999 Mumit Khan <khan@xraylith.wisc.edu>
* stl_config.h (__MINGW32__): Mingw32 RTL lacks drand48.
Sun Apr 11 23:48:30 1999 Jeffrey A Law (law@cygnus.com)
* bitset: Re-install Alexandre's lost patch from 1998-11-27.
1999-01-20 Ulrich Drepper <drepper@cygnus.com>
* stl_construct.h (__destroy_aux): Use != instead of < for
ForwardIterator comparison.
Patch by jmaurer@menuett.rhein-main.de (Jens Maurer).
1999-01-20 Mark Mitchell <mark@markmitchell.com>
* stl_config.h (__STL_USE_NAMESPACES): Define.
1998-11-27 Alexandre Oliva <oliva@dcc.unicamp.br>
* bitset: Explicitly convert basic_string<...>::npos to size_t in
default argument to constructor, to avoid parse error at `>'.
(__STL_EXPLICIT_FUNCTION_TMPL_ARGS): Replace #if with #ifdef.
1998-11-01 Mark Mitchell <mark@markmitchell.com>
* stl_alloc.h (default_alloc_template::_S_free_list): Don't
qualify _NFREELISTS.
1998-10-11 Mark Mitchell <mark@markmitchell.com>
* stl_config.h (__SGI_STL_USE_AUTO_PTR_CONVERSIONS): Define.
* memory (auto_ptr::operator auto_ptr_ref<_Tp1>): Fix typo.
(auto_ptr::operator auto_ptr<_Tp1>): Add missing
semicolon.
1998-09-03 Jason Merrill <jason@yorick.cygnus.com>
* stl_config.h: Define __STL_HAS_WCHAR_T,
__STL_MEMBER_TEMPLATE_CLASSES, __STL_HAS_NAMESPACES,
__STL_NO_NAMESPACES and __STL_LONG_LONG.
1998-09-02 Jason Merrill <jason@yorick.cygnus.com>
* algorithm alloc.h defalloc.h hash_map.h hash_set.h iterator
memory pthread_alloc pthread_alloc.h rope ropeimpl.h stl_algo.h
stl_algobase.h stl_alloc.h stl_bvector.h stl_config.h
stl_construct.h stl_deque.h stl_function.h stl_hash_fun.h
stl_hash_map.h stl_hash_set.h stl_hashtable.h stl_heap.h
stl_iterator.h stl_list.h stl_map.h stl_multimap.h stl_multiset.h
stl_numeric.h stl_pair.h stl_queue.h stl_raw_storage_iter.h
stl_relops.h stl_rope.h stl_set.h stl_slist.h stl_stack.h
stl_tempbuf.h stl_tree.h stl_uninitialized.h stl_vector.h
tempbuf.h type_traits.h: Update to SGI STL 3.11.
Fri Jul 10 15:20:09 1998 Klaus-Georg Adams <Klaus-Georg.Adams@chemie.uni-karlsruhe.de>
@ -93,7 +190,7 @@ Fri Jul 04 02:17:15 1997 Ulrich Drepper <drepper@cygnus.com>
* tree.h (rb_tree): Reverse order of member initializations
to prevent warnings.
Sun Jun 15 18:17:21 1997 Jason Merrill <jason@yorick.cygnus.com>
* *.h: Update to 6/13 SGI release.
@ -131,7 +228,7 @@ Mon Sep 30 17:56:43 1996 Jason Merrill <jason@yorick.cygnus.com>
Fri Sep 27 19:03:06 1996 Jason Merrill <jason@yorick.cygnus.com>
* alloc.h (__default_alloc_template): lock is a friend.
* alloc.h (__default_alloc_template): lock is a friend.
Thu Sep 19 20:10:37 1996 Jason Merrill <jason@yorick.cygnus.com>
@ -269,5 +366,3 @@ Fri Dec 30 16:29:39 1994 Mike Stump <mrs@cygnus.com>
Tue Nov 29 15:30:30 1994 Per Bothner <bothner@kalessin.cygnus.com>
* Initial check-in, based on HP's October 21, 1994.

View File

@ -1,16 +1,13 @@
This directory contains an SGI release of the C++ Standard Template
Library, slightly modified to work with g++ (version 2.8.0 or newer).
Library, slightly modified to work with g++.
Note that this is based on a pre-Draft Standard for C++.
Things are likely to change. For example, the header file names
are very likely to change. The Allocator interface will change. Etc, etc.
CYGNUS MAKES NO COMMITTMENT (yet) TO SUPPORT BACKWARD COMPATIBILITY FOR STL.
For examples if things that should work, look in the ../tests directory.
For examples of things that should work, look in the ../tests directory.
DOCUMENTATION:
See http://www.sgi.com/Technology/STL/ or http://www.dinkumware.com/
on the World-Wide Web.
--Jason Merrill
Cygnus Support jason@cygnus.com

View File

@ -29,6 +29,7 @@
#include <stl_algobase.h>
#include <stl_construct.h>
#include <stl_uninitialized.h>
#include <stl_tempbuf.h>
#include <stl_algo.h>

View File

@ -33,7 +33,9 @@ using __STD::single_client_alloc;
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
using __STD::__malloc_alloc_oom_handler;
#endif /* __STL_STATIC_TEMPLATE_MEMBER_BUG */
#ifdef __STL_USE_STD_ALLOCATORS
using __STD::allocator;
#endif /* __STL_USE_STD_ALLOCATORS */
#endif /* __STL_USE_NAMESPACES */

1063
contrib/libstdc++/stl/bitset Normal file

File diff suppressed because it is too large Load Diff

View File

@ -15,12 +15,13 @@
// Inclusion of this file is DEPRECATED. This is the original HP
// default allocator. It is provided only for backward compatibility.
//
// This file WILL BE REMOVED in a future release.
//
// DO NOT USE THIS FILE unless you have an old container implementation
// that requires an allocator with the HP-style interface. SGI STL
// uses a different allocator interface. SGI-style allocators are not
// parametrized with respect to the object type; they traffic in void *
// pointers. This file is not included by any other SGI STL header.
// that requires an allocator with the HP-style interface.
//
// Standard-conforming allocators have a very different interface. The
// standard default allocator is declared in the header <memory>.
#ifndef DEFALLOC_H
#define DEFALLOC_H

View File

@ -31,6 +31,7 @@
#include <stl_hashtable.h>
#endif
#include <algobase.h>
#include <stl_hash_map.h>
#ifdef __STL_USE_NAMESPACES

View File

@ -31,6 +31,7 @@
#include <stl_hashtable.h>
#endif
#include <algobase.h>
#include <stl_hash_set.h>
#ifdef __STL_USE_NAMESPACES

View File

@ -29,8 +29,12 @@
#include <stl_config.h>
#include <stl_relops.h>
#include <stddef.h>
#include <stddef.h> /* XXX should use <cstddef> */
#if 0 /* XXX define a flag for this */
#include <iostream>
#else
#include <iostream.h>
#endif
#include <stl_iterator.h>
#endif /* __SGI_STL_ITERATOR */

View File

@ -22,64 +22,83 @@
#include <stl_uninitialized.h>
#include <stl_raw_storage_iter.h>
// Note: auto_ptr is commented out in this release because the details
// of the interface are still being discussed by the C++ standardization
// committee. It will be included once the iterface is finalized.
#if 0
#if defined(_MUTABLE_IS_KEYWORD) && defined(_EXPLICIT_IS_KEYWORD) && \
defined(__STL_MEMBER_TEMPLATES)
#if defined(__STL_MEMBER_TEMPLATES)
__STL_BEGIN_NAMESPACE
template <class X> class auto_ptr {
template <class _Tp> class auto_ptr {
private:
X* ptr;
mutable bool owns;
_Tp* _M_ptr;
public:
typedef X element_type;
explicit auto_ptr(X* p = 0) __STL_NOTHROW : ptr(p), owns(p) {}
auto_ptr(const auto_ptr& a) __STL_NOTHROW : ptr(a.ptr), owns(a.owns) {
a.owns = 0;
typedef _Tp element_type;
explicit auto_ptr(_Tp* __p = 0) __STL_NOTHROW : _M_ptr(__p) {}
auto_ptr(auto_ptr& __a) __STL_NOTHROW : _M_ptr(__a.release()) {}
template <class _Tp1> auto_ptr(auto_ptr<_Tp1>& __a) __STL_NOTHROW
: _M_ptr(__a.release()) {}
auto_ptr& operator=(auto_ptr& __a) __STL_NOTHROW {
if (&__a != this) {
delete _M_ptr;
_M_ptr = __a.release();
}
return *this;
}
template <class T> auto_ptr(const auto_ptr<T>& a) __STL_NOTHROW
: ptr(a.ptr), owns(a.owns) {
a.owns = 0;
template <class _Tp1>
auto_ptr& operator=(auto_ptr<_Tp1>& __a) __STL_NOTHROW {
if (__a.get() != this->get()) {
delete _M_ptr;
_M_ptr = __a.release();
}
return *this;
}
~auto_ptr() __STL_NOTHROW { delete _M_ptr; }
_Tp& operator*() const __STL_NOTHROW {
return *_M_ptr;
}
_Tp* operator->() const __STL_NOTHROW {
return _M_ptr;
}
_Tp* get() const __STL_NOTHROW {
return _M_ptr;
}
_Tp* release() __STL_NOTHROW {
_Tp* __tmp = _M_ptr;
_M_ptr = 0;
return __tmp;
}
void reset(_Tp* __p = 0) __STL_NOTHROW {
delete _M_ptr;
_M_ptr = __p;
}
auto_ptr& operator=(const auto_ptr& a) __STL_NOTHROW {
if (&a != this) {
if (owns)
delete ptr;
owns = a.owns;
ptr = a.ptr;
a.owns = 0;
}
}
template <class T> auto_ptr& operator=(const auto_ptr<T>& a) __STL_NOTHROW {
if (&a != this) {
if (owns)
delete ptr;
owns = a.owns;
ptr = a.ptr;
a.owns = 0;
}
}
~auto_ptr() {
if (owns)
delete ptr;
}
// According to the C++ standard, these conversions are required. Most
// present-day compilers, however, do not enforce that requirement---and,
// in fact, most present-day compilers do not support the language
// features that these conversions rely on.
#ifdef __SGI_STL_USE_AUTO_PTR_CONVERSIONS
X& operator*() const __STL_NOTHROW { return *ptr; }
X* operator->() const __STL_NOTHROW { return ptr; }
X* get() const __STL_NOTHROW { return ptr; }
X* release const __STL_NOTHROW { owns = false; return ptr }
private:
template<class _Tp1> struct auto_ptr_ref {
_Tp1* _M_ptr;
auto_ptr_ref(_Tp1* __p) : _M_ptr(__p) {}
};
public:
auto_ptr(auto_ptr_ref<_Tp> __ref) __STL_NOTHROW
: _M_ptr(__ref._M_ptr) {}
template <class _Tp1> operator auto_ptr_ref<_Tp1>() __STL_NOTHROW
{ return auto_ptr_ref<_Tp>(this->release()); }
template <class _Tp1> operator auto_ptr<_Tp1>() __STL_NOTHROW
{ return auto_ptr<_Tp1>(this->release()); }
#endif /* __SGI_STL_USE_AUTO_PTR_CONVERSIONS */
};
__STL_END_NAMESPACE
#endif /* mutable && explicit && member templates */
#endif /* 0 */
#endif /* member templates */
#endif /* __SGI_STL_MEMORY */

View File

@ -20,7 +20,7 @@
// This should be reasonably fast even in the presence of threads.
// The down side is that storage may not be well-utilized.
// It is not an error to allocate memory in thread A and deallocate
// it n thread B. But this effectively transfers ownership of the memory,
// it in thread B. But this effectively transfers ownership of the memory,
// so that it can only be reallocated by thread B. Thus this can effectively
// result in a storage leak if it's done on a regular basis.
// It can also result in frequent sharing of
@ -35,308 +35,440 @@
__STL_BEGIN_NAMESPACE
// Note that this class has nonstatic members. We instantiate it once
// per thread.
template <bool dummy>
class __pthread_alloc_template {
#define __STL_DATA_ALIGNMENT 8
private:
enum {ALIGN = 8};
enum {MAX_BYTES = 128}; // power of 2
enum {NFREELISTS = MAX_BYTES/ALIGN};
union _Pthread_alloc_obj {
union _Pthread_alloc_obj * __free_list_link;
char __client_data[__STL_DATA_ALIGNMENT]; /* The client sees this. */
};
union obj {
union obj * free_list_link;
char client_data[ALIGN]; /* The client sees this. */
};
// Pthread allocators don't appear to the client to have meaningful
// instances. We do in fact need to associate some state with each
// thread. That state is represented by
// _Pthread_alloc_per_thread_state<_Max_size>.
// Per instance state
obj* volatile free_list[NFREELISTS];
__pthread_alloc_template<dummy>* next; // Free list link
static size_t ROUND_UP(size_t bytes) {
return (((bytes) + ALIGN-1) & ~(ALIGN - 1));
}
static size_t FREELIST_INDEX(size_t bytes) {
return (((bytes) + ALIGN-1)/ALIGN - 1);
template<size_t _Max_size>
struct _Pthread_alloc_per_thread_state {
typedef _Pthread_alloc_obj __obj;
enum { _S_NFREELISTS = _Max_size/__STL_DATA_ALIGNMENT };
_Pthread_alloc_obj* volatile __free_list[_S_NFREELISTS];
_Pthread_alloc_per_thread_state<_Max_size> * __next;
// Free list link for list of available per thread structures.
// When one of these becomes available for reuse due to thread
// termination, any objects in its free list remain associated
// with it. The whole structure may then be used by a newly
// created thread.
_Pthread_alloc_per_thread_state() : __next(0)
{
memset((void *)__free_list, 0, _S_NFREELISTS * sizeof(__obj *));
}
// Returns an object of size __n, and possibly adds to size n free list.
void *_M_refill(size_t __n);
};
// Pthread-specific allocator.
// The argument specifies the largest object size allocated from per-thread
// free lists. Larger objects are allocated using malloc_alloc.
// Max_size must be a power of 2.
template <size_t _Max_size = 128>
class _Pthread_alloc_template {
public: // but only for internal use:
typedef _Pthread_alloc_obj __obj;
// Returns an object of size n, and optionally adds to size n free list.
void *refill(size_t n);
// Allocates a chunk for nobjs of size "size". nobjs may be reduced
// if it is inconvenient to allocate the requested number.
static char *chunk_alloc(size_t size, int &nobjs);
static char *_S_chunk_alloc(size_t __size, int &__nobjs);
enum {_S_ALIGN = __STL_DATA_ALIGNMENT};
static size_t _S_round_up(size_t __bytes) {
return (((__bytes) + _S_ALIGN-1) & ~(_S_ALIGN - 1));
}
static size_t _S_freelist_index(size_t __bytes) {
return (((__bytes) + _S_ALIGN-1)/_S_ALIGN - 1);
}
private:
// Chunk allocation state. And other shared state.
// Protected by chunk_allocator_lock.
static pthread_mutex_t chunk_allocator_lock;
static char *start_free;
static char *end_free;
static size_t heap_size;
static __pthread_alloc_template<dummy>* free_allocators;
static pthread_key_t key;
static bool key_initialized;
// Pthread key under which allocator is stored.
// Allocator instances that are currently unclaimed by any thread.
static void destructor(void *instance);
// Function to be called on thread exit to reclaim allocator
// instance.
static __pthread_alloc_template<dummy> *new_allocator();
// Return a recycled or new allocator instance.
static __pthread_alloc_template<dummy> *get_allocator_instance();
// ensure that the current thread has an associated
// allocator instance.
class lock {
// Protected by _S_chunk_allocator_lock.
static pthread_mutex_t _S_chunk_allocator_lock;
static char *_S_start_free;
static char *_S_end_free;
static size_t _S_heap_size;
static _Pthread_alloc_per_thread_state<_Max_size>* _S_free_per_thread_states;
static pthread_key_t _S_key;
static bool _S_key_initialized;
// Pthread key under which per thread state is stored.
// Allocator instances that are currently unclaimed by any thread.
static void _S_destructor(void *instance);
// Function to be called on thread exit to reclaim per thread
// state.
static _Pthread_alloc_per_thread_state<_Max_size> *_S_new_per_thread_state();
// Return a recycled or new per thread state.
static _Pthread_alloc_per_thread_state<_Max_size> *_S_get_per_thread_state();
// ensure that the current thread has an associated
// per thread state.
friend class _M_lock;
class _M_lock {
public:
lock () { pthread_mutex_lock(&chunk_allocator_lock); }
~lock () { pthread_mutex_unlock(&chunk_allocator_lock); }
_M_lock () { pthread_mutex_lock(&_S_chunk_allocator_lock); }
~_M_lock () { pthread_mutex_unlock(&_S_chunk_allocator_lock); }
};
friend class lock;
public:
__pthread_alloc_template() : next(0)
/* n must be > 0 */
static void * allocate(size_t __n)
{
memset((void *)free_list, 0, NFREELISTS * sizeof(obj *));
}
__obj * volatile * __my_free_list;
__obj * __RESTRICT __result;
_Pthread_alloc_per_thread_state<_Max_size>* __a;
/* n must be > 0 */
static void * allocate(size_t n)
{
obj * volatile * my_free_list;
obj * __RESTRICT result;
__pthread_alloc_template<dummy>* a;
if (n > MAX_BYTES) {
return(malloc(n));
if (__n > _Max_size) {
return(malloc_alloc::allocate(__n));
}
if (!key_initialized ||
!(a = (__pthread_alloc_template<dummy>*)
pthread_getspecific(key))) {
a = get_allocator_instance();
if (!_S_key_initialized ||
!(__a = (_Pthread_alloc_per_thread_state<_Max_size>*)
pthread_getspecific(_S_key))) {
__a = _S_get_per_thread_state();
}
my_free_list = a -> free_list + FREELIST_INDEX(n);
result = *my_free_list;
if (result == 0) {
void *r = a -> refill(ROUND_UP(n));
return r;
__my_free_list = __a -> __free_list + _S_freelist_index(__n);
__result = *__my_free_list;
if (__result == 0) {
void *__r = __a -> _M_refill(_S_round_up(__n));
return __r;
}
*my_free_list = result -> free_list_link;
return (result);
*__my_free_list = __result -> __free_list_link;
return (__result);
};
/* p may not be 0 */
static void deallocate(void *p, size_t n)
static void deallocate(void *__p, size_t __n)
{
obj *q = (obj *)p;
obj * volatile * my_free_list;
__pthread_alloc_template<dummy>* a;
__obj *__q = (__obj *)__p;
__obj * volatile * __my_free_list;
_Pthread_alloc_per_thread_state<_Max_size>* __a;
if (n > MAX_BYTES) {
free(p);
return;
if (__n > _Max_size) {
malloc_alloc::deallocate(__p, __n);
return;
}
if (!key_initialized ||
!(a = (__pthread_alloc_template<dummy>*)
pthread_getspecific(key))) {
a = get_allocator_instance();
if (!_S_key_initialized ||
!(__a = (_Pthread_alloc_per_thread_state<_Max_size> *)
pthread_getspecific(_S_key))) {
__a = _S_get_per_thread_state();
}
my_free_list = a->free_list + FREELIST_INDEX(n);
q -> free_list_link = *my_free_list;
*my_free_list = q;
__my_free_list = __a->__free_list + _S_freelist_index(__n);
__q -> __free_list_link = *__my_free_list;
*__my_free_list = __q;
}
static void * reallocate(void *p, size_t old_sz, size_t new_sz);
static void * reallocate(void *__p, size_t __old_sz, size_t __new_sz);
} ;
typedef __pthread_alloc_template<false> pthread_alloc;
typedef _Pthread_alloc_template<> pthread_alloc;
template <bool dummy>
void __pthread_alloc_template<dummy>::destructor(void * instance)
template <size_t _Max_size>
void _Pthread_alloc_template<_Max_size>::_S_destructor(void * __instance)
{
__pthread_alloc_template<dummy>* a =
(__pthread_alloc_template<dummy>*)instance;
a -> next = free_allocators;
free_allocators = a;
_M_lock __lock_instance; // Need to acquire lock here.
_Pthread_alloc_per_thread_state<_Max_size>* __s =
(_Pthread_alloc_per_thread_state<_Max_size> *)__instance;
__s -> __next = _S_free_per_thread_states;
_S_free_per_thread_states = __s;
}
template <bool dummy>
__pthread_alloc_template<dummy>*
__pthread_alloc_template<dummy>::new_allocator()
{
if (0 != free_allocators) {
__pthread_alloc_template<dummy>* result = free_allocators;
free_allocators = free_allocators -> next;
return result;
template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_new_per_thread_state()
{
/* lock already held here. */
if (0 != _S_free_per_thread_states) {
_Pthread_alloc_per_thread_state<_Max_size> *__result =
_S_free_per_thread_states;
_S_free_per_thread_states = _S_free_per_thread_states -> __next;
return __result;
} else {
return new __pthread_alloc_template<dummy>;
return new _Pthread_alloc_per_thread_state<_Max_size>;
}
}
template <bool dummy>
__pthread_alloc_template<dummy>*
__pthread_alloc_template<dummy>::get_allocator_instance()
template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_get_per_thread_state()
{
__pthread_alloc_template<dummy>* result;
if (!key_initialized) {
/*REFERENCED*/
lock lock_instance;
if (!key_initialized) {
if (pthread_key_create(&key, destructor)) {
abort(); // failed
}
key_initialized = true;
}
/*REFERENCED*/
_M_lock __lock_instance; // Need to acquire lock here.
_Pthread_alloc_per_thread_state<_Max_size> * __result;
if (!_S_key_initialized) {
if (pthread_key_create(&_S_key, _S_destructor)) {
abort(); // failed
}
_S_key_initialized = true;
}
result = new_allocator();
if (pthread_setspecific(key, result)) abort();
return result;
__result = _S_new_per_thread_state();
if (pthread_setspecific(_S_key, __result)) abort();
return __result;
}
/* We allocate memory in large chunks in order to avoid fragmenting */
/* the malloc heap too much. */
/* We assume that size is properly aligned. */
template <bool dummy>
char *__pthread_alloc_template<dummy>
::chunk_alloc(size_t size, int &nobjs)
/* We allocate memory in large chunks in order to avoid fragmenting */
/* the malloc heap too much. */
/* We assume that size is properly aligned. */
template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_chunk_alloc(size_t __size, int &__nobjs)
{
{
char * result;
size_t total_bytes;
size_t bytes_left;
char * __result;
size_t __total_bytes;
size_t __bytes_left;
/*REFERENCED*/
lock lock_instance; // Acquire lock for this routine
_M_lock __lock_instance; // Acquire lock for this routine
total_bytes = size * nobjs;
bytes_left = end_free - start_free;
if (bytes_left >= total_bytes) {
result = start_free;
start_free += total_bytes;
return(result);
} else if (bytes_left >= size) {
nobjs = bytes_left/size;
total_bytes = size * nobjs;
result = start_free;
start_free += total_bytes;
return(result);
__total_bytes = __size * __nobjs;
__bytes_left = _S_end_free - _S_start_free;
if (__bytes_left >= __total_bytes) {
__result = _S_start_free;
_S_start_free += __total_bytes;
return(__result);
} else if (__bytes_left >= __size) {
__nobjs = __bytes_left/__size;
__total_bytes = __size * __nobjs;
__result = _S_start_free;
_S_start_free += __total_bytes;
return(__result);
} else {
size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);
// Try to make use of the left-over piece.
if (bytes_left > 0) {
__pthread_alloc_template<dummy>* a =
(__pthread_alloc_template<dummy>*)pthread_getspecific(key);
obj * volatile * my_free_list =
a->free_list + FREELIST_INDEX(bytes_left);
size_t __bytes_to_get =
2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
// Try to make use of the left-over piece.
if (__bytes_left > 0) {
_Pthread_alloc_per_thread_state<_Max_size>* __a =
(_Pthread_alloc_per_thread_state<_Max_size>*)
pthread_getspecific(_S_key);
__obj * volatile * __my_free_list =
__a->__free_list + _S_freelist_index(__bytes_left);
((obj *)start_free) -> free_list_link = *my_free_list;
*my_free_list = (obj *)start_free;
}
# ifdef _SGI_SOURCE
// Try to get memory that's aligned on something like a
// cache line boundary, so as to avoid parceling out
// parts of the same line to different threads and thus
// possibly different processors.
{
const int cache_line_size = 128; // probable upper bound
bytes_to_get &= ~(cache_line_size-1);
start_free = (char *)memalign(cache_line_size, bytes_to_get);
if (0 == start_free) {
start_free = (char *)malloc_alloc::allocate(bytes_to_get);
}
}
# else /* !SGI_SOURCE */
start_free = (char *)malloc_alloc::allocate(bytes_to_get);
((__obj *)_S_start_free) -> __free_list_link = *__my_free_list;
*__my_free_list = (__obj *)_S_start_free;
}
# ifdef _SGI_SOURCE
// Try to get memory that's aligned on something like a
// cache line boundary, so as to avoid parceling out
// parts of the same line to different threads and thus
// possibly different processors.
{
const int __cache_line_size = 128; // probable upper bound
__bytes_to_get &= ~(__cache_line_size-1);
_S_start_free = (char *)memalign(__cache_line_size, __bytes_to_get);
if (0 == _S_start_free) {
_S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
}
}
# else /* !SGI_SOURCE */
_S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
# endif
heap_size += bytes_to_get;
end_free = start_free + bytes_to_get;
_S_heap_size += __bytes_to_get;
_S_end_free = _S_start_free + __bytes_to_get;
}
}
// lock is released here
return(chunk_alloc(size, nobjs));
return(_S_chunk_alloc(__size, __nobjs));
}
/* Returns an object of size n, and optionally adds to size n free list.*/
/* We assume that n is properly aligned. */
/* We hold the allocation lock. */
template <bool dummy>
void *__pthread_alloc_template<dummy>
::refill(size_t n)
/* We assume that n is properly aligned. */
/* We hold the allocation lock. */
template <size_t _Max_size>
void *_Pthread_alloc_per_thread_state<_Max_size>
::_M_refill(size_t __n)
{
int nobjs = 128;
char * chunk = chunk_alloc(n, nobjs);
obj * volatile * my_free_list;
obj * result;
obj * current_obj, * next_obj;
int i;
int __nobjs = 128;
char * __chunk =
_Pthread_alloc_template<_Max_size>::_S_chunk_alloc(__n, __nobjs);
__obj * volatile * __my_free_list;
__obj * __result;
__obj * __current_obj, * __next_obj;
int __i;
if (1 == nobjs) {
return(chunk);
if (1 == __nobjs) {
return(__chunk);
}
my_free_list = free_list + FREELIST_INDEX(n);
__my_free_list = __free_list
+ _Pthread_alloc_template<_Max_size>::_S_freelist_index(__n);
/* Build free list in chunk */
result = (obj *)chunk;
*my_free_list = next_obj = (obj *)(chunk + n);
for (i = 1; ; i++) {
current_obj = next_obj;
next_obj = (obj *)((char *)next_obj + n);
if (nobjs - 1 == i) {
current_obj -> free_list_link = 0;
break;
} else {
current_obj -> free_list_link = next_obj;
}
__result = (__obj *)__chunk;
*__my_free_list = __next_obj = (__obj *)(__chunk + __n);
for (__i = 1; ; __i++) {
__current_obj = __next_obj;
__next_obj = (__obj *)((char *)__next_obj + __n);
if (__nobjs - 1 == __i) {
__current_obj -> __free_list_link = 0;
break;
} else {
__current_obj -> __free_list_link = __next_obj;
}
}
return(result);
return(__result);
}
template <bool dummy>
void *__pthread_alloc_template<dummy>
::reallocate(void *p, size_t old_sz, size_t new_sz)
template <size_t _Max_size>
void *_Pthread_alloc_template<_Max_size>
::reallocate(void *__p, size_t __old_sz, size_t __new_sz)
{
void * result;
size_t copy_sz;
void * __result;
size_t __copy_sz;
if (old_sz > MAX_BYTES && new_sz > MAX_BYTES) {
return(realloc(p, new_sz));
if (__old_sz > _Max_size
&& __new_sz > _Max_size) {
return(realloc(__p, __new_sz));
}
if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p);
result = allocate(new_sz);
copy_sz = new_sz > old_sz? old_sz : new_sz;
memcpy(result, p, copy_sz);
deallocate(p, old_sz);
return(result);
if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p);
__result = allocate(__new_sz);
__copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
memcpy(__result, __p, __copy_sz);
deallocate(__p, __old_sz);
return(__result);
}
template <bool dummy>
__pthread_alloc_template<dummy> *
__pthread_alloc_template<dummy>::free_allocators = 0;
template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_free_per_thread_states = 0;
template <bool dummy>
pthread_key_t __pthread_alloc_template<dummy>::key;
template <size_t _Max_size>
pthread_key_t _Pthread_alloc_template<_Max_size>::_S_key;
template <bool dummy>
bool __pthread_alloc_template<dummy>::key_initialized = false;
template <size_t _Max_size>
bool _Pthread_alloc_template<_Max_size>::_S_key_initialized = false;
template <bool dummy>
pthread_mutex_t __pthread_alloc_template<dummy>::chunk_allocator_lock
template <size_t _Max_size>
pthread_mutex_t _Pthread_alloc_template<_Max_size>::_S_chunk_allocator_lock
= PTHREAD_MUTEX_INITIALIZER;
template <bool dummy>
char *__pthread_alloc_template<dummy>
::start_free = 0;
template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_start_free = 0;
template <bool dummy>
char *__pthread_alloc_template<dummy>
::end_free = 0;
template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_end_free = 0;
template <bool dummy>
size_t __pthread_alloc_template<dummy>
::heap_size = 0;
template <size_t _Max_size>
size_t _Pthread_alloc_template<_Max_size>
::_S_heap_size = 0;
#ifdef __STL_USE_STD_ALLOCATORS
template <class _Tp>
class pthread_allocator {
typedef pthread_alloc _S_Alloc; // The underlying allocator.
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template <class _Up> struct rebind {
typedef pthread_allocator<_Up> other;
};
pthread_allocator() __STL_NOTHROW {}
pthread_allocator(const pthread_allocator& a) __STL_NOTHROW {}
template <class _Up> pthread_allocator(const pthread_allocator<_Up>&)
__STL_NOTHROW {}
~pthread_allocator() __STL_NOTHROW {}
pointer address(reference __x) const { return &__x; }
const_pointer address(const_reference __x) const { return &__x; }
// __n is permitted to be 0. The C++ standard says nothing about what
// the return value is when __n == 0.
_Tp* allocate(size_type __n, const void* = 0) {
return __n != 0 ? static_cast<_Tp*>(_S_Alloc::allocate(__n * sizeof(_Tp)))
: 0;
}
// p is not permitted to be a null pointer.
void deallocate(pointer __p, size_type __n)
{ _S_Alloc::deallocate(__p, __n * sizeof(_Tp)); }
size_type max_size() const __STL_NOTHROW
{ return size_t(-1) / sizeof(_Tp); }
void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void destroy(pointer _p) { _p->~_Tp(); }
};
template<>
class pthread_allocator<void> {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template <class _Up> struct rebind {
typedef pthread_allocator<_Up> other;
};
};
template <size_t _Max_size>
inline bool operator==(const _Pthread_alloc_template<_Max_size>&,
const _Pthread_alloc_template<_Max_size>&)
{
return true;
}
template <class _T1, class _T2>
inline bool operator==(const pthread_allocator<_T1>&,
const pthread_allocator<_T2>& a2)
{
return true;
}
template <class _T1, class _T2>
inline bool operator!=(const pthread_allocator<_T1>&,
const pthread_allocator<_T2>&)
{
return false;
}
template <class _Tp, size_t _Max_size>
struct _Alloc_traits<_Tp, _Pthread_alloc_template<_Max_size> >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max_size> > _Alloc_type;
typedef __allocator<_Tp, _Pthread_alloc_template<_Max_size> >
allocator_type;
};
template <class _Tp, class _Up, size_t _Max>
struct _Alloc_traits<_Tp, __allocator<_Up, _Pthread_alloc_template<_Max> > >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max> > _Alloc_type;
typedef __allocator<_Tp, _Pthread_alloc_template<_Max> > allocator_type;
};
template <class _Tp, class _Up>
struct _Alloc_traits<_Tp, pthread_allocator<_Up> >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, _Pthread_alloc_template<> > _Alloc_type;
typedef pthread_allocator<_Tp> allocator_type;
};
#endif /* __STL_USE_STD_ALLOCATORS */
__STL_END_NAMESPACE

View File

@ -18,8 +18,8 @@
#ifdef __STL_USE_NAMESPACES
using __STD::__pthread_alloc_template;
using __STL::pthread_alloc;
using __STD::_Pthread_alloc_template;
using __STD::pthread_alloc;
#endif /* __STL_USE_NAMESPACES */

View File

@ -15,7 +15,7 @@
#define __SGI_STL_ROPE
#include <stl_algobase.h>
#include <tempbuf.h>
#include <stl_tempbuf.h>
#include <stl_algo.h>
#include <stl_function.h>
#include <stl_numeric.h>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -12,7 +12,7 @@
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
@ -58,381 +58,465 @@
__STL_BEGIN_NAMESPACE
template <class ForwardIterator1, class ForwardIterator2, class T>
inline void __iter_swap(ForwardIterator1 a, ForwardIterator2 b, T*) {
T tmp = *a;
*a = *b;
*b = tmp;
// swap and iter_swap
template <class _ForwardIter1, class _ForwardIter2, class _Tp>
inline void __iter_swap(_ForwardIter1 __a, _ForwardIter2 __b, _Tp*) {
_Tp __tmp = *__a;
*__a = *__b;
*__b = __tmp;
}
template <class ForwardIterator1, class ForwardIterator2>
inline void iter_swap(ForwardIterator1 a, ForwardIterator2 b) {
__iter_swap(a, b, value_type(a));
template <class _ForwardIter1, class _ForwardIter2>
inline void iter_swap(_ForwardIter1 __a, _ForwardIter2 __b) {
__iter_swap(__a, __b, __VALUE_TYPE(__a));
}
template <class T>
inline void swap(T& a, T& b) {
T tmp = a;
a = b;
b = tmp;
template <class _Tp>
inline void swap(_Tp& __a, _Tp& __b) {
_Tp __tmp = __a;
__a = __b;
__b = __tmp;
}
//--------------------------------------------------
// min and max
#ifndef __BORLANDC__
#undef min
#undef max
template <class T>
inline const T& min(const T& a, const T& b) {
return b < a ? b : a;
template <class _Tp>
inline const _Tp& min(const _Tp& __a, const _Tp& __b) {
return __b < __a ? __b : __a;
}
template <class T>
inline const T& max(const T& a, const T& b) {
return a < b ? b : a;
template <class _Tp>
inline const _Tp& max(const _Tp& __a, const _Tp& __b) {
return __a < __b ? __b : __a;
}
#endif /* __BORLANDC__ */
template <class T, class Compare>
inline const T& min(const T& a, const T& b, Compare comp) {
return comp(b, a) ? b : a;
template <class _Tp, class _Compare>
inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) {
return __comp(__b, __a) ? __b : __a;
}
template <class T, class Compare>
inline const T& max(const T& a, const T& b, Compare comp) {
return comp(a, b) ? b : a;
template <class _Tp, class _Compare>
inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) {
return __comp(__a, __b) ? __b : __a;
}
template <class InputIterator, class OutputIterator>
inline OutputIterator __copy(InputIterator first, InputIterator last,
OutputIterator result, input_iterator_tag)
//--------------------------------------------------
// copy
// All of these auxiliary functions serve two purposes. (1) Replace
// calls to copy with memmove whenever possible. (Memmove, not memcpy,
// because the input and output ranges are permitted to overlap.)
// (2) If we're using random access iterators, then write the loop as
// a for loop with an explicit count. The auxiliary class __copy_dispatch
// is a workaround for compilers that don't support partial ordering of
// function templates.
template <class _InputIter, class _OutputIter, class _Distance>
inline _OutputIter __copy(_InputIter __first, _InputIter __last,
_OutputIter __result,
input_iterator_tag, _Distance*)
{
for ( ; first != last; ++result, ++first)
*result = *first;
return result;
for ( ; __first != __last; ++__result, ++__first)
*__result = *__first;
return __result;
}
template <class RandomAccessIterator, class OutputIterator, class Distance>
inline OutputIterator
__copy_d(RandomAccessIterator first, RandomAccessIterator last,
OutputIterator result, Distance*)
template <class _RandomAccessIter, class _OutputIter, class _Distance>
inline _OutputIter
__copy(_RandomAccessIter __first, _RandomAccessIter __last,
_OutputIter __result, random_access_iterator_tag, _Distance*)
{
for (Distance n = last - first; n > 0; --n, ++result, ++first)
*result = *first;
return result;
}
template <class RandomAccessIterator, class OutputIterator>
inline OutputIterator
__copy(RandomAccessIterator first, RandomAccessIterator last,
OutputIterator result, random_access_iterator_tag)
{
return __copy_d(first, last, result, distance_type(first));
}
template <class InputIterator, class OutputIterator>
struct __copy_dispatch
{
OutputIterator operator()(InputIterator first, InputIterator last,
OutputIterator result) {
return __copy(first, last, result, iterator_category(first));
for (_Distance __n = __last - __first; __n > 0; --__n) {
*__result = *__first;
++__first;
++__result;
}
};
return __result;
}
template <class _Tp>
inline _Tp*
__copy_trivial(const _Tp* __first, const _Tp* __last, _Tp* __result) {
memmove(__result, __first, sizeof(_Tp) * (__last - __first));
return __result + (__last - __first);
}
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class T>
inline T* __copy_t(const T* first, const T* last, T* result, __true_type) {
memmove(result, first, sizeof(T) * (last - first));
return result + (last - first);
}
template <class T>
inline T* __copy_t(const T* first, const T* last, T* result, __false_type) {
return __copy_d(first, last, result, (ptrdiff_t*) 0);
}
template <class T>
struct __copy_dispatch<T*, T*>
{
T* operator()(T* first, T* last, T* result) {
typedef typename __type_traits<T>::has_trivial_assignment_operator t;
return __copy_t(first, last, result, t());
template <class _InputIter, class _OutputIter, class _BoolType>
struct __copy_dispatch {
static _OutputIter copy(_InputIter __first, _InputIter __last,
_OutputIter __result) {
typedef typename iterator_traits<_InputIter>::iterator_category _Category;
typedef typename iterator_traits<_InputIter>::difference_type _Distance;
return __copy(__first, __last, __result, _Category(), (_Distance*) 0);
}
};
template <class T>
struct __copy_dispatch<const T*, T*>
template <class _Tp>
struct __copy_dispatch<_Tp*, _Tp*, __true_type>
{
T* operator()(const T* first, const T* last, T* result) {
typedef typename __type_traits<T>::has_trivial_assignment_operator t;
return __copy_t(first, last, result, t());
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
return __copy_trivial(__first, __last, __result);
}
};
template <class _Tp>
struct __copy_dispatch<const _Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
return __copy_trivial(__first, __last, __result);
}
};
template <class _InputIter, class _OutputIter>
inline _OutputIter copy(_InputIter __first, _InputIter __last,
_OutputIter __result) {
typedef typename iterator_traits<_InputIter>::value_type _Tp;
typedef typename __type_traits<_Tp>::has_trivial_assignment_operator
_Trivial;
return __copy_dispatch<_InputIter, _OutputIter, _Trivial>
::copy(__first, __last, __result);
}
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
template <class _InputIter, class _OutputIter>
inline _OutputIter copy(_InputIter __first, _InputIter __last,
_OutputIter __result)
{
return __copy(__first, __last, __result,
__ITERATOR_CATEGORY(__first),
__DISTANCE_TYPE(__first));
}
inline char* copy(const char* __first, const char* __last, char* __result) {
memmove(__result, __first, __last - __first);
return __result + (__last - __first);
}
inline wchar_t* copy(const wchar_t* __first, const wchar_t* __last,
wchar_t* __result) {
memmove(__result, __first, sizeof(wchar_t) * (__last - __first));
return __result + (__last - __first);
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
template <class InputIterator, class OutputIterator>
inline OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator result)
//--------------------------------------------------
// copy_backward
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _Distance>
inline _BidirectionalIter2 __copy_backward(_BidirectionalIter1 __first,
_BidirectionalIter1 __last,
_BidirectionalIter2 __result,
bidirectional_iterator_tag,
_Distance*)
{
return __copy_dispatch<InputIterator,OutputIterator>()(first, last, result);
while (__first != __last)
*--__result = *--__last;
return __result;
}
inline char* copy(const char* first, const char* last, char* result) {
memmove(result, first, last - first);
return result + (last - first);
template <class _RandomAccessIter, class _BidirectionalIter, class _Distance>
inline _BidirectionalIter __copy_backward(_RandomAccessIter __first,
_RandomAccessIter __last,
_BidirectionalIter __result,
random_access_iterator_tag,
_Distance*)
{
for (_Distance __n = __last - __first; __n > 0; --__n)
*--__result = *--__last;
return __result;
}
inline wchar_t* copy(const wchar_t* first, const wchar_t* last,
wchar_t* result) {
memmove(result, first, sizeof(wchar_t) * (last - first));
return result + (last - first);
}
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class BidirectionalIterator1, class BidirectionalIterator2>
inline BidirectionalIterator2 __copy_backward(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result) {
while (first != last) *--result = *--last;
return result;
}
// This dispatch class is a workaround for compilers that do not
// have partial ordering of function templates. All we're doing is
// creating a specialization so that we can turn a call to copy_backward
// into a memmove whenever possible.
template <class BidirectionalIterator1, class BidirectionalIterator2>
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _BoolType>
struct __copy_backward_dispatch
{
BidirectionalIterator2 operator()(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result) {
return __copy_backward(first, last, result);
typedef typename iterator_traits<_BidirectionalIter1>::iterator_category
_Cat;
typedef typename iterator_traits<_BidirectionalIter1>::difference_type
_Distance;
static _BidirectionalIter2 copy(_BidirectionalIter1 __first,
_BidirectionalIter1 __last,
_BidirectionalIter2 __result) {
return __copy_backward(__first, __last, __result, _Cat(), (_Distance*) 0);
}
};
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _Tp>
struct __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
const ptrdiff_t _Num = __last - __first;
memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
return __result - _Num;
}
};
template <class T>
inline T* __copy_backward_t(const T* first, const T* last, T* result,
__true_type) {
const ptrdiff_t N = last - first;
memmove(result - N, first, sizeof(T) * N);
return result - N;
template <class _Tp>
struct __copy_backward_dispatch<const _Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
return __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
::copy(__first, __last, __result);
}
};
template <class _BI1, class _BI2>
inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) {
typedef typename __type_traits<typename iterator_traits<_BI2>::value_type>
::has_trivial_assignment_operator
_Trivial;
return __copy_backward_dispatch<_BI1, _BI2, _Trivial>
::copy(__first, __last, __result);
}
template <class T>
inline T* __copy_backward_t(const T* first, const T* last, T* result,
__false_type) {
return __copy_backward(first, last, result);
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
template <class _BI1, class _BI2>
inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) {
return __copy_backward(__first, __last, __result,
__ITERATOR_CATEGORY(__first),
__DISTANCE_TYPE(__first));
}
template <class T>
struct __copy_backward_dispatch<T*, T*>
{
T* operator()(T* first, T* last, T* result) {
typedef typename __type_traits<T>::has_trivial_assignment_operator t;
return __copy_backward_t(first, last, result, t());
}
};
template <class T>
struct __copy_backward_dispatch<const T*, T*>
{
T* operator()(const T* first, const T* last, T* result) {
typedef typename __type_traits<T>::has_trivial_assignment_operator t;
return __copy_backward_t(first, last, result, t());
}
};
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
template <class BidirectionalIterator1, class BidirectionalIterator2>
inline BidirectionalIterator2 copy_backward(BidirectionalIterator1 first,
BidirectionalIterator1 last,
BidirectionalIterator2 result) {
return __copy_backward_dispatch<BidirectionalIterator1,
BidirectionalIterator2>()(first, last,
result);
//--------------------------------------------------
// copy_n (not part of the C++ standard)
template <class _InputIter, class _Size, class _OutputIter>
pair<_InputIter, _OutputIter> __copy_n(_InputIter __first, _Size __count,
_OutputIter __result,
input_iterator_tag) {
for ( ; __count > 0; --__count) {
*__result = *__first;
++__first;
++__result;
}
return pair<_InputIter, _OutputIter>(__first, __result);
}
template <class InputIterator, class Size, class OutputIterator>
pair<InputIterator, OutputIterator> __copy_n(InputIterator first, Size count,
OutputIterator result,
input_iterator_tag) {
for ( ; count > 0; --count, ++first, ++result)
*result = *first;
return pair<InputIterator, OutputIterator>(first, result);
}
template <class RandomAccessIterator, class Size, class OutputIterator>
inline pair<RandomAccessIterator, OutputIterator>
__copy_n(RandomAccessIterator first, Size count,
OutputIterator result,
template <class _RAIter, class _Size, class _OutputIter>
inline pair<_RAIter, _OutputIter>
__copy_n(_RAIter __first, _Size __count,
_OutputIter __result,
random_access_iterator_tag) {
RandomAccessIterator last = first + count;
return pair<RandomAccessIterator, OutputIterator>(last,
copy(first, last, result));
_RAIter __last = __first + __count;
return pair<_RAIter, _OutputIter>(__last, copy(__first, __last, __result));
}
template <class InputIterator, class Size, class OutputIterator>
inline pair<InputIterator, OutputIterator>
copy_n(InputIterator first, Size count,
OutputIterator result) {
return __copy_n(first, count, result, iterator_category(first));
template <class _InputIter, class _Size, class _OutputIter>
inline pair<_InputIter, _OutputIter>
__copy_n(_InputIter __first, _Size __count, _OutputIter __result) {
return __copy_n(__first, __count, __result,
__ITERATOR_CATEGORY(__first));
}
template <class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value) {
for ( ; first != last; ++first)
*first = value;
template <class _InputIter, class _Size, class _OutputIter>
inline pair<_InputIter, _OutputIter>
copy_n(_InputIter __first, _Size __count, _OutputIter __result) {
return __copy_n(__first, __count, __result);
}
template <class OutputIterator, class Size, class T>
OutputIterator fill_n(OutputIterator first, Size n, const T& value) {
for ( ; n > 0; --n, ++first)
*first = value;
return first;
//--------------------------------------------------
// fill and fill_n
template <class _ForwardIter, class _Tp>
void fill(_ForwardIter __first, _ForwardIter __last, const _Tp& __value) {
for ( ; __first != __last; ++__first)
*__first = __value;
}
template <class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2) {
while (first1 != last1 && *first1 == *first2) {
++first1;
++first2;
template <class _OutputIter, class _Size, class _Tp>
_OutputIter fill_n(_OutputIter __first, _Size __n, const _Tp& __value) {
for ( ; __n > 0; --__n, ++__first)
*__first = __value;
return __first;
}
//--------------------------------------------------
// equal and mismatch
template <class _InputIter1, class _InputIter2>
pair<_InputIter1, _InputIter2> mismatch(_InputIter1 __first1,
_InputIter1 __last1,
_InputIter2 __first2) {
while (__first1 != __last1 && *__first1 == *__first2) {
++__first1;
++__first2;
}
return pair<InputIterator1, InputIterator2>(first1, first2);
return pair<_InputIter1, _InputIter2>(__first1, __first2);
}
template <class InputIterator1, class InputIterator2, class BinaryPredicate>
pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
BinaryPredicate binary_pred) {
while (first1 != last1 && binary_pred(*first1, *first2)) {
++first1;
++first2;
template <class _InputIter1, class _InputIter2, class _BinaryPredicate>
pair<_InputIter1, _InputIter2> mismatch(_InputIter1 __first1,
_InputIter1 __last1,
_InputIter2 __first2,
_BinaryPredicate __binary_pred) {
while (__first1 != __last1 && __binary_pred(*__first1, *__first2)) {
++__first1;
++__first2;
}
return pair<InputIterator1, InputIterator2>(first1, first2);
return pair<_InputIter1, _InputIter2>(__first1, __first2);
}
template <class InputIterator1, class InputIterator2>
inline bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2) {
for ( ; first1 != last1; ++first1, ++first2)
if (*first1 != *first2)
template <class _InputIter1, class _InputIter2>
inline bool equal(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2) {
for ( ; __first1 != __last1; ++__first1, ++__first2)
if (*__first1 != *__first2)
return false;
return true;
}
template <class InputIterator1, class InputIterator2, class BinaryPredicate>
inline bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate binary_pred) {
for ( ; first1 != last1; ++first1, ++first2)
if (!binary_pred(*first1, *first2))
template <class _InputIter1, class _InputIter2, class _BinaryPredicate>
inline bool equal(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _BinaryPredicate __binary_pred) {
for ( ; __first1 != __last1; ++__first1, ++__first2)
if (!__binary_pred(*__first1, *__first2))
return false;
return true;
}
template <class InputIterator1, class InputIterator2>
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2) {
for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) {
if (*first1 < *first2)
//--------------------------------------------------
// lexicographical_compare and lexicographical_compare_3way.
// (the latter is not part of the C++ standard.)
template <class _InputIter1, class _InputIter2>
bool lexicographical_compare(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2) {
for ( ; __first1 != __last1 && __first2 != __last2
; ++__first1, ++__first2) {
if (*__first1 < *__first2)
return true;
if (*first2 < *first1)
if (*__first2 < *__first1)
return false;
}
return first1 == last1 && first2 != last2;
return __first1 == __last1 && __first2 != __last2;
}
template <class InputIterator1, class InputIterator2, class Compare>
bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp) {
for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) {
if (comp(*first1, *first2))
template <class _InputIter1, class _InputIter2, class _Compare>
bool lexicographical_compare(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_Compare __comp) {
for ( ; __first1 != __last1 && __first2 != __last2
; ++__first1, ++__first2) {
if (__comp(*__first1, *__first2))
return true;
if (comp(*first2, *first1))
if (__comp(*__first2, *__first1))
return false;
}
return first1 == last1 && first2 != last2;
return __first1 == __last1 && __first2 != __last2;
}
inline bool
lexicographical_compare(const unsigned char* first1,
const unsigned char* last1,
const unsigned char* first2,
const unsigned char* last2)
lexicographical_compare(const unsigned char* __first1,
const unsigned char* __last1,
const unsigned char* __first2,
const unsigned char* __last2)
{
const size_t len1 = last1 - first1;
const size_t len2 = last2 - first2;
const int result = memcmp(first1, first2, min(len1, len2));
return result != 0 ? result < 0 : len1 < len2;
const size_t __len1 = __last1 - __first1;
const size_t __len2 = __last2 - __first2;
const int __result = memcmp(__first1, __first2, min(__len1, __len2));
return __result != 0 ? __result < 0 : __len1 < __len2;
}
inline bool lexicographical_compare(const char* first1, const char* last1,
const char* first2, const char* last2)
inline bool lexicographical_compare(const char* __first1, const char* __last1,
const char* __first2, const char* __last2)
{
#if CHAR_MAX == SCHAR_MAX
return lexicographical_compare((const signed char*) first1,
(const signed char*) last1,
(const signed char*) first2,
(const signed char*) last2);
#else
return lexicographical_compare((const unsigned char*) first1,
(const unsigned char*) last1,
(const unsigned char*) first2,
(const unsigned char*) last2);
#endif
return lexicographical_compare((const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
#else /* CHAR_MAX == SCHAR_MAX */
return lexicographical_compare((const unsigned char*) __first1,
(const unsigned char*) __last1,
(const unsigned char*) __first2,
(const unsigned char*) __last2);
#endif /* CHAR_MAX == SCHAR_MAX */
}
template <class InputIterator1, class InputIterator2>
int lexicographical_compare_3way(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2)
template <class _InputIter1, class _InputIter2>
int __lexicographical_compare_3way(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2)
{
while (first1 != last1 && first2 != last2) {
if (*first1 < *first2) return -1;
if (*first2 < *first1) return 1;
++first1; ++first2;
while (__first1 != __last1 && __first2 != __last2) {
if (*__first1 < *__first2)
return -1;
if (*__first2 < *__first1)
return 1;
++__first1;
++__first2;
}
if (first2 == last2) {
return !(first1 == last1);
} else {
if (__first2 == __last2) {
return !(__first1 == __last1);
}
else {
return -1;
}
}
inline int
lexicographical_compare_3way(const unsigned char* first1,
const unsigned char* last1,
const unsigned char* first2,
const unsigned char* last2)
__lexicographical_compare_3way(const unsigned char* __first1,
const unsigned char* __last1,
const unsigned char* __first2,
const unsigned char* __last2)
{
const ptrdiff_t len1 = last1 - first1;
const ptrdiff_t len2 = last2 - first2;
const int result = memcmp(first1, first2, min(len1, len2));
return result != 0 ? result : (len1 == len2 ? 0 : (len1 < len2 ? -1 : 1));
const ptrdiff_t __len1 = __last1 - __first1;
const ptrdiff_t __len2 = __last2 - __first2;
const int __result = memcmp(__first1, __first2, min(__len1, __len2));
return __result != 0 ? __result
: (__len1 == __len2 ? 0 : (__len1 < __len2 ? -1 : 1));
}
inline int lexicographical_compare_3way(const char* first1, const char* last1,
const char* first2, const char* last2)
inline int
__lexicographical_compare_3way(const char* __first1, const char* __last1,
const char* __first2, const char* __last2)
{
#if CHAR_MAX == SCHAR_MAX
return lexicographical_compare_3way(
(const signed char*) first1,
(const signed char*) last1,
(const signed char*) first2,
(const signed char*) last2);
return __lexicographical_compare_3way(
(const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
#else
return lexicographical_compare_3way((const unsigned char*) first1,
(const unsigned char*) last1,
(const unsigned char*) first2,
(const unsigned char*) last2);
return __lexicographical_compare_3way((const unsigned char*) __first1,
(const unsigned char*) __last1,
(const unsigned char*) __first2,
(const unsigned char*) __last2);
#endif
}
template <class _InputIter1, class _InputIter2>
int lexicographical_compare_3way(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2)
{
return __lexicographical_compare_3way(__first1, __last1, __first2, __last2);
}
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_ALGOBASE_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -27,57 +27,89 @@
#ifndef __STL_CONFIG_H
# define __STL_CONFIG_H
// What this file does.
// (1) Defines bool, true, and false if the compiler doesn't do so already.
// (2) Defines __STL_NO_DRAND48 if the compiler's standard library does
// not support the drand48() function.
// (3) Defines __STL_STATIC_TEMPLATE_MEMBER_BUG if the compiler can't
// handle static members of template classes.
// (4) Defines 'typename' as a null macro if the compiler does not support
// the typename keyword.
// (5) Defines __STL_CLASS_PARTIAL_SPECIALIZATION if the compiler
// supports partial specialization of class templates.
// (6) Defines __STL_FUNCTION_TMPL_PARTIAL_ORDER if the compiler supports
// partial ordering of function templates (a.k.a partial specialization
// of function templates.
// (7) Defines __STL_EXPLICIT_FUNCTION_TMPL_ARGS if the compiler
// supports calling a function template by providing its template
// arguments explicitly.
// (8) Defines __STL_MEMBER_TEMPLATES if the compiler supports
// template members of classes.
// (9) Defines 'explicit' as a null macro if the compiler does not support
// the explicit keyword.
// (10) Defines __STL_LIMITED_DEFAULT_TEMPLATES if the compiler is
// unable to handle default template parameters that depend on
// previous template parameters.
// (11) Defines __STL_NON_TYPE_TMPL_PARAM_BUG if the compiler has
// trouble performing function template argument deduction for
// non-type template parameters.
// (12) Defines __SGI_STL_NO_ARROW_OPERATOR if the compiler is unable
// to support the -> operator for iterators.
// (13) Defines __STL_USE_EXCEPTIONS if the compiler (in the current
// compilation mode) supports exceptions.
// (14) Define __STL_USE_NAMESPACES if we're putting the STL into a
// namespace.
// (15) Defines __STL_SGI_THREADS if this is being compiled on an SGI
// compiler, and if the user hasn't selected pthreads or no threads
// instead.
// (16) Defines __STL_WIN32THREADS if this is being compiled on a
// WIN32 compiler in multithreaded mode.
// (17) Define namespace-related macros (__STD, __STL_BEGIN_NAMESPACE, etc.)
// apropriately.
// (18) Define exception-related macros (__STL_TRY, __STL_UNWIND, etc.)
// appropriately.
// (19) Defines __stl_assert either as a test or as a null macro,
// depending on whether or not __STL_ASSERTIONS is defined.
// Flags:
// * __STL_NO_BOOL: defined if the compiler doesn't have bool as a builtin
// type.
// * __STL_HAS_WCHAR_T: defined if the compier has wchar_t as a builtin type.
// * __STL_NO_DRAND48: defined if the compiler doesn't have the drand48
// function.
// * __STL_STATIC_TEMPLATE_MEMBER_BUG: defined if the compiler can't handle
// static members of template classes.
// * __STL_CLASS_PARTIAL_SPECIALIZATION: defined if the compiler supports
// partial specialization of template classes.
// * __STL_PARTIAL_SPECIALIZATION_SYNTAX: defined if the compiler
// supports partial specialization syntax for full specialization of
// class templates. (Even if it doesn't actually support partial
// specialization itself.)
// * __STL_FUNCTION_TMPL_PARTIAL_ORDER: defined if the compiler supports
// partial ordering of function templates. (a.k.a partial specialization
// of function templates.)
// * __STL_MEMBER_TEMPLATES: defined if the compiler supports template
// member functions of classes.
// * __STL_MEMBER_TEMPLATE_CLASSES: defined if the compiler supports
// nested classes that are member templates of other classes.
// * __STL_EXPLICIT_FUNCTION_TMPL_ARGS: defined if the compiler
// supports calling a function template by providing its template
// arguments explicitly.
// * __STL_LIMITED_DEFAULT_TEMPLATES: defined if the compiler is unable
// to handle default template parameters that depend on previous template
// parameters.
// * __STL_NON_TYPE_TMPL_PARAM_BUG: defined if the compiler has trouble with
// function template argument deduction for non-type template parameters.
// * __SGI_STL_NO_ARROW_OPERATOR: defined if the compiler is unable
// to support the -> operator for iterators.
// * __STL_USE_EXCEPTIONS: defined if the compiler (in the current compilation
// mode) supports exceptions.
// * __STL_USE_NAMESPACES: defined if the compiler has the necessary
// support for namespaces.
// * __STL_NO_EXCEPTION_HEADER: defined if the compiler does not have a
// standard-conforming header <exception>.
// * __STL_SGI_THREADS: defined if this is being compiled for an SGI IRIX
// system in multithreaded mode, using native SGI threads instead of
// pthreads.
// * __STL_WIN32THREADS: defined if this is being compiled on a WIN32
// compiler in multithreaded mode.
// * __STL_LONG_LONG if the compiler has long long and unsigned long long
// types. (They're not in the C++ standard, but they are expected to be
// included in the forthcoming C9X standard.)
// User-settable macros that control compilation:
// * __STL_USE_SGI_ALLOCATORS: if defined, then the STL will use older
// SGI-style allocators, instead of standard-conforming allocators,
// even if the compiler supports all of the language features needed
// for standard-conforming allocators.
// * __STL_NO_NAMESPACES: if defined, don't put the library in namespace
// std, even if the compiler supports namespaces.
// * __STL_ASSERTIONS: if defined, then enable runtime checking through the
// __stl_assert macro.
// * _PTHREADS: if defined, use Posix threads for multithreading support.
// * _NOTHREADS: if defined, don't use any multithreading support.
// Other macros defined by this file:
// * bool, true, and false, if __STL_NO_BOOL is defined.
// * typename, as a null macro if it's not already a keyword.
// * explicit, as a null macro if it's not already a keyword.
// * namespace-related macros (__STD, __STL_BEGIN_NAMESPACE, etc.)
// * exception-related macros (__STL_TRY, __STL_UNWIND, etc.)
// * __stl_assert, either as a test or as a null macro, depending on
// whether or not __STL_ASSERTIONS is defined.
#ifdef _PTHREADS
# define __STL_PTHREADS
#endif
#ifdef _SOLTHREADS
# define __STL_SOLTHREADS
#endif
# if defined(__sgi) && !defined(__GNUC__)
# if !defined(_BOOL)
# define __STL_NEED_BOOL
# define __STL_NO_BOOL
# endif
# if defined(_WCHAR_T_IS_KEYWORD)
# define __STL_HAS_WCHAR_T
# endif
# if !defined(_TYPENAME_IS_KEYWORD)
# define __STL_NEED_TYPENAME
@ -87,6 +119,13 @@
# endif
# ifdef _MEMBER_TEMPLATES
# define __STL_MEMBER_TEMPLATES
# define __STL_MEMBER_TEMPLATE_CLASSES
# endif
# if defined(_MEMBER_TEMPLATE_KEYWORD)
# define __STL_MEMBER_TEMPLATE_KEYWORD
# endif
# if (_COMPILER_VERSION >= 730) && defined(_MIPS_SIM) && _MIPS_SIM != _ABIO32
# define __STL_MEMBER_TEMPLATE_KEYWORD
# endif
# if !defined(_EXPLICIT_IS_KEYWORD)
# define __STL_NEED_EXPLICIT
@ -95,15 +134,22 @@
# define __STL_USE_EXCEPTIONS
# endif
# if (_COMPILER_VERSION >= 721) && defined(_NAMESPACES)
# define __STL_USE_NAMESPACES
# endif
# define __STL_HAS_NAMESPACES
# endif
# if (_COMPILER_VERSION < 721)
# define __STL_NO_EXCEPTION_HEADER
# endif
# if !defined(_NOTHREADS) && !defined(__STL_PTHREADS)
# define __STL_SGI_THREADS
# endif
# if defined(_LONGLONG) && defined(_SGIAPI) && _SGIAPI
# define __STL_LONG_LONG
# endif
# endif
# ifdef __GNUC__
# include <_G_config.h>
# define __STL_HAS_WCHAR_T
# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 8)
# define __STL_STATIC_TEMPLATE_MEMBER_BUG
# define __STL_NEED_TYPENAME
@ -111,21 +157,35 @@
# else
# define __STL_CLASS_PARTIAL_SPECIALIZATION
# define __STL_FUNCTION_TMPL_PARTIAL_ORDER
# define __STL_EXPLICIT_FUNCTION_TMPL_ARGS
# define __STL_MEMBER_TEMPLATES
# define __STL_MEMBER_TEMPLATE_CLASSES
# define __STL_EXPLICIT_FUNCTION_TMPL_ARGS
# define __STL_HAS_NAMESPACES
# define __STL_NO_NAMESPACES
# define __SGI_STL_USE_AUTO_PTR_CONVERSIONS
# define __STL_USE_NAMESPACES
# endif
/* glibc pre 2.0 is very buggy. We have to disable thread for it.
It should be upgraded to glibc 2.0 or later. */
# if !defined(_NOTHREADS) && __GLIBC__ >= 2 && defined(_G_USING_THUNKS)
# define __STL_PTHREADS
# if defined(__linux__)
/* glibc pre 2.0 is very buggy. We have to disable thread for it.
It should be upgraded to glibc 2.0 or later. */
# if !defined(_NOTHREADS) && __GLIBC__ >= 2 && defined(_G_USING_THUNKS)
# define __STL_PTHREADS
# ifdef __STRICT_ANSI__
/* Work around a bug in the glibc 2.0.x pthread.h. */
# define sigset_t __sigset_t
# endif
# endif
# endif
# ifdef __EXCEPTIONS
# define __STL_USE_EXCEPTIONS
# endif
# ifndef __STRICT_ANSI__
# define __STL_LONG_LONG
# endif
# endif
# if defined(__SUNPRO_CC)
# define __STL_NEED_BOOL
# if defined(__SUNPRO_CC)
# define __STL_NO_BOOL
# define __STL_NEED_TYPENAME
# define __STL_NEED_EXPLICIT
# define __STL_USE_EXCEPTIONS
@ -133,21 +193,30 @@
# if defined(__COMO__)
# define __STL_MEMBER_TEMPLATES
# define __STL_MEMBER_TEMPLATE_CLASSES
# define __STL_CLASS_PARTIAL_SPECIALIZATION
# define __STL_USE_EXCEPTIONS
# define __STL_USE_NAMESPACES
# define __STL_HAS_NAMESPACES
# endif
# if defined(__MINGW32__)
# define __STL_NO_DRAND48
# endif
# if defined(__CYGWIN__)
# define __STL_NO_DRAND48
# endif
# if defined(_MSC_VER)
# if _MSC_VER > 1000
# include <yvals.h>
# else
# define __STL_NEED_BOOL
# endif
# define __STL_NO_DRAND48
# define __STL_NEED_TYPENAME
# if _MSC_VER < 1100
# if _MSC_VER < 1100 /* 1000 is version 4.0, 1100 is 5.0, 1200 is 6.0. */
# define __STL_NEED_EXPLICIT
# define __STL_NO_BOOL
# if _MSC_VER > 1000
# include <yvals.h>
# define __STL_DONT_USE_BOOL_TYPEDEF
# endif
# endif
# define __STL_NON_TYPE_TMPL_PARAM_BUG
# define __SGI_STL_NO_ARROW_OPERATOR
@ -157,6 +226,11 @@
# ifdef _MT
# define __STL_WIN32THREADS
# endif
# if _MSC_VER >= 1200
# define __STL_PARTIAL_SPECIALIZATION_SYNTAX
# define __STL_HAS_NAMESPACES
# define __STL_NO_NAMESPACES
# endif
# endif
# if defined(__BORLANDC__)
@ -173,8 +247,7 @@
# endif
# endif
# if defined(__STL_NEED_BOOL)
# if defined(__STL_NO_BOOL) && !defined(__STL_DONT_USE_BOOL_TYPEDEF)
typedef int bool;
# define true 1
# define false 0
@ -184,6 +257,12 @@
# define typename
# endif
# ifdef __STL_MEMBER_TEMPLATE_KEYWORD
# define __STL_TEMPLATE template
# else
# define __STL_TEMPLATE
# endif
# ifdef __STL_NEED_EXPLICIT
# define explicit
# endif
@ -194,44 +273,71 @@
# define __STL_NULL_TMPL_ARGS
# endif
# ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
# if defined(__STL_CLASS_PARTIAL_SPECIALIZATION) \
|| defined (__STL_PARTIAL_SPECIALIZATION_SYNTAX)
# define __STL_TEMPLATE_NULL template<>
# else
# define __STL_TEMPLATE_NULL
# endif
// Use standard-conforming allocators if we have the necessary language
// features. __STL_USE_SGI_ALLOCATORS is a hook so that users can
// disable new-style allocators, and continue to use the same kind of
// allocators as before, without having to edit library headers.
# if defined(__STL_CLASS_PARTIAL_SPECIALIZATION) && \
defined(__STL_MEMBER_TEMPLATES) && \
defined(__STL_MEMBER_TEMPLATE_CLASSES) && \
!defined(__STL_NO_BOOL) && \
!defined(__STL_NON_TYPE_TMPL_PARAM_BUG) && \
!defined(__STL_LIMITED_DEFAULT_TEMPLATES) && \
!defined(__STL_USE_SGI_ALLOCATORS)
# define __STL_USE_STD_ALLOCATORS
# endif
# ifndef __STL_DEFAULT_ALLOCATOR
# ifdef __STL_USE_STD_ALLOCATORS
# define __STL_DEFAULT_ALLOCATOR(T) allocator<T>
# else
# define __STL_DEFAULT_ALLOCATOR(T) alloc
# endif
# endif
// __STL_NO_NAMESPACES is a hook so that users can disable namespaces
// without having to edit library headers.
# if defined(__STL_USE_NAMESPACES) && !defined(__STL_NO_NAMESPACES)
# if defined(__STL_HAS_NAMESPACES) && !defined(__STL_NO_NAMESPACES)
# define __STD std
# define __STL_BEGIN_NAMESPACE namespace std {
# define __STL_END_NAMESPACE }
# define __STL_USE_NAMESPACE_FOR_RELOPS
# define __STL_USE_NAMESPACE_FOR_RELOPS
# define __STL_BEGIN_RELOPS_NAMESPACE namespace std {
# define __STL_END_RELOPS_NAMESPACE }
# define __STD_RELOPS std
# define __STL_USE_NAMESPACES
# else
# define __STD
# define __STL_BEGIN_NAMESPACE
# define __STL_END_NAMESPACE
# define __STD
# define __STL_BEGIN_NAMESPACE
# define __STL_END_NAMESPACE
# undef __STL_USE_NAMESPACE_FOR_RELOPS
# define __STL_BEGIN_RELOPS_NAMESPACE
# define __STL_END_RELOPS_NAMESPACE
# define __STD_RELOPS
# define __STL_BEGIN_RELOPS_NAMESPACE
# define __STL_END_RELOPS_NAMESPACE
# define __STD_RELOPS
# undef __STL_USE_NAMESPACES
# endif
# ifdef __STL_USE_EXCEPTIONS
# define __STL_TRY try
# define __STL_CATCH_ALL catch(...)
# define __STL_THROW(x) throw x
# define __STL_RETHROW throw
# define __STL_NOTHROW throw()
# define __STL_UNWIND(action) catch(...) { action; throw; }
# else
# define __STL_TRY
# define __STL_TRY
# define __STL_CATCH_ALL if (false)
# define __STL_RETHROW
# define __STL_NOTHROW
# define __STL_UNWIND(action)
# define __STL_THROW(x)
# define __STL_RETHROW
# define __STL_NOTHROW
# define __STL_UNWIND(action)
# endif
#ifdef __STL_ASSERTIONS

View File

@ -35,35 +35,47 @@
__STL_BEGIN_NAMESPACE
template <class T>
inline void destroy(T* pointer) {
pointer->~T();
// construct and destroy. These functions are not part of the C++ standard,
// and are provided for backward compatibility with the HP STL.
template <class _Tp>
inline void destroy(_Tp* __pointer) {
__pointer->~_Tp();
}
template <class T1, class T2>
inline void construct(T1* p, const T2& value) {
new (p) T1(value);
template <class _T1, class _T2>
inline void construct(_T1* __p, const _T2& __value) {
new (__p) _T1(__value);
}
template <class ForwardIterator>
template <class _T1>
inline void construct(_T1* __p) {
new (__p) _T1();
}
template <class _ForwardIterator>
inline void
__destroy_aux(ForwardIterator first, ForwardIterator last, __false_type) {
for ( ; first < last; ++first)
destroy(&*first);
__destroy_aux(_ForwardIterator __first, _ForwardIterator __last, __false_type)
{
for ( ; __first != __last; ++__first)
destroy(&*__first);
}
template <class ForwardIterator>
inline void __destroy_aux(ForwardIterator, ForwardIterator, __true_type) {}
template <class _ForwardIterator>
inline void __destroy_aux(_ForwardIterator, _ForwardIterator, __true_type) {}
template <class ForwardIterator, class T>
inline void __destroy(ForwardIterator first, ForwardIterator last, T*) {
typedef typename __type_traits<T>::has_trivial_destructor trivial_destructor;
__destroy_aux(first, last, trivial_destructor());
template <class _ForwardIterator, class _Tp>
inline void
__destroy(_ForwardIterator __first, _ForwardIterator __last, _Tp*)
{
typedef typename __type_traits<_Tp>::has_trivial_destructor
_Trivial_destructor;
__destroy_aux(__first, __last, _Trivial_destructor());
}
template <class ForwardIterator>
inline void destroy(ForwardIterator first, ForwardIterator last) {
__destroy(first, last, value_type(first));
template <class _ForwardIterator>
inline void destroy(_ForwardIterator __first, _ForwardIterator __last) {
__destroy(__first, __last, __VALUE_TYPE(__first));
}
inline void destroy(char*, char*) {}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1996
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
@ -35,53 +35,53 @@
__STL_BEGIN_NAMESPACE
template <class Key> struct hash { };
template <class _Key> struct hash { };
inline size_t __stl_hash_string(const char* s)
inline size_t __stl_hash_string(const char* __s)
{
unsigned long h = 0;
for ( ; *s; ++s)
h = 5*h + *s;
unsigned long __h = 0;
for ( ; *__s; ++__s)
__h = 5*__h + *__s;
return size_t(h);
return size_t(__h);
}
__STL_TEMPLATE_NULL struct hash<char*>
{
size_t operator()(const char* s) const { return __stl_hash_string(s); }
size_t operator()(const char* __s) const { return __stl_hash_string(__s); }
};
__STL_TEMPLATE_NULL struct hash<const char*>
{
size_t operator()(const char* s) const { return __stl_hash_string(s); }
size_t operator()(const char* __s) const { return __stl_hash_string(__s); }
};
__STL_TEMPLATE_NULL struct hash<char> {
size_t operator()(char x) const { return x; }
size_t operator()(char __x) const { return __x; }
};
__STL_TEMPLATE_NULL struct hash<unsigned char> {
size_t operator()(unsigned char x) const { return x; }
size_t operator()(unsigned char __x) const { return __x; }
};
__STL_TEMPLATE_NULL struct hash<signed char> {
size_t operator()(unsigned char x) const { return x; }
size_t operator()(unsigned char __x) const { return __x; }
};
__STL_TEMPLATE_NULL struct hash<short> {
size_t operator()(short x) const { return x; }
size_t operator()(short __x) const { return __x; }
};
__STL_TEMPLATE_NULL struct hash<unsigned short> {
size_t operator()(unsigned short x) const { return x; }
size_t operator()(unsigned short __x) const { return __x; }
};
__STL_TEMPLATE_NULL struct hash<int> {
size_t operator()(int x) const { return x; }
size_t operator()(int __x) const { return __x; }
};
__STL_TEMPLATE_NULL struct hash<unsigned int> {
size_t operator()(unsigned int x) const { return x; }
size_t operator()(unsigned int __x) const { return __x; }
};
__STL_TEMPLATE_NULL struct hash<long> {
size_t operator()(long x) const { return x; }
size_t operator()(long __x) const { return __x; }
};
__STL_TEMPLATE_NULL struct hash<unsigned long> {
size_t operator()(unsigned long x) const { return x; }
size_t operator()(unsigned long __x) const { return __x; }
};
__STL_END_NAMESPACE

View File

@ -36,317 +36,375 @@ __STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class T, class HashFcn = hash<Key>,
class EqualKey = equal_to<Key>,
class Alloc = alloc>
template <class _Key, class _Tp, class _HashFcn = hash<_Key>,
class _EqualKey = equal_to<_Key>,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
#else
template <class Key, class T, class HashFcn, class EqualKey,
class Alloc = alloc>
template <class _Key, class _Tp, class _HashFcn, class _EqualKey,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
#endif
class hash_map
{
private:
typedef hashtable<pair<const Key, T>, Key, HashFcn,
select1st<pair<const Key, T> >, EqualKey, Alloc> ht;
ht rep;
typedef hashtable<pair<const _Key,_Tp>,_Key,_HashFcn,
_Select1st<pair<const _Key,_Tp> >,_EqualKey,_Alloc> _Ht;
_Ht _M_ht;
public:
typedef typename ht::key_type key_type;
typedef T data_type;
typedef T mapped_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef typename _Ht::key_type key_type;
typedef _Tp data_type;
typedef _Tp mapped_type;
typedef typename _Ht::value_type value_type;
typedef typename _Ht::hasher hasher;
typedef typename _Ht::key_equal key_equal;
typedef typename _Ht::size_type size_type;
typedef typename _Ht::difference_type difference_type;
typedef typename _Ht::pointer pointer;
typedef typename _Ht::const_pointer const_pointer;
typedef typename _Ht::reference reference;
typedef typename _Ht::const_reference const_reference;
typedef typename ht::size_type size_type;
typedef typename ht::difference_type difference_type;
typedef typename ht::pointer pointer;
typedef typename ht::const_pointer const_pointer;
typedef typename ht::reference reference;
typedef typename ht::const_reference const_reference;
typedef typename _Ht::iterator iterator;
typedef typename _Ht::const_iterator const_iterator;
typedef typename ht::iterator iterator;
typedef typename ht::const_iterator const_iterator;
typedef typename _Ht::allocator_type allocator_type;
hasher hash_funct() const { return rep.hash_funct(); }
key_equal key_eq() const { return rep.key_eq(); }
hasher hash_funct() const { return _M_ht.hash_funct(); }
key_equal key_eq() const { return _M_ht.key_eq(); }
allocator_type get_allocator() const { return _M_ht.get_allocator(); }
public:
hash_map() : rep(100, hasher(), key_equal()) {}
explicit hash_map(size_type n) : rep(n, hasher(), key_equal()) {}
hash_map(size_type n, const hasher& hf) : rep(n, hf, key_equal()) {}
hash_map(size_type n, const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) {}
hash_map() : _M_ht(100, hasher(), key_equal(), allocator_type()) {}
explicit hash_map(size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type()) {}
hash_map(size_type __n, const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type()) {}
hash_map(size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
hash_map(InputIterator f, InputIterator l)
: rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
template <class InputIterator>
hash_map(InputIterator f, InputIterator l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
template <class InputIterator>
hash_map(InputIterator f, InputIterator l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
template <class InputIterator>
hash_map(InputIterator f, InputIterator l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_unique(f, l); }
template <class _InputIterator>
hash_map(_InputIterator __f, _InputIterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_map(_InputIterator __f, _InputIterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_map(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_map(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_unique(__f, __l); }
#else
hash_map(const value_type* f, const value_type* l)
: rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
hash_map(const value_type* f, const value_type* l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
hash_map(const value_type* f, const value_type* l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
hash_map(const value_type* f, const value_type* l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_unique(f, l); }
hash_map(const value_type* __f, const value_type* __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_map(const value_type* __f, const value_type* __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_map(const value_type* __f, const value_type* __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_map(const value_type* __f, const value_type* __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_unique(__f, __l); }
hash_map(const_iterator f, const_iterator l)
: rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
hash_map(const_iterator f, const_iterator l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
hash_map(const_iterator f, const_iterator l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
hash_map(const_iterator f, const_iterator l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_unique(f, l); }
hash_map(const_iterator __f, const_iterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_map(const_iterator __f, const_iterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_map(const_iterator __f, const_iterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_map(const_iterator __f, const_iterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_unique(__f, __l); }
#endif /*__STL_MEMBER_TEMPLATES */
public:
size_type size() const { return rep.size(); }
size_type max_size() const { return rep.max_size(); }
bool empty() const { return rep.empty(); }
void swap(hash_map& hs) { rep.swap(hs.rep); }
size_type size() const { return _M_ht.size(); }
size_type max_size() const { return _M_ht.max_size(); }
bool empty() const { return _M_ht.empty(); }
void swap(hash_map& __hs) { _M_ht.swap(__hs._M_ht); }
friend bool
operator== __STL_NULL_TMPL_ARGS (const hash_map&, const hash_map&);
iterator begin() { return rep.begin(); }
iterator end() { return rep.end(); }
const_iterator begin() const { return rep.begin(); }
const_iterator end() const { return rep.end(); }
iterator begin() { return _M_ht.begin(); }
iterator end() { return _M_ht.end(); }
const_iterator begin() const { return _M_ht.begin(); }
const_iterator end() const { return _M_ht.end(); }
public:
pair<iterator, bool> insert(const value_type& obj)
{ return rep.insert_unique(obj); }
pair<iterator,bool> insert(const value_type& __obj)
{ return _M_ht.insert_unique(__obj); }
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator f, InputIterator l) { rep.insert_unique(f,l); }
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{ _M_ht.insert_unique(__f,__l); }
#else
void insert(const value_type* f, const value_type* l) {
rep.insert_unique(f,l);
void insert(const value_type* __f, const value_type* __l) {
_M_ht.insert_unique(__f,__l);
}
void insert(const_iterator f, const_iterator l) { rep.insert_unique(f, l); }
void insert(const_iterator __f, const_iterator __l)
{ _M_ht.insert_unique(__f, __l); }
#endif /*__STL_MEMBER_TEMPLATES */
pair<iterator, bool> insert_noresize(const value_type& obj)
{ return rep.insert_unique_noresize(obj); }
pair<iterator,bool> insert_noresize(const value_type& __obj)
{ return _M_ht.insert_unique_noresize(__obj); }
iterator find(const key_type& key) { return rep.find(key); }
const_iterator find(const key_type& key) const { return rep.find(key); }
iterator find(const key_type& __key) { return _M_ht.find(__key); }
const_iterator find(const key_type& __key) const
{ return _M_ht.find(__key); }
T& operator[](const key_type& key) {
return rep.find_or_insert(value_type(key, T())).second;
_Tp& operator[](const key_type& __key) {
return _M_ht.find_or_insert(value_type(__key, _Tp())).second;
}
size_type count(const key_type& key) const { return rep.count(key); }
size_type count(const key_type& __key) const { return _M_ht.count(__key); }
pair<iterator, iterator> equal_range(const key_type& key)
{ return rep.equal_range(key); }
pair<const_iterator, const_iterator> equal_range(const key_type& key) const
{ return rep.equal_range(key); }
pair<iterator, iterator> equal_range(const key_type& __key)
{ return _M_ht.equal_range(__key); }
pair<const_iterator, const_iterator>
equal_range(const key_type& __key) const
{ return _M_ht.equal_range(__key); }
size_type erase(const key_type& key) {return rep.erase(key); }
void erase(iterator it) { rep.erase(it); }
void erase(iterator f, iterator l) { rep.erase(f, l); }
void clear() { rep.clear(); }
size_type erase(const key_type& __key) {return _M_ht.erase(__key); }
void erase(iterator __it) { _M_ht.erase(__it); }
void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); }
void clear() { _M_ht.clear(); }
public:
void resize(size_type hint) { rep.resize(hint); }
size_type bucket_count() const { return rep.bucket_count(); }
size_type max_bucket_count() const { return rep.max_bucket_count(); }
size_type elems_in_bucket(size_type n) const
{ return rep.elems_in_bucket(n); }
void resize(size_type __hint) { _M_ht.resize(__hint); }
size_type bucket_count() const { return _M_ht.bucket_count(); }
size_type max_bucket_count() const { return _M_ht.max_bucket_count(); }
size_type elems_in_bucket(size_type __n) const
{ return _M_ht.elems_in_bucket(__n); }
};
template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
inline bool operator==(const hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm1,
const hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm2)
template <class _Key, class _Tp, class _HashFcn, class _EqlKey, class _Alloc>
inline bool
operator==(const hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm1,
const hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm2)
{
return hm1.rep == hm2.rep;
return __hm1._M_ht == __hm2._M_ht;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
inline void swap(hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm1,
hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm2)
template <class _Key, class _Tp, class _HashFcn, class _EqlKey, class _Alloc>
inline void
swap(hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm1,
hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm2)
{
hm1.swap(hm2);
__hm1.swap(__hm2);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class T, class HashFcn = hash<Key>,
class EqualKey = equal_to<Key>,
class Alloc = alloc>
template <class _Key, class _Tp, class _HashFcn = hash<_Key>,
class _EqualKey = equal_to<_Key>,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
#else
template <class Key, class T, class HashFcn, class EqualKey,
class Alloc = alloc>
template <class _Key, class _Tp, class _HashFcn, class _EqualKey,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
#endif
class hash_multimap
{
private:
typedef hashtable<pair<const Key, T>, Key, HashFcn,
select1st<pair<const Key, T> >, EqualKey, Alloc> ht;
ht rep;
typedef hashtable<pair<const _Key, _Tp>, _Key, _HashFcn,
_Select1st<pair<const _Key, _Tp> >, _EqualKey, _Alloc>
_Ht;
_Ht _M_ht;
public:
typedef typename ht::key_type key_type;
typedef T data_type;
typedef T mapped_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef typename _Ht::key_type key_type;
typedef _Tp data_type;
typedef _Tp mapped_type;
typedef typename _Ht::value_type value_type;
typedef typename _Ht::hasher hasher;
typedef typename _Ht::key_equal key_equal;
typedef typename ht::size_type size_type;
typedef typename ht::difference_type difference_type;
typedef typename ht::pointer pointer;
typedef typename ht::const_pointer const_pointer;
typedef typename ht::reference reference;
typedef typename ht::const_reference const_reference;
typedef typename _Ht::size_type size_type;
typedef typename _Ht::difference_type difference_type;
typedef typename _Ht::pointer pointer;
typedef typename _Ht::const_pointer const_pointer;
typedef typename _Ht::reference reference;
typedef typename _Ht::const_reference const_reference;
typedef typename ht::iterator iterator;
typedef typename ht::const_iterator const_iterator;
typedef typename _Ht::iterator iterator;
typedef typename _Ht::const_iterator const_iterator;
hasher hash_funct() const { return rep.hash_funct(); }
key_equal key_eq() const { return rep.key_eq(); }
typedef typename _Ht::allocator_type allocator_type;
hasher hash_funct() const { return _M_ht.hash_funct(); }
key_equal key_eq() const { return _M_ht.key_eq(); }
allocator_type get_allocator() const { return _M_ht.get_allocator(); }
public:
hash_multimap() : rep(100, hasher(), key_equal()) {}
explicit hash_multimap(size_type n) : rep(n, hasher(), key_equal()) {}
hash_multimap(size_type n, const hasher& hf) : rep(n, hf, key_equal()) {}
hash_multimap(size_type n, const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) {}
hash_multimap() : _M_ht(100, hasher(), key_equal(), allocator_type()) {}
explicit hash_multimap(size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type()) {}
hash_multimap(size_type __n, const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type()) {}
hash_multimap(size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
hash_multimap(InputIterator f, InputIterator l)
: rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
template <class InputIterator>
hash_multimap(InputIterator f, InputIterator l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
template <class InputIterator>
hash_multimap(InputIterator f, InputIterator l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
template <class InputIterator>
hash_multimap(InputIterator f, InputIterator l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_equal(f, l); }
template <class _InputIterator>
hash_multimap(_InputIterator __f, _InputIterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multimap(_InputIterator __f, _InputIterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multimap(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multimap(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_equal(__f, __l); }
#else
hash_multimap(const value_type* f, const value_type* l)
: rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
hash_multimap(const value_type* f, const value_type* l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
hash_multimap(const value_type* f, const value_type* l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
hash_multimap(const value_type* f, const value_type* l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_equal(f, l); }
hash_multimap(const value_type* __f, const value_type* __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multimap(const value_type* __f, const value_type* __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multimap(const value_type* __f, const value_type* __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multimap(const value_type* __f, const value_type* __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_equal(__f, __l); }
hash_multimap(const_iterator f, const_iterator l)
: rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
hash_multimap(const_iterator f, const_iterator l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
hash_multimap(const_iterator f, const_iterator l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
hash_multimap(const_iterator f, const_iterator l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_equal(f, l); }
hash_multimap(const_iterator __f, const_iterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multimap(const_iterator __f, const_iterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multimap(const_iterator __f, const_iterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multimap(const_iterator __f, const_iterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_equal(__f, __l); }
#endif /*__STL_MEMBER_TEMPLATES */
public:
size_type size() const { return rep.size(); }
size_type max_size() const { return rep.max_size(); }
bool empty() const { return rep.empty(); }
void swap(hash_multimap& hs) { rep.swap(hs.rep); }
size_type size() const { return _M_ht.size(); }
size_type max_size() const { return _M_ht.max_size(); }
bool empty() const { return _M_ht.empty(); }
void swap(hash_multimap& __hs) { _M_ht.swap(__hs._M_ht); }
friend bool
operator== __STL_NULL_TMPL_ARGS (const hash_multimap&, const hash_multimap&);
operator== __STL_NULL_TMPL_ARGS (const hash_multimap&,
const hash_multimap&);
iterator begin() { return rep.begin(); }
iterator end() { return rep.end(); }
const_iterator begin() const { return rep.begin(); }
const_iterator end() const { return rep.end(); }
iterator begin() { return _M_ht.begin(); }
iterator end() { return _M_ht.end(); }
const_iterator begin() const { return _M_ht.begin(); }
const_iterator end() const { return _M_ht.end(); }
public:
iterator insert(const value_type& obj) { return rep.insert_equal(obj); }
iterator insert(const value_type& __obj)
{ return _M_ht.insert_equal(__obj); }
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator f, InputIterator l) { rep.insert_equal(f,l); }
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{ _M_ht.insert_equal(__f,__l); }
#else
void insert(const value_type* f, const value_type* l) {
rep.insert_equal(f,l);
void insert(const value_type* __f, const value_type* __l) {
_M_ht.insert_equal(__f,__l);
}
void insert(const_iterator f, const_iterator l) { rep.insert_equal(f, l); }
void insert(const_iterator __f, const_iterator __l)
{ _M_ht.insert_equal(__f, __l); }
#endif /*__STL_MEMBER_TEMPLATES */
iterator insert_noresize(const value_type& obj)
{ return rep.insert_equal_noresize(obj); }
iterator insert_noresize(const value_type& __obj)
{ return _M_ht.insert_equal_noresize(__obj); }
iterator find(const key_type& key) { return rep.find(key); }
const_iterator find(const key_type& key) const { return rep.find(key); }
iterator find(const key_type& __key) { return _M_ht.find(__key); }
const_iterator find(const key_type& __key) const
{ return _M_ht.find(__key); }
size_type count(const key_type& key) const { return rep.count(key); }
size_type count(const key_type& __key) const { return _M_ht.count(__key); }
pair<iterator, iterator> equal_range(const key_type& key)
{ return rep.equal_range(key); }
pair<const_iterator, const_iterator> equal_range(const key_type& key) const
{ return rep.equal_range(key); }
pair<iterator, iterator> equal_range(const key_type& __key)
{ return _M_ht.equal_range(__key); }
pair<const_iterator, const_iterator>
equal_range(const key_type& __key) const
{ return _M_ht.equal_range(__key); }
size_type erase(const key_type& key) {return rep.erase(key); }
void erase(iterator it) { rep.erase(it); }
void erase(iterator f, iterator l) { rep.erase(f, l); }
void clear() { rep.clear(); }
size_type erase(const key_type& __key) {return _M_ht.erase(__key); }
void erase(iterator __it) { _M_ht.erase(__it); }
void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); }
void clear() { _M_ht.clear(); }
public:
void resize(size_type hint) { rep.resize(hint); }
size_type bucket_count() const { return rep.bucket_count(); }
size_type max_bucket_count() const { return rep.max_bucket_count(); }
size_type elems_in_bucket(size_type n) const
{ return rep.elems_in_bucket(n); }
void resize(size_type __hint) { _M_ht.resize(__hint); }
size_type bucket_count() const { return _M_ht.bucket_count(); }
size_type max_bucket_count() const { return _M_ht.max_bucket_count(); }
size_type elems_in_bucket(size_type __n) const
{ return _M_ht.elems_in_bucket(__n); }
};
template <class Key, class T, class HF, class EqKey, class Alloc>
inline bool operator==(const hash_multimap<Key, T, HF, EqKey, Alloc>& hm1,
const hash_multimap<Key, T, HF, EqKey, Alloc>& hm2)
template <class _Key, class _Tp, class _HF, class _EqKey, class _Alloc>
inline bool
operator==(const hash_multimap<_Key,_Tp,_HF,_EqKey,_Alloc>& __hm1,
const hash_multimap<_Key,_Tp,_HF,_EqKey,_Alloc>& __hm2)
{
return hm1.rep == hm2.rep;
return __hm1._M_ht == __hm2._M_ht;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
inline void swap(hash_multimap<Key, T, HashFcn, EqualKey, Alloc>& hm1,
hash_multimap<Key, T, HashFcn, EqualKey, Alloc>& hm2)
template <class _Key, class _Tp, class _HashFcn, class _EqlKey, class _Alloc>
inline void
swap(hash_multimap<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm1,
hash_multimap<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm2)
{
hm1.swap(hm2);
__hm1.swap(__hm2);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE

View File

@ -35,303 +35,361 @@ __STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Value, class HashFcn = hash<Value>,
class EqualKey = equal_to<Value>,
class Alloc = alloc>
template <class _Value, class _HashFcn = hash<_Value>,
class _EqualKey = equal_to<_Value>,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
#else
template <class Value, class HashFcn, class EqualKey, class Alloc = alloc>
template <class _Value, class _HashFcn, class _EqualKey,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
#endif
class hash_set
{
private:
typedef hashtable<Value, Value, HashFcn, identity<Value>,
EqualKey, Alloc> ht;
ht rep;
typedef hashtable<_Value, _Value, _HashFcn, _Identity<_Value>,
_EqualKey, _Alloc> _Ht;
_Ht _M_ht;
public:
typedef typename ht::key_type key_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef typename _Ht::key_type key_type;
typedef typename _Ht::value_type value_type;
typedef typename _Ht::hasher hasher;
typedef typename _Ht::key_equal key_equal;
typedef typename ht::size_type size_type;
typedef typename ht::difference_type difference_type;
typedef typename ht::const_pointer pointer;
typedef typename ht::const_pointer const_pointer;
typedef typename ht::const_reference reference;
typedef typename ht::const_reference const_reference;
typedef typename _Ht::size_type size_type;
typedef typename _Ht::difference_type difference_type;
typedef typename _Ht::const_pointer pointer;
typedef typename _Ht::const_pointer const_pointer;
typedef typename _Ht::const_reference reference;
typedef typename _Ht::const_reference const_reference;
typedef typename ht::const_iterator iterator;
typedef typename ht::const_iterator const_iterator;
typedef typename _Ht::const_iterator iterator;
typedef typename _Ht::const_iterator const_iterator;
hasher hash_funct() const { return rep.hash_funct(); }
key_equal key_eq() const { return rep.key_eq(); }
typedef typename _Ht::allocator_type allocator_type;
hasher hash_funct() const { return _M_ht.hash_funct(); }
key_equal key_eq() const { return _M_ht.key_eq(); }
allocator_type get_allocator() const { return _M_ht.get_allocator(); }
public:
hash_set() : rep(100, hasher(), key_equal()) {}
explicit hash_set(size_type n) : rep(n, hasher(), key_equal()) {}
hash_set(size_type n, const hasher& hf) : rep(n, hf, key_equal()) {}
hash_set(size_type n, const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) {}
hash_set()
: _M_ht(100, hasher(), key_equal(), allocator_type()) {}
explicit hash_set(size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type()) {}
hash_set(size_type __n, const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type()) {}
hash_set(size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
hash_set(InputIterator f, InputIterator l)
: rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
template <class InputIterator>
hash_set(InputIterator f, InputIterator l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
template <class InputIterator>
hash_set(InputIterator f, InputIterator l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
template <class InputIterator>
hash_set(InputIterator f, InputIterator l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_unique(f, l); }
template <class _InputIterator>
hash_set(_InputIterator __f, _InputIterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_set(_InputIterator __f, _InputIterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_set(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_set(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_unique(__f, __l); }
#else
hash_set(const value_type* f, const value_type* l)
: rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
hash_set(const value_type* f, const value_type* l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
hash_set(const value_type* f, const value_type* l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
hash_set(const value_type* f, const value_type* l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_unique(f, l); }
hash_set(const value_type* __f, const value_type* __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_set(const value_type* __f, const value_type* __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_set(const value_type* __f, const value_type* __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_set(const value_type* __f, const value_type* __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_unique(__f, __l); }
hash_set(const_iterator f, const_iterator l)
: rep(100, hasher(), key_equal()) { rep.insert_unique(f, l); }
hash_set(const_iterator f, const_iterator l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_unique(f, l); }
hash_set(const_iterator f, const_iterator l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_unique(f, l); }
hash_set(const_iterator f, const_iterator l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_unique(f, l); }
hash_set(const_iterator __f, const_iterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_set(const_iterator __f, const_iterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_set(const_iterator __f, const_iterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
hash_set(const_iterator __f, const_iterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_unique(__f, __l); }
#endif /*__STL_MEMBER_TEMPLATES */
public:
size_type size() const { return rep.size(); }
size_type max_size() const { return rep.max_size(); }
bool empty() const { return rep.empty(); }
void swap(hash_set& hs) { rep.swap(hs.rep); }
size_type size() const { return _M_ht.size(); }
size_type max_size() const { return _M_ht.max_size(); }
bool empty() const { return _M_ht.empty(); }
void swap(hash_set& __hs) { _M_ht.swap(__hs._M_ht); }
friend bool operator== __STL_NULL_TMPL_ARGS (const hash_set&,
const hash_set&);
iterator begin() const { return rep.begin(); }
iterator end() const { return rep.end(); }
iterator begin() const { return _M_ht.begin(); }
iterator end() const { return _M_ht.end(); }
public:
pair<iterator, bool> insert(const value_type& obj)
pair<iterator, bool> insert(const value_type& __obj)
{
pair<typename ht::iterator, bool> p = rep.insert_unique(obj);
return pair<iterator, bool>(p.first, p.second);
pair<typename _Ht::iterator, bool> __p = _M_ht.insert_unique(__obj);
return pair<iterator,bool>(__p.first, __p.second);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator f, InputIterator l) { rep.insert_unique(f,l); }
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{ _M_ht.insert_unique(__f,__l); }
#else
void insert(const value_type* f, const value_type* l) {
rep.insert_unique(f,l);
void insert(const value_type* __f, const value_type* __l) {
_M_ht.insert_unique(__f,__l);
}
void insert(const_iterator f, const_iterator l) {rep.insert_unique(f, l); }
void insert(const_iterator __f, const_iterator __l)
{_M_ht.insert_unique(__f, __l); }
#endif /*__STL_MEMBER_TEMPLATES */
pair<iterator, bool> insert_noresize(const value_type& obj)
pair<iterator, bool> insert_noresize(const value_type& __obj)
{
pair<typename ht::iterator, bool> p = rep.insert_unique_noresize(obj);
return pair<iterator, bool>(p.first, p.second);
pair<typename _Ht::iterator, bool> __p =
_M_ht.insert_unique_noresize(__obj);
return pair<iterator, bool>(__p.first, __p.second);
}
iterator find(const key_type& key) const { return rep.find(key); }
iterator find(const key_type& __key) const { return _M_ht.find(__key); }
size_type count(const key_type& key) const { return rep.count(key); }
size_type count(const key_type& __key) const { return _M_ht.count(__key); }
pair<iterator, iterator> equal_range(const key_type& key) const
{ return rep.equal_range(key); }
pair<iterator, iterator> equal_range(const key_type& __key) const
{ return _M_ht.equal_range(__key); }
size_type erase(const key_type& key) {return rep.erase(key); }
void erase(iterator it) { rep.erase(it); }
void erase(iterator f, iterator l) { rep.erase(f, l); }
void clear() { rep.clear(); }
size_type erase(const key_type& __key) {return _M_ht.erase(__key); }
void erase(iterator __it) { _M_ht.erase(__it); }
void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); }
void clear() { _M_ht.clear(); }
public:
void resize(size_type hint) { rep.resize(hint); }
size_type bucket_count() const { return rep.bucket_count(); }
size_type max_bucket_count() const { return rep.max_bucket_count(); }
size_type elems_in_bucket(size_type n) const
{ return rep.elems_in_bucket(n); }
void resize(size_type __hint) { _M_ht.resize(__hint); }
size_type bucket_count() const { return _M_ht.bucket_count(); }
size_type max_bucket_count() const { return _M_ht.max_bucket_count(); }
size_type elems_in_bucket(size_type __n) const
{ return _M_ht.elems_in_bucket(__n); }
};
template <class Value, class HashFcn, class EqualKey, class Alloc>
inline bool operator==(const hash_set<Value, HashFcn, EqualKey, Alloc>& hs1,
const hash_set<Value, HashFcn, EqualKey, Alloc>& hs2)
template <class _Value, class _HashFcn, class _EqualKey, class _Alloc>
inline bool
operator==(const hash_set<_Value,_HashFcn,_EqualKey,_Alloc>& __hs1,
const hash_set<_Value,_HashFcn,_EqualKey,_Alloc>& __hs2)
{
return hs1.rep == hs2.rep;
return __hs1._M_ht == __hs2._M_ht;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Val, class HashFcn, class EqualKey, class Alloc>
inline void swap(hash_set<Val, HashFcn, EqualKey, Alloc>& hs1,
hash_set<Val, HashFcn, EqualKey, Alloc>& hs2) {
hs1.swap(hs2);
template <class _Val, class _HashFcn, class _EqualKey, class _Alloc>
inline void
swap(hash_set<_Val,_HashFcn,_EqualKey,_Alloc>& __hs1,
hash_set<_Val,_HashFcn,_EqualKey,_Alloc>& __hs2)
{
__hs1.swap(__hs2);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Value, class HashFcn = hash<Value>,
class EqualKey = equal_to<Value>,
class Alloc = alloc>
template <class _Value, class _HashFcn = hash<_Value>,
class _EqualKey = equal_to<_Value>,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
#else
template <class Value, class HashFcn, class EqualKey, class Alloc = alloc>
template <class _Value, class _HashFcn, class _EqualKey,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
#endif
class hash_multiset
{
private:
typedef hashtable<Value, Value, HashFcn, identity<Value>,
EqualKey, Alloc> ht;
ht rep;
typedef hashtable<_Value, _Value, _HashFcn, _Identity<_Value>,
_EqualKey, _Alloc> _Ht;
_Ht _M_ht;
public:
typedef typename ht::key_type key_type;
typedef typename ht::value_type value_type;
typedef typename ht::hasher hasher;
typedef typename ht::key_equal key_equal;
typedef typename _Ht::key_type key_type;
typedef typename _Ht::value_type value_type;
typedef typename _Ht::hasher hasher;
typedef typename _Ht::key_equal key_equal;
typedef typename ht::size_type size_type;
typedef typename ht::difference_type difference_type;
typedef typename ht::const_pointer pointer;
typedef typename ht::const_pointer const_pointer;
typedef typename ht::const_reference reference;
typedef typename ht::const_reference const_reference;
typedef typename _Ht::size_type size_type;
typedef typename _Ht::difference_type difference_type;
typedef typename _Ht::const_pointer pointer;
typedef typename _Ht::const_pointer const_pointer;
typedef typename _Ht::const_reference reference;
typedef typename _Ht::const_reference const_reference;
typedef typename ht::const_iterator iterator;
typedef typename ht::const_iterator const_iterator;
typedef typename _Ht::const_iterator iterator;
typedef typename _Ht::const_iterator const_iterator;
hasher hash_funct() const { return rep.hash_funct(); }
key_equal key_eq() const { return rep.key_eq(); }
typedef typename _Ht::allocator_type allocator_type;
hasher hash_funct() const { return _M_ht.hash_funct(); }
key_equal key_eq() const { return _M_ht.key_eq(); }
allocator_type get_allocator() const { return _M_ht.get_allocator(); }
public:
hash_multiset() : rep(100, hasher(), key_equal()) {}
explicit hash_multiset(size_type n) : rep(n, hasher(), key_equal()) {}
hash_multiset(size_type n, const hasher& hf) : rep(n, hf, key_equal()) {}
hash_multiset(size_type n, const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) {}
hash_multiset()
: _M_ht(100, hasher(), key_equal(), allocator_type()) {}
explicit hash_multiset(size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type()) {}
hash_multiset(size_type __n, const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type()) {}
hash_multiset(size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
hash_multiset(InputIterator f, InputIterator l)
: rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
template <class InputIterator>
hash_multiset(InputIterator f, InputIterator l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
template <class InputIterator>
hash_multiset(InputIterator f, InputIterator l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
template <class InputIterator>
hash_multiset(InputIterator f, InputIterator l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_equal(f, l); }
template <class _InputIterator>
hash_multiset(_InputIterator __f, _InputIterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multiset(_InputIterator __f, _InputIterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multiset(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multiset(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_equal(__f, __l); }
#else
hash_multiset(const value_type* f, const value_type* l)
: rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
hash_multiset(const value_type* f, const value_type* l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
hash_multiset(const value_type* f, const value_type* l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
hash_multiset(const value_type* f, const value_type* l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_equal(f, l); }
hash_multiset(const value_type* __f, const value_type* __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multiset(const value_type* __f, const value_type* __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multiset(const value_type* __f, const value_type* __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multiset(const value_type* __f, const value_type* __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_equal(__f, __l); }
hash_multiset(const_iterator f, const_iterator l)
: rep(100, hasher(), key_equal()) { rep.insert_equal(f, l); }
hash_multiset(const_iterator f, const_iterator l, size_type n)
: rep(n, hasher(), key_equal()) { rep.insert_equal(f, l); }
hash_multiset(const_iterator f, const_iterator l, size_type n,
const hasher& hf)
: rep(n, hf, key_equal()) { rep.insert_equal(f, l); }
hash_multiset(const_iterator f, const_iterator l, size_type n,
const hasher& hf, const key_equal& eql)
: rep(n, hf, eql) { rep.insert_equal(f, l); }
hash_multiset(const_iterator __f, const_iterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multiset(const_iterator __f, const_iterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multiset(const_iterator __f, const_iterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
hash_multiset(const_iterator __f, const_iterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_equal(__f, __l); }
#endif /*__STL_MEMBER_TEMPLATES */
public:
size_type size() const { return rep.size(); }
size_type max_size() const { return rep.max_size(); }
bool empty() const { return rep.empty(); }
void swap(hash_multiset& hs) { rep.swap(hs.rep); }
size_type size() const { return _M_ht.size(); }
size_type max_size() const { return _M_ht.max_size(); }
bool empty() const { return _M_ht.empty(); }
void swap(hash_multiset& hs) { _M_ht.swap(hs._M_ht); }
friend bool operator== __STL_NULL_TMPL_ARGS (const hash_multiset&,
const hash_multiset&);
iterator begin() const { return rep.begin(); }
iterator end() const { return rep.end(); }
iterator begin() const { return _M_ht.begin(); }
iterator end() const { return _M_ht.end(); }
public:
iterator insert(const value_type& obj) { return rep.insert_equal(obj); }
iterator insert(const value_type& __obj)
{ return _M_ht.insert_equal(__obj); }
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator f, InputIterator l) { rep.insert_equal(f,l); }
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{ _M_ht.insert_equal(__f,__l); }
#else
void insert(const value_type* f, const value_type* l) {
rep.insert_equal(f,l);
void insert(const value_type* __f, const value_type* __l) {
_M_ht.insert_equal(__f,__l);
}
void insert(const_iterator f, const_iterator l) { rep.insert_equal(f, l); }
void insert(const_iterator __f, const_iterator __l)
{ _M_ht.insert_equal(__f, __l); }
#endif /*__STL_MEMBER_TEMPLATES */
iterator insert_noresize(const value_type& obj)
{ return rep.insert_equal_noresize(obj); }
iterator insert_noresize(const value_type& __obj)
{ return _M_ht.insert_equal_noresize(__obj); }
iterator find(const key_type& key) const { return rep.find(key); }
iterator find(const key_type& __key) const { return _M_ht.find(__key); }
size_type count(const key_type& key) const { return rep.count(key); }
size_type count(const key_type& __key) const { return _M_ht.count(__key); }
pair<iterator, iterator> equal_range(const key_type& key) const
{ return rep.equal_range(key); }
pair<iterator, iterator> equal_range(const key_type& __key) const
{ return _M_ht.equal_range(__key); }
size_type erase(const key_type& key) {return rep.erase(key); }
void erase(iterator it) { rep.erase(it); }
void erase(iterator f, iterator l) { rep.erase(f, l); }
void clear() { rep.clear(); }
size_type erase(const key_type& __key) {return _M_ht.erase(__key); }
void erase(iterator __it) { _M_ht.erase(__it); }
void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); }
void clear() { _M_ht.clear(); }
public:
void resize(size_type hint) { rep.resize(hint); }
size_type bucket_count() const { return rep.bucket_count(); }
size_type max_bucket_count() const { return rep.max_bucket_count(); }
size_type elems_in_bucket(size_type n) const
{ return rep.elems_in_bucket(n); }
void resize(size_type __hint) { _M_ht.resize(__hint); }
size_type bucket_count() const { return _M_ht.bucket_count(); }
size_type max_bucket_count() const { return _M_ht.max_bucket_count(); }
size_type elems_in_bucket(size_type __n) const
{ return _M_ht.elems_in_bucket(__n); }
};
template <class Val, class HashFcn, class EqualKey, class Alloc>
inline bool operator==(const hash_multiset<Val, HashFcn, EqualKey, Alloc>& hs1,
const hash_multiset<Val, HashFcn, EqualKey, Alloc>& hs2)
template <class _Val, class _HashFcn, class _EqualKey, class _Alloc>
inline bool
operator==(const hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs1,
const hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs2)
{
return hs1.rep == hs2.rep;
return __hs1._M_ht == __hs2._M_ht;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Val, class HashFcn, class EqualKey, class Alloc>
inline void swap(hash_multiset<Val, HashFcn, EqualKey, Alloc>& hs1,
hash_multiset<Val, HashFcn, EqualKey, Alloc>& hs2)
{
hs1.swap(hs2);
template <class _Val, class _HashFcn, class _EqualKey, class _Alloc>
inline void
swap(hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs1,
hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs2) {
__hs1.swap(__hs2);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE

File diff suppressed because it is too large Load Diff

View File

@ -36,181 +36,236 @@ __STL_BEGIN_NAMESPACE
#pragma set woff 1209
#endif
template <class RandomAccessIterator, class Distance, class T>
void __push_heap(RandomAccessIterator first, Distance holeIndex,
Distance topIndex, T value) {
Distance parent = (holeIndex - 1) / 2;
while (holeIndex > topIndex && *(first + parent) < value) {
*(first + holeIndex) = *(first + parent);
holeIndex = parent;
parent = (holeIndex - 1) / 2;
// Heap-manipulation functions: push_heap, pop_heap, make_heap, sort_heap.
template <class _RandomAccessIterator, class _Distance, class _Tp>
void
__push_heap(_RandomAccessIterator __first,
_Distance __holeIndex, _Distance __topIndex, _Tp __value)
{
_Distance __parent = (__holeIndex - 1) / 2;
while (__holeIndex > __topIndex && *(__first + __parent) < __value) {
*(__first + __holeIndex) = *(__first + __parent);
__holeIndex = __parent;
__parent = (__holeIndex - 1) / 2;
}
*(first + holeIndex) = value;
*(__first + __holeIndex) = __value;
}
template <class RandomAccessIterator, class Distance, class T>
inline void __push_heap_aux(RandomAccessIterator first,
RandomAccessIterator last, Distance*, T*) {
__push_heap(first, Distance((last - first) - 1), Distance(0),
T(*(last - 1)));
template <class _RandomAccessIterator, class _Distance, class _Tp>
inline void
__push_heap_aux(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Distance*, _Tp*)
{
__push_heap(__first, _Distance((__last - __first) - 1), _Distance(0),
_Tp(*(__last - 1)));
}
template <class RandomAccessIterator>
inline void push_heap(RandomAccessIterator first, RandomAccessIterator last) {
__push_heap_aux(first, last, distance_type(first), value_type(first));
template <class _RandomAccessIterator>
inline void
push_heap(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
__push_heap_aux(__first, __last,
__DISTANCE_TYPE(__first), __VALUE_TYPE(__first));
}
template <class RandomAccessIterator, class Distance, class T, class Compare>
void __push_heap(RandomAccessIterator first, Distance holeIndex,
Distance topIndex, T value, Compare comp) {
Distance parent = (holeIndex - 1) / 2;
while (holeIndex > topIndex && comp(*(first + parent), value)) {
*(first + holeIndex) = *(first + parent);
holeIndex = parent;
parent = (holeIndex - 1) / 2;
template <class _RandomAccessIterator, class _Distance, class _Tp,
class _Compare>
void
__push_heap(_RandomAccessIterator __first, _Distance __holeIndex,
_Distance __topIndex, _Tp __value, _Compare __comp)
{
_Distance __parent = (__holeIndex - 1) / 2;
while (__holeIndex > __topIndex && __comp(*(__first + __parent), __value)) {
*(__first + __holeIndex) = *(__first + __parent);
__holeIndex = __parent;
__parent = (__holeIndex - 1) / 2;
}
*(first + holeIndex) = value;
*(__first + __holeIndex) = __value;
}
template <class RandomAccessIterator, class Compare, class Distance, class T>
inline void __push_heap_aux(RandomAccessIterator first,
RandomAccessIterator last, Compare comp,
Distance*, T*) {
__push_heap(first, Distance((last - first) - 1), Distance(0),
T(*(last - 1)), comp);
template <class _RandomAccessIterator, class _Compare,
class _Distance, class _Tp>
inline void
__push_heap_aux(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp,
_Distance*, _Tp*)
{
__push_heap(__first, _Distance((__last - __first) - 1), _Distance(0),
_Tp(*(__last - 1)), __comp);
}
template <class RandomAccessIterator, class Compare>
inline void push_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp) {
__push_heap_aux(first, last, comp, distance_type(first), value_type(first));
template <class _RandomAccessIterator, class _Compare>
inline void
push_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp)
{
__push_heap_aux(__first, __last, __comp,
__DISTANCE_TYPE(__first), __VALUE_TYPE(__first));
}
template <class RandomAccessIterator, class Distance, class T>
void __adjust_heap(RandomAccessIterator first, Distance holeIndex,
Distance len, T value) {
Distance topIndex = holeIndex;
Distance secondChild = 2 * holeIndex + 2;
while (secondChild < len) {
if (*(first + secondChild) < *(first + (secondChild - 1)))
secondChild--;
*(first + holeIndex) = *(first + secondChild);
holeIndex = secondChild;
secondChild = 2 * (secondChild + 1);
template <class _RandomAccessIterator, class _Distance, class _Tp>
void
__adjust_heap(_RandomAccessIterator __first, _Distance __holeIndex,
_Distance __len, _Tp __value)
{
_Distance __topIndex = __holeIndex;
_Distance __secondChild = 2 * __holeIndex + 2;
while (__secondChild < __len) {
if (*(__first + __secondChild) < *(__first + (__secondChild - 1)))
__secondChild--;
*(__first + __holeIndex) = *(__first + __secondChild);
__holeIndex = __secondChild;
__secondChild = 2 * (__secondChild + 1);
}
if (secondChild == len) {
*(first + holeIndex) = *(first + (secondChild - 1));
holeIndex = secondChild - 1;
if (__secondChild == __len) {
*(__first + __holeIndex) = *(__first + (__secondChild - 1));
__holeIndex = __secondChild - 1;
}
__push_heap(first, holeIndex, topIndex, value);
__push_heap(__first, __holeIndex, __topIndex, __value);
}
template <class RandomAccessIterator, class T, class Distance>
inline void __pop_heap(RandomAccessIterator first, RandomAccessIterator last,
RandomAccessIterator result, T value, Distance*) {
*result = *first;
__adjust_heap(first, Distance(0), Distance(last - first), value);
template <class _RandomAccessIterator, class _Tp, class _Distance>
inline void
__pop_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_RandomAccessIterator __result, _Tp __value, _Distance*)
{
*__result = *__first;
__adjust_heap(__first, _Distance(0), _Distance(__last - __first), __value);
}
template <class RandomAccessIterator, class T>
inline void __pop_heap_aux(RandomAccessIterator first,
RandomAccessIterator last, T*) {
__pop_heap(first, last - 1, last - 1, T(*(last - 1)), distance_type(first));
template <class _RandomAccessIterator, class _Tp>
inline void
__pop_heap_aux(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Tp*)
{
__pop_heap(__first, __last - 1, __last - 1,
_Tp(*(__last - 1)), __DISTANCE_TYPE(__first));
}
template <class RandomAccessIterator>
inline void pop_heap(RandomAccessIterator first, RandomAccessIterator last) {
__pop_heap_aux(first, last, value_type(first));
template <class _RandomAccessIterator>
inline void pop_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last)
{
__pop_heap_aux(__first, __last, __VALUE_TYPE(__first));
}
template <class RandomAccessIterator, class Distance, class T, class Compare>
void __adjust_heap(RandomAccessIterator first, Distance holeIndex,
Distance len, T value, Compare comp) {
Distance topIndex = holeIndex;
Distance secondChild = 2 * holeIndex + 2;
while (secondChild < len) {
if (comp(*(first + secondChild), *(first + (secondChild - 1))))
secondChild--;
*(first + holeIndex) = *(first + secondChild);
holeIndex = secondChild;
secondChild = 2 * (secondChild + 1);
template <class _RandomAccessIterator, class _Distance,
class _Tp, class _Compare>
void
__adjust_heap(_RandomAccessIterator __first, _Distance __holeIndex,
_Distance __len, _Tp __value, _Compare __comp)
{
_Distance __topIndex = __holeIndex;
_Distance __secondChild = 2 * __holeIndex + 2;
while (__secondChild < __len) {
if (__comp(*(__first + __secondChild), *(__first + (__secondChild - 1))))
__secondChild--;
*(__first + __holeIndex) = *(__first + __secondChild);
__holeIndex = __secondChild;
__secondChild = 2 * (__secondChild + 1);
}
if (secondChild == len) {
*(first + holeIndex) = *(first + (secondChild - 1));
holeIndex = secondChild - 1;
if (__secondChild == __len) {
*(__first + __holeIndex) = *(__first + (__secondChild - 1));
__holeIndex = __secondChild - 1;
}
__push_heap(first, holeIndex, topIndex, value, comp);
__push_heap(__first, __holeIndex, __topIndex, __value, __comp);
}
template <class RandomAccessIterator, class T, class Compare, class Distance>
inline void __pop_heap(RandomAccessIterator first, RandomAccessIterator last,
RandomAccessIterator result, T value, Compare comp,
Distance*) {
*result = *first;
__adjust_heap(first, Distance(0), Distance(last - first), value, comp);
template <class _RandomAccessIterator, class _Tp, class _Compare,
class _Distance>
inline void
__pop_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_RandomAccessIterator __result, _Tp __value, _Compare __comp,
_Distance*)
{
*__result = *__first;
__adjust_heap(__first, _Distance(0), _Distance(__last - __first),
__value, __comp);
}
template <class RandomAccessIterator, class T, class Compare>
inline void __pop_heap_aux(RandomAccessIterator first,
RandomAccessIterator last, T*, Compare comp) {
__pop_heap(first, last - 1, last - 1, T(*(last - 1)), comp,
distance_type(first));
template <class _RandomAccessIterator, class _Tp, class _Compare>
inline void
__pop_heap_aux(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Tp*, _Compare __comp)
{
__pop_heap(__first, __last - 1, __last - 1, _Tp(*(__last - 1)), __comp,
__DISTANCE_TYPE(__first));
}
template <class RandomAccessIterator, class Compare>
inline void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp) {
__pop_heap_aux(first, last, value_type(first), comp);
template <class _RandomAccessIterator, class _Compare>
inline void
pop_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
__pop_heap_aux(__first, __last, __VALUE_TYPE(__first), __comp);
}
template <class RandomAccessIterator, class T, class Distance>
void __make_heap(RandomAccessIterator first, RandomAccessIterator last, T*,
Distance*) {
if (last - first < 2) return;
Distance len = last - first;
Distance parent = (len - 2)/2;
template <class _RandomAccessIterator, class _Tp, class _Distance>
void
__make_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Tp*, _Distance*)
{
if (__last - __first < 2) return;
_Distance __len = __last - __first;
_Distance __parent = (__len - 2)/2;
while (true) {
__adjust_heap(first, parent, len, T(*(first + parent)));
if (parent == 0) return;
parent--;
__adjust_heap(__first, __parent, __len, _Tp(*(__first + __parent)));
if (__parent == 0) return;
__parent--;
}
}
template <class RandomAccessIterator>
inline void make_heap(RandomAccessIterator first, RandomAccessIterator last) {
__make_heap(first, last, value_type(first), distance_type(first));
template <class _RandomAccessIterator>
inline void
make_heap(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
__make_heap(__first, __last,
__VALUE_TYPE(__first), __DISTANCE_TYPE(__first));
}
template <class RandomAccessIterator, class Compare, class T, class Distance>
void __make_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp, T*, Distance*) {
if (last - first < 2) return;
Distance len = last - first;
Distance parent = (len - 2)/2;
template <class _RandomAccessIterator, class _Compare,
class _Tp, class _Distance>
void
__make_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp, _Tp*, _Distance*)
{
if (__last - __first < 2) return;
_Distance __len = __last - __first;
_Distance __parent = (__len - 2)/2;
while (true) {
__adjust_heap(first, parent, len, T(*(first + parent)), comp);
if (parent == 0) return;
parent--;
__adjust_heap(__first, __parent, __len, _Tp(*(__first + __parent)),
__comp);
if (__parent == 0) return;
__parent--;
}
}
template <class RandomAccessIterator, class Compare>
inline void make_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp) {
__make_heap(first, last, comp, value_type(first), distance_type(first));
template <class _RandomAccessIterator, class _Compare>
inline void
make_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
__make_heap(__first, __last, __comp,
__VALUE_TYPE(__first), __DISTANCE_TYPE(__first));
}
template <class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last) {
while (last - first > 1) pop_heap(first, last--);
template <class _RandomAccessIterator>
void sort_heap(_RandomAccessIterator __first, _RandomAccessIterator __last)
{
while (__last - __first > 1)
pop_heap(__first, __last--);
}
template <class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp) {
while (last - first > 1) pop_heap(first, last--, comp);
template <class _RandomAccessIterator, class _Compare>
void
sort_heap(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
while (__last - __first > 1)
pop_heap(__first, __last--, __comp);
}
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -35,177 +35,202 @@ __STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
template <class _Key, class _Tp, class _Compare = less<_Key>,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
#else
template <class Key, class T, class Compare, class Alloc = alloc>
template <class _Key, class _Tp, class _Compare,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
#endif
class map {
public:
// typedefs:
typedef Key key_type;
typedef T data_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef _Key key_type;
typedef _Tp data_type;
typedef _Tp mapped_type;
typedef pair<const _Key, _Tp> value_type;
typedef _Compare key_compare;
class value_compare
: public binary_function<value_type, value_type, bool> {
friend class map<Key, T, Compare, Alloc>;
friend class map<_Key,_Tp,_Compare,_Alloc>;
protected :
Compare comp;
value_compare(Compare c) : comp(c) {}
_Compare _M_comp;
value_compare(_Compare __c) : _M_comp(__c) {}
public:
bool operator()(const value_type& x, const value_type& y) const {
return comp(x.first, y.first);
bool operator()(const value_type& __x, const value_type& __y) const {
return _M_comp(__x.first, __y.first);
}
};
private:
typedef rb_tree<key_type, value_type,
select1st<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing map
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
_Rep_type _M_t; // red-black tree representing map
public:
typedef typename rep_type::pointer pointer;
typedef typename rep_type::const_pointer const_pointer;
typedef typename rep_type::reference reference;
typedef typename rep_type::const_reference const_reference;
typedef typename rep_type::iterator iterator;
typedef typename rep_type::const_iterator const_iterator;
typedef typename rep_type::reverse_iterator reverse_iterator;
typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename rep_type::size_type size_type;
typedef typename rep_type::difference_type difference_type;
typedef typename _Rep_type::pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::reference reference;
typedef typename _Rep_type::const_reference const_reference;
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
// allocation/deallocation
map() : t(Compare()) {}
explicit map(const Compare& comp) : t(comp) {}
map() : _M_t(_Compare(), allocator_type()) {}
explicit map(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
map(InputIterator first, InputIterator last)
: t(Compare()) { t.insert_unique(first, last); }
template <class _InputIterator>
map(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
template <class InputIterator>
map(InputIterator first, InputIterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
template <class _InputIterator>
map(_InputIterator __first, _InputIterator __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
#else
map(const value_type* first, const value_type* last)
: t(Compare()) { t.insert_unique(first, last); }
map(const value_type* first, const value_type* last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
map(const value_type* __first, const value_type* __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
map(const value_type* __first,
const value_type* __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
map(const_iterator __first, const_iterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
map(const_iterator __first, const_iterator __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
map(const_iterator first, const_iterator last)
: t(Compare()) { t.insert_unique(first, last); }
map(const_iterator first, const_iterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
#endif /* __STL_MEMBER_TEMPLATES */
map(const map<Key, T, Compare, Alloc>& x) : t(x.t) {}
map<Key, T, Compare, Alloc>& operator=(const map<Key, T, Compare, Alloc>& x)
map(const map<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {}
map<_Key,_Tp,_Compare,_Alloc>&
operator=(const map<_Key, _Tp, _Compare, _Alloc>& __x)
{
t = x.t;
_M_t = __x._M_t;
return *this;
}
// accessors:
key_compare key_comp() const { return t.key_comp(); }
value_compare value_comp() const { return value_compare(t.key_comp()); }
iterator begin() { return t.begin(); }
const_iterator begin() const { return t.begin(); }
iterator end() { return t.end(); }
const_iterator end() const { return t.end(); }
reverse_iterator rbegin() { return t.rbegin(); }
const_reverse_iterator rbegin() const { return t.rbegin(); }
reverse_iterator rend() { return t.rend(); }
const_reverse_iterator rend() const { return t.rend(); }
bool empty() const { return t.empty(); }
size_type size() const { return t.size(); }
size_type max_size() const { return t.max_size(); }
T& operator[](const key_type& k) {
return (*((insert(value_type(k, T()))).first)).second;
key_compare key_comp() const { return _M_t.key_comp(); }
value_compare value_comp() const { return value_compare(_M_t.key_comp()); }
allocator_type get_allocator() const { return _M_t.get_allocator(); }
iterator begin() { return _M_t.begin(); }
const_iterator begin() const { return _M_t.begin(); }
iterator end() { return _M_t.end(); }
const_iterator end() const { return _M_t.end(); }
reverse_iterator rbegin() { return _M_t.rbegin(); }
const_reverse_iterator rbegin() const { return _M_t.rbegin(); }
reverse_iterator rend() { return _M_t.rend(); }
const_reverse_iterator rend() const { return _M_t.rend(); }
bool empty() const { return _M_t.empty(); }
size_type size() const { return _M_t.size(); }
size_type max_size() const { return _M_t.max_size(); }
_Tp& operator[](const key_type& __k) {
iterator __i = lower_bound(__k);
// __i->first is greater than or equivalent to __k.
if (__i == end() || key_comp()(__k, (*__i).first))
__i = insert(__i, value_type(__k, _Tp()));
return (*__i).second;
}
void swap(map<Key, T, Compare, Alloc>& x) { t.swap(x.t); }
void swap(map<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
// insert/erase
pair<iterator,bool> insert(const value_type& x) { return t.insert_unique(x); }
iterator insert(iterator position, const value_type& x) {
return t.insert_unique(position, x);
}
pair<iterator,bool> insert(const value_type& __x)
{ return _M_t.insert_unique(__x); }
iterator insert(iterator position, const value_type& __x)
{ return _M_t.insert_unique(position, __x); }
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator first, InputIterator last) {
t.insert_unique(first, last);
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
_M_t.insert_unique(__first, __last);
}
#else
void insert(const value_type* first, const value_type* last) {
t.insert_unique(first, last);
void insert(const value_type* __first, const value_type* __last) {
_M_t.insert_unique(__first, __last);
}
void insert(const_iterator first, const_iterator last) {
t.insert_unique(first, last);
void insert(const_iterator __first, const_iterator __last) {
_M_t.insert_unique(__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position) { t.erase(position); }
size_type erase(const key_type& x) { return t.erase(x); }
void erase(iterator first, iterator last) { t.erase(first, last); }
void clear() { t.clear(); }
void erase(iterator __position) { _M_t.erase(__position); }
size_type erase(const key_type& __x) { return _M_t.erase(__x); }
void erase(iterator __first, iterator __last)
{ _M_t.erase(__first, __last); }
void clear() { _M_t.clear(); }
// map operations:
iterator find(const key_type& x) { return t.find(x); }
const_iterator find(const key_type& x) const { return t.find(x); }
size_type count(const key_type& x) const { return t.count(x); }
iterator lower_bound(const key_type& x) {return t.lower_bound(x); }
const_iterator lower_bound(const key_type& x) const {
return t.lower_bound(x);
iterator find(const key_type& __x) { return _M_t.find(__x); }
const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
size_type count(const key_type& __x) const { return _M_t.count(__x); }
iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); }
const_iterator lower_bound(const key_type& __x) const {
return _M_t.lower_bound(__x);
}
iterator upper_bound(const key_type& x) {return t.upper_bound(x); }
const_iterator upper_bound(const key_type& x) const {
return t.upper_bound(x);
iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); }
const_iterator upper_bound(const key_type& __x) const {
return _M_t.upper_bound(__x);
}
pair<iterator,iterator> equal_range(const key_type& x) {
return t.equal_range(x);
pair<iterator,iterator> equal_range(const key_type& __x) {
return _M_t.equal_range(__x);
}
pair<const_iterator,const_iterator> equal_range(const key_type& x) const {
return t.equal_range(x);
pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
return _M_t.equal_range(__x);
}
friend bool operator== __STL_NULL_TMPL_ARGS (const map&, const map&);
friend bool operator< __STL_NULL_TMPL_ARGS (const map&, const map&);
};
template <class Key, class T, class Compare, class Alloc>
inline bool operator==(const map<Key, T, Compare, Alloc>& x,
const map<Key, T, Compare, Alloc>& y) {
return x.t == y.t;
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t == __y._M_t;
}
template <class Key, class T, class Compare, class Alloc>
inline bool operator<(const map<Key, T, Compare, Alloc>& x,
const map<Key, T, Compare, Alloc>& y) {
return x.t < y.t;
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t < __y._M_t;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class T, class Compare, class Alloc>
inline void swap(map<Key, T, Compare, Alloc>& x,
map<Key, T, Compare, Alloc>& y) {
x.swap(y);
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline void swap(map<_Key,_Tp,_Compare,_Alloc>& __x,
map<_Key,_Tp,_Compare,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE

View File

@ -35,143 +35,160 @@ __STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
template <class _Key, class _Tp, class _Compare = less<_Key>,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
#else
template <class Key, class T, class Compare, class Alloc = alloc>
template <class _Key, class _Tp, class _Compare,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
#endif
class multimap {
public:
// typedefs:
typedef Key key_type;
typedef T data_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef _Key key_type;
typedef _Tp data_type;
typedef _Tp mapped_type;
typedef pair<const _Key, _Tp> value_type;
typedef _Compare key_compare;
class value_compare : public binary_function<value_type, value_type, bool> {
friend class multimap<Key, T, Compare, Alloc>;
friend class multimap<_Key,_Tp,_Compare,_Alloc>;
protected:
Compare comp;
value_compare(Compare c) : comp(c) {}
_Compare _M_comp;
value_compare(_Compare __c) : _M_comp(__c) {}
public:
bool operator()(const value_type& x, const value_type& y) const {
return comp(x.first, y.first);
bool operator()(const value_type& __x, const value_type& __y) const {
return _M_comp(__x.first, __y.first);
}
};
private:
typedef rb_tree<key_type, value_type,
select1st<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing multimap
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
_Rep_type _M_t; // red-black tree representing multimap
public:
typedef typename rep_type::pointer pointer;
typedef typename rep_type::const_pointer const_pointer;
typedef typename rep_type::reference reference;
typedef typename rep_type::const_reference const_reference;
typedef typename rep_type::iterator iterator;
typedef typename rep_type::const_iterator const_iterator;
typedef typename rep_type::reverse_iterator reverse_iterator;
typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename rep_type::size_type size_type;
typedef typename rep_type::difference_type difference_type;
typedef typename _Rep_type::pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::reference reference;
typedef typename _Rep_type::const_reference const_reference;
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
// allocation/deallocation
multimap() : t(Compare()) { }
explicit multimap(const Compare& comp) : t(comp) { }
multimap() : _M_t(_Compare(), allocator_type()) { }
explicit multimap(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { }
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
multimap(InputIterator first, InputIterator last)
: t(Compare()) { t.insert_equal(first, last); }
template <class _InputIterator>
multimap(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
template <class InputIterator>
multimap(InputIterator first, InputIterator last, const Compare& comp)
: t(comp) { t.insert_equal(first, last); }
template <class _InputIterator>
multimap(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
#else
multimap(const value_type* first, const value_type* last)
: t(Compare()) { t.insert_equal(first, last); }
multimap(const value_type* first, const value_type* last,
const Compare& comp)
: t(comp) { t.insert_equal(first, last); }
multimap(const value_type* __first, const value_type* __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
multimap(const value_type* __first, const value_type* __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
multimap(const_iterator first, const_iterator last)
: t(Compare()) { t.insert_equal(first, last); }
multimap(const_iterator first, const_iterator last, const Compare& comp)
: t(comp) { t.insert_equal(first, last); }
multimap(const_iterator __first, const_iterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
multimap(const_iterator __first, const_iterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
multimap(const multimap<Key, T, Compare, Alloc>& x) : t(x.t) { }
multimap<Key, T, Compare, Alloc>&
operator=(const multimap<Key, T, Compare, Alloc>& x) {
t = x.t;
multimap(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) { }
multimap<_Key,_Tp,_Compare,_Alloc>&
operator=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) {
_M_t = __x._M_t;
return *this;
}
// accessors:
key_compare key_comp() const { return t.key_comp(); }
value_compare value_comp() const { return value_compare(t.key_comp()); }
iterator begin() { return t.begin(); }
const_iterator begin() const { return t.begin(); }
iterator end() { return t.end(); }
const_iterator end() const { return t.end(); }
reverse_iterator rbegin() { return t.rbegin(); }
const_reverse_iterator rbegin() const { return t.rbegin(); }
reverse_iterator rend() { return t.rend(); }
const_reverse_iterator rend() const { return t.rend(); }
bool empty() const { return t.empty(); }
size_type size() const { return t.size(); }
size_type max_size() const { return t.max_size(); }
void swap(multimap<Key, T, Compare, Alloc>& x) { t.swap(x.t); }
key_compare key_comp() const { return _M_t.key_comp(); }
value_compare value_comp() const { return value_compare(_M_t.key_comp()); }
allocator_type get_allocator() const { return _M_t.get_allocator(); }
iterator begin() { return _M_t.begin(); }
const_iterator begin() const { return _M_t.begin(); }
iterator end() { return _M_t.end(); }
const_iterator end() const { return _M_t.end(); }
reverse_iterator rbegin() { return _M_t.rbegin(); }
const_reverse_iterator rbegin() const { return _M_t.rbegin(); }
reverse_iterator rend() { return _M_t.rend(); }
const_reverse_iterator rend() const { return _M_t.rend(); }
bool empty() const { return _M_t.empty(); }
size_type size() const { return _M_t.size(); }
size_type max_size() const { return _M_t.max_size(); }
void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
// insert/erase
iterator insert(const value_type& x) { return t.insert_equal(x); }
iterator insert(iterator position, const value_type& x) {
return t.insert_equal(position, x);
iterator insert(const value_type& __x) { return _M_t.insert_equal(__x); }
iterator insert(iterator __position, const value_type& __x) {
return _M_t.insert_equal(__position, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator first, InputIterator last) {
t.insert_equal(first, last);
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
_M_t.insert_equal(__first, __last);
}
#else
void insert(const value_type* first, const value_type* last) {
t.insert_equal(first, last);
void insert(const value_type* __first, const value_type* __last) {
_M_t.insert_equal(__first, __last);
}
void insert(const_iterator first, const_iterator last) {
t.insert_equal(first, last);
void insert(const_iterator __first, const_iterator __last) {
_M_t.insert_equal(__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position) { t.erase(position); }
size_type erase(const key_type& x) { return t.erase(x); }
void erase(iterator first, iterator last) { t.erase(first, last); }
void clear() { t.clear(); }
void erase(iterator __position) { _M_t.erase(__position); }
size_type erase(const key_type& __x) { return _M_t.erase(__x); }
void erase(iterator __first, iterator __last)
{ _M_t.erase(__first, __last); }
void clear() { _M_t.clear(); }
// multimap operations:
iterator find(const key_type& x) { return t.find(x); }
const_iterator find(const key_type& x) const { return t.find(x); }
size_type count(const key_type& x) const { return t.count(x); }
iterator lower_bound(const key_type& x) {return t.lower_bound(x); }
const_iterator lower_bound(const key_type& x) const {
return t.lower_bound(x);
iterator find(const key_type& __x) { return _M_t.find(__x); }
const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
size_type count(const key_type& __x) const { return _M_t.count(__x); }
iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); }
const_iterator lower_bound(const key_type& __x) const {
return _M_t.lower_bound(__x);
}
iterator upper_bound(const key_type& x) {return t.upper_bound(x); }
const_iterator upper_bound(const key_type& x) const {
return t.upper_bound(x);
iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); }
const_iterator upper_bound(const key_type& __x) const {
return _M_t.upper_bound(__x);
}
pair<iterator,iterator> equal_range(const key_type& x) {
return t.equal_range(x);
pair<iterator,iterator> equal_range(const key_type& __x) {
return _M_t.equal_range(__x);
}
pair<const_iterator,const_iterator> equal_range(const key_type& x) const {
return t.equal_range(x);
pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
return _M_t.equal_range(__x);
}
friend bool operator== __STL_NULL_TMPL_ARGS (const multimap&,
const multimap&);
@ -179,30 +196,31 @@ class multimap {
const multimap&);
};
template <class Key, class T, class Compare, class Alloc>
inline bool operator==(const multimap<Key, T, Compare, Alloc>& x,
const multimap<Key, T, Compare, Alloc>& y) {
return x.t == y.t;
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t == __y._M_t;
}
template <class Key, class T, class Compare, class Alloc>
inline bool operator<(const multimap<Key, T, Compare, Alloc>& x,
const multimap<Key, T, Compare, Alloc>& y) {
return x.t < y.t;
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t < __y._M_t;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class T, class Compare, class Alloc>
inline void swap(multimap<Key, T, Compare, Alloc>& x,
multimap<Key, T, Compare, Alloc>& y) {
x.swap(y);
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE

View File

@ -35,129 +35,152 @@ __STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class Compare = less<Key>, class Alloc = alloc>
template <class _Key, class _Compare = less<_Key>,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Key) >
#else
template <class Key, class Compare, class Alloc = alloc>
template <class _Key, class _Compare,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Key) >
#endif
class multiset {
public:
// typedefs:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef _Key key_type;
typedef _Key value_type;
typedef _Compare key_compare;
typedef _Compare value_compare;
private:
typedef rb_tree<key_type, value_type,
identity<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing multiset
typedef _Rb_tree<key_type, value_type,
_Identity<value_type>, key_compare, _Alloc> _Rep_type;
_Rep_type _M_t; // red-black tree representing multiset
public:
typedef typename rep_type::const_pointer pointer;
typedef typename rep_type::const_pointer const_pointer;
typedef typename rep_type::const_reference reference;
typedef typename rep_type::const_reference const_reference;
typedef typename rep_type::const_iterator iterator;
typedef typename rep_type::const_iterator const_iterator;
typedef typename rep_type::const_reverse_iterator reverse_iterator;
typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename rep_type::size_type size_type;
typedef typename rep_type::difference_type difference_type;
typedef typename _Rep_type::const_pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::const_reference reference;
typedef typename _Rep_type::const_reference const_reference;
typedef typename _Rep_type::const_iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
// allocation/deallocation
multiset() : t(Compare()) {}
explicit multiset(const Compare& comp) : t(comp) {}
multiset() : _M_t(_Compare(), allocator_type()) {}
explicit multiset(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
multiset(InputIterator first, InputIterator last)
: t(Compare()) { t.insert_equal(first, last); }
template <class InputIterator>
multiset(InputIterator first, InputIterator last, const Compare& comp)
: t(comp) { t.insert_equal(first, last); }
#else
multiset(const value_type* first, const value_type* last)
: t(Compare()) { t.insert_equal(first, last); }
multiset(const value_type* first, const value_type* last,
const Compare& comp)
: t(comp) { t.insert_equal(first, last); }
multiset(const_iterator first, const_iterator last)
: t(Compare()) { t.insert_equal(first, last); }
multiset(const_iterator first, const_iterator last, const Compare& comp)
: t(comp) { t.insert_equal(first, last); }
template <class _InputIterator>
multiset(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
template <class _InputIterator>
multiset(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
#else
multiset(const value_type* __first, const value_type* __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
multiset(const value_type* __first, const value_type* __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
multiset(const_iterator __first, const_iterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
multiset(const_iterator __first, const_iterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
multiset(const multiset<Key, Compare, Alloc>& x) : t(x.t) {}
multiset<Key, Compare, Alloc>&
operator=(const multiset<Key, Compare, Alloc>& x) {
t = x.t;
multiset(const multiset<_Key,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {}
multiset<_Key,_Compare,_Alloc>&
operator=(const multiset<_Key,_Compare,_Alloc>& __x) {
_M_t = __x._M_t;
return *this;
}
// accessors:
key_compare key_comp() const { return t.key_comp(); }
value_compare value_comp() const { return t.key_comp(); }
iterator begin() const { return t.begin(); }
iterator end() const { return t.end(); }
reverse_iterator rbegin() const { return t.rbegin(); }
reverse_iterator rend() const { return t.rend(); }
bool empty() const { return t.empty(); }
size_type size() const { return t.size(); }
size_type max_size() const { return t.max_size(); }
void swap(multiset<Key, Compare, Alloc>& x) { t.swap(x.t); }
key_compare key_comp() const { return _M_t.key_comp(); }
value_compare value_comp() const { return _M_t.key_comp(); }
allocator_type get_allocator() const { return _M_t.get_allocator(); }
iterator begin() const { return _M_t.begin(); }
iterator end() const { return _M_t.end(); }
reverse_iterator rbegin() const { return _M_t.rbegin(); }
reverse_iterator rend() const { return _M_t.rend(); }
bool empty() const { return _M_t.empty(); }
size_type size() const { return _M_t.size(); }
size_type max_size() const { return _M_t.max_size(); }
void swap(multiset<_Key,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
// insert/erase
iterator insert(const value_type& x) {
return t.insert_equal(x);
iterator insert(const value_type& __x) {
return _M_t.insert_equal(__x);
}
iterator insert(iterator position, const value_type& x) {
typedef typename rep_type::iterator rep_iterator;
return t.insert_equal((rep_iterator&)position, x);
iterator insert(iterator __position, const value_type& __x) {
typedef typename _Rep_type::iterator _Rep_iterator;
return _M_t.insert_equal((_Rep_iterator&)__position, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator first, InputIterator last) {
t.insert_equal(first, last);
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
_M_t.insert_equal(__first, __last);
}
#else
void insert(const value_type* first, const value_type* last) {
t.insert_equal(first, last);
void insert(const value_type* __first, const value_type* __last) {
_M_t.insert_equal(__first, __last);
}
void insert(const_iterator first, const_iterator last) {
t.insert_equal(first, last);
void insert(const_iterator __first, const_iterator __last) {
_M_t.insert_equal(__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position) {
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)position);
void erase(iterator __position) {
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__position);
}
size_type erase(const key_type& x) {
return t.erase(x);
size_type erase(const key_type& __x) {
return _M_t.erase(__x);
}
void erase(iterator first, iterator last) {
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)first, (rep_iterator&)last);
void erase(iterator __first, iterator __last) {
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last);
}
void clear() { t.clear(); }
void clear() { _M_t.clear(); }
// multiset operations:
iterator find(const key_type& x) const { return t.find(x); }
size_type count(const key_type& x) const { return t.count(x); }
iterator lower_bound(const key_type& x) const {
return t.lower_bound(x);
iterator find(const key_type& __x) const { return _M_t.find(__x); }
size_type count(const key_type& __x) const { return _M_t.count(__x); }
iterator lower_bound(const key_type& __x) const {
return _M_t.lower_bound(__x);
}
iterator upper_bound(const key_type& x) const {
return t.upper_bound(x);
iterator upper_bound(const key_type& __x) const {
return _M_t.upper_bound(__x);
}
pair<iterator,iterator> equal_range(const key_type& x) const {
return t.equal_range(x);
pair<iterator,iterator> equal_range(const key_type& __x) const {
return _M_t.equal_range(__x);
}
friend bool operator== __STL_NULL_TMPL_ARGS (const multiset&,
const multiset&);
@ -165,30 +188,31 @@ class multiset {
const multiset&);
};
template <class Key, class Compare, class Alloc>
inline bool operator==(const multiset<Key, Compare, Alloc>& x,
const multiset<Key, Compare, Alloc>& y) {
return x.t == y.t;
template <class _Key, class _Compare, class _Alloc>
inline bool operator==(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y) {
return __x._M_t == __y._M_t;
}
template <class Key, class Compare, class Alloc>
inline bool operator<(const multiset<Key, Compare, Alloc>& x,
const multiset<Key, Compare, Alloc>& y) {
return x.t < y.t;
template <class _Key, class _Compare, class _Alloc>
inline bool operator<(const multiset<_Key,_Compare,_Alloc>& __x,
const multiset<_Key,_Compare,_Alloc>& __y) {
return __x._M_t < __y._M_t;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class Compare, class Alloc>
inline void swap(multiset<Key, Compare, Alloc>& x,
multiset<Key, Compare, Alloc>& y) {
x.swap(y);
template <class _Key, class _Compare, class _Alloc>
inline void swap(multiset<_Key,_Compare,_Alloc>& __x,
multiset<_Key,_Compare,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE

View File

@ -34,157 +34,200 @@
__STL_BEGIN_NAMESPACE
template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init) {
for ( ; first != last; ++first)
init = init + *first;
return init;
template <class _InputIterator, class _Tp>
_Tp accumulate(_InputIterator __first, _InputIterator __last, _Tp __init)
{
for ( ; __first != __last; ++__first)
__init = __init + *__first;
return __init;
}
template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op) {
for ( ; first != last; ++first)
init = binary_op(init, *first);
return init;
template <class _InputIterator, class _Tp, class _BinaryOperation>
_Tp accumulate(_InputIterator __first, _InputIterator __last, _Tp __init,
_BinaryOperation __binary_op)
{
for ( ; __first != __last; ++__first)
__init = __binary_op(__init, *__first);
return __init;
}
template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init) {
for ( ; first1 != last1; ++first1, ++first2)
init = init + (*first1 * *first2);
return init;
template <class _InputIterator1, class _InputIterator2, class _Tp>
_Tp inner_product(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _Tp __init)
{
for ( ; __first1 != __last1; ++__first1, ++__first2)
__init = __init + (*__first1 * *__first2);
return __init;
}
template <class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init, BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2) {
for ( ; first1 != last1; ++first1, ++first2)
init = binary_op1(init, binary_op2(*first1, *first2));
return init;
template <class _InputIterator1, class _InputIterator2, class _Tp,
class _BinaryOperation1, class _BinaryOperation2>
_Tp inner_product(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _Tp __init,
_BinaryOperation1 __binary_op1,
_BinaryOperation2 __binary_op2)
{
for ( ; __first1 != __last1; ++__first1, ++__first2)
__init = __binary_op1(__init, __binary_op2(*__first1, *__first2));
return __init;
}
template <class InputIterator, class OutputIterator, class T>
OutputIterator __partial_sum(InputIterator first, InputIterator last,
OutputIterator result, T*) {
T value = *first;
while (++first != last) {
value = value + *first;
*++result = value;
template <class _InputIterator, class _OutputIterator, class _Tp>
_OutputIterator
__partial_sum(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Tp*)
{
_Tp __value = *__first;
while (++__first != __last) {
__value = __value + *__first;
*++__result = __value;
}
return ++result;
return ++__result;
}
template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(InputIterator first, InputIterator last,
OutputIterator result) {
if (first == last) return result;
*result = *first;
return __partial_sum(first, last, result, value_type(first));
template <class _InputIterator, class _OutputIterator>
_OutputIterator
partial_sum(_InputIterator __first, _InputIterator __last,
_OutputIterator __result)
{
if (__first == __last) return __result;
*__result = *__first;
return __partial_sum(__first, __last, __result, __VALUE_TYPE(__first));
}
template <class InputIterator, class OutputIterator, class T,
class BinaryOperation>
OutputIterator __partial_sum(InputIterator first, InputIterator last,
OutputIterator result, T*,
BinaryOperation binary_op) {
T value = *first;
while (++first != last) {
value = binary_op(value, *first);
*++result = value;
template <class _InputIterator, class _OutputIterator, class _Tp,
class _BinaryOperation>
_OutputIterator
__partial_sum(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Tp*, _BinaryOperation __binary_op)
{
_Tp __value = *__first;
while (++__first != __last) {
__value = __binary_op(__value, *__first);
*++__result = __value;
}
return ++result;
return ++__result;
}
template <class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator partial_sum(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op) {
if (first == last) return result;
*result = *first;
return __partial_sum(first, last, result, value_type(first), binary_op);
template <class _InputIterator, class _OutputIterator, class _BinaryOperation>
_OutputIterator
partial_sum(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _BinaryOperation __binary_op)
{
if (__first == __last) return __result;
*__result = *__first;
return __partial_sum(__first, __last, __result, __VALUE_TYPE(__first),
__binary_op);
}
template <class InputIterator, class OutputIterator, class T>
OutputIterator __adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result, T*) {
T value = *first;
while (++first != last) {
T tmp = *first;
*++result = tmp - value;
value = tmp;
template <class _InputIterator, class _OutputIterator, class _Tp>
_OutputIterator
__adjacent_difference(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Tp*)
{
_Tp __value = *__first;
while (++__first != __last) {
_Tp __tmp = *__first;
*++__result = __tmp - __value;
__value = __tmp;
}
return ++result;
return ++__result;
}
template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result) {
if (first == last) return result;
*result = *first;
return __adjacent_difference(first, last, result, value_type(first));
template <class _InputIterator, class _OutputIterator>
_OutputIterator
adjacent_difference(_InputIterator __first,
_InputIterator __last, _OutputIterator __result)
{
if (__first == __last) return __result;
*__result = *__first;
return __adjacent_difference(__first, __last, __result,
__VALUE_TYPE(__first));
}
template <class InputIterator, class OutputIterator, class T,
class BinaryOperation>
OutputIterator __adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result, T*,
BinaryOperation binary_op) {
T value = *first;
while (++first != last) {
T tmp = *first;
*++result = binary_op(tmp, value);
value = tmp;
template <class _InputIterator, class _OutputIterator, class _Tp,
class _BinaryOperation>
_OutputIterator
__adjacent_difference(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Tp*,
_BinaryOperation __binary_op) {
_Tp __value = *__first;
while (++__first != __last) {
_Tp __tmp = *__first;
*++__result = __binary_op(__tmp, __value);
__value = __tmp;
}
return ++result;
return ++__result;
}
template <class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op) {
if (first == last) return result;
*result = *first;
return __adjacent_difference(first, last, result, value_type(first),
binary_op);
template <class _InputIterator, class _OutputIterator, class _BinaryOperation>
_OutputIterator
adjacent_difference(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _BinaryOperation __binary_op)
{
if (__first == __last) return __result;
*__result = *__first;
return __adjacent_difference(__first, __last, __result,
__VALUE_TYPE(__first),
__binary_op);
}
// Returns x ** n, where n >= 0. Note that "multiplication"
// is required to be associative, but not necessarily commutative.
template <class T, class Integer, class MonoidOperation>
T power(T x, Integer n, MonoidOperation op) {
if (n == 0)
return identity_element(op);
// Returns __x ** __n, where __n >= 0. _Note that "multiplication"
// is required to be associative, but not necessarily commutative.
template <class _Tp, class _Integer, class _MonoidOperation>
_Tp __power(_Tp __x, _Integer __n, _MonoidOperation __oper)
{
if (__n == 0)
return identity_element(__oper);
else {
while ((n & 1) == 0) {
n >>= 1;
x = op(x, x);
while ((__n & 1) == 0) {
__n >>= 1;
__x = __oper(__x, __x);
}
T result = x;
n >>= 1;
while (n != 0) {
x = op(x, x);
if ((n & 1) != 0)
result = op(result, x);
n >>= 1;
_Tp __result = __x;
__n >>= 1;
while (__n != 0) {
__x = __oper(__x, __x);
if ((__n & 1) != 0)
__result = __oper(__result, __x);
__n >>= 1;
}
return result;
return __result;
}
}
template <class T, class Integer>
inline T power(T x, Integer n) {
return power(x, n, multiplies<T>());
template <class _Tp, class _Integer>
inline _Tp __power(_Tp __x, _Integer __n)
{
return __power(__x, __n, multiplies<_Tp>());
}
// Alias for the internal name __power. Note that power is an extension,
// not part of the C++ standard.
template <class ForwardIterator, class T>
void iota(ForwardIterator first, ForwardIterator last, T value) {
while (first != last) *first++ = value++;
template <class _Tp, class _Integer, class _MonoidOperation>
inline _Tp power(_Tp __x, _Integer __n, _MonoidOperation __oper)
{
return __power(__x, __n, __oper);
}
template <class _Tp, class _Integer>
inline _Tp power(_Tp __x, _Integer __n)
{
return __power(__x, __n);
}
// iota is not part of the C++ standard. It is an extension.
template <class _ForwardIterator, class _Tp>
void
iota(_ForwardIterator __first, _ForwardIterator __last, _Tp __value)
{
while (__first != __last)
*__first++ = __value++;
}
__STL_END_NAMESPACE

View File

@ -33,35 +33,39 @@
__STL_BEGIN_NAMESPACE
template <class T1, class T2>
template <class _T1, class _T2>
struct pair {
typedef T1 first_type;
typedef T2 second_type;
typedef _T1 first_type;
typedef _T2 second_type;
T1 first;
T2 second;
pair() : first(T1()), second(T2()) {}
pair(const T1& a, const T2& b) : first(a), second(b) {}
_T1 first;
_T2 second;
pair() : first(_T1()), second(_T2()) {}
pair(const _T1& __a, const _T2& __b) : first(__a), second(__b) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class U1, class U2>
pair(const pair<U1, U2>& p) : first(p.first), second(p.second) {}
template <class _U1, class _U2>
pair(const pair<_U1, _U2>& __p) : first(__p.first), second(__p.second) {}
#endif
};
template <class T1, class T2>
inline bool operator==(const pair<T1, T2>& x, const pair<T1, T2>& y) {
return x.first == y.first && x.second == y.second;
template <class _T1, class _T2>
inline bool operator==(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y)
{
return __x.first == __y.first && __x.second == __y.second;
}
template <class T1, class T2>
inline bool operator<(const pair<T1, T2>& x, const pair<T1, T2>& y) {
return x.first < y.first || (!(y.first < x.first) && x.second < y.second);
template <class _T1, class _T2>
inline bool operator<(const pair<_T1, _T2>& __x, const pair<_T1, _T2>& __y)
{
return __x.first < __y.first ||
(!(__y.first < __x.first) && __x.second < __y.second);
}
template <class T1, class T2>
inline pair<T1, T2> make_pair(const T1& x, const T2& y) {
return pair<T1, T2>(x, y);
template <class _T1, class _T2>
inline pair<_T1, _T2> make_pair(const _T1& __x, const _T2& __y)
{
return pair<_T1, _T2>(__x, __y);
}
__STL_END_NAMESPACE

View File

@ -34,82 +34,150 @@
__STL_BEGIN_NAMESPACE
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class T, class Sequence = deque<T> >
template <class _Tp, class _Sequence = deque<_Tp> >
#else
template <class T, class Sequence>
template <class _Tp, class _Sequence>
#endif
class queue {
friend bool operator== __STL_NULL_TMPL_ARGS (const queue& x, const queue& y);
friend bool operator< __STL_NULL_TMPL_ARGS (const queue& x, const queue& y);
friend bool operator== __STL_NULL_TMPL_ARGS (const queue&, const queue&);
friend bool operator< __STL_NULL_TMPL_ARGS (const queue&, const queue&);
public:
typedef typename Sequence::value_type value_type;
typedef typename Sequence::size_type size_type;
typedef typename Sequence::reference reference;
typedef typename Sequence::const_reference const_reference;
typedef typename _Sequence::value_type value_type;
typedef typename _Sequence::size_type size_type;
typedef _Sequence container_type;
typedef typename _Sequence::reference reference;
typedef typename _Sequence::const_reference const_reference;
protected:
Sequence c;
_Sequence c;
public:
queue() : c() {}
explicit queue(const _Sequence& __c) : c(__c) {}
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference front() { return c.front(); }
const_reference front() const { return c.front(); }
reference back() { return c.back(); }
const_reference back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void push(const value_type& __x) { c.push_back(__x); }
void pop() { c.pop_front(); }
};
template <class T, class Sequence>
bool operator==(const queue<T, Sequence>& x, const queue<T, Sequence>& y) {
return x.c == y.c;
template <class _Tp, class _Sequence>
bool
operator==(const queue<_Tp, _Sequence>& __x, const queue<_Tp, _Sequence>& __y)
{
return __x.c == __y.c;
}
template <class T, class Sequence>
bool operator<(const queue<T, Sequence>& x, const queue<T, Sequence>& y) {
return x.c < y.c;
template <class _Tp, class _Sequence>
bool
operator<(const queue<_Tp, _Sequence>& __x, const queue<_Tp, _Sequence>& __y)
{
return __x.c < __y.c;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Sequence>
bool
operator!=(const queue<_Tp, _Sequence>& __x, const queue<_Tp, _Sequence>& __y)
{
return !(__x == __y);
}
template <class _Tp, class _Sequence>
bool
operator>(const queue<_Tp, _Sequence>& __x, const queue<_Tp, _Sequence>& __y)
{
return __y < __x;
}
template <class _Tp, class _Sequence>
bool
operator<=(const queue<_Tp, _Sequence>& __x, const queue<_Tp, _Sequence>& __y)
{
return !(__y < __x);
}
template <class _Tp, class _Sequence>
bool
operator>=(const queue<_Tp, _Sequence>& __x, const queue<_Tp, _Sequence>& __y)
{
return !(__x < __y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class T, class Sequence = vector<T>,
class Compare = less<typename Sequence::value_type> >
template <class _Tp, class _Sequence = vector<_Tp>,
class _Compare = less<typename _Sequence::value_type> >
#else
template <class T, class Sequence, class Compare>
template <class _Tp, class _Sequence, class _Compare>
#endif
class priority_queue {
public:
typedef typename Sequence::value_type value_type;
typedef typename Sequence::size_type size_type;
typedef typename Sequence::reference reference;
typedef typename Sequence::const_reference const_reference;
typedef typename _Sequence::value_type value_type;
typedef typename _Sequence::size_type size_type;
typedef _Sequence container_type;
typedef typename _Sequence::reference reference;
typedef typename _Sequence::const_reference const_reference;
protected:
Sequence c;
Compare comp;
_Sequence c;
_Compare comp;
public:
priority_queue() : c() {}
explicit priority_queue(const Compare& x) : c(), comp(x) {}
explicit priority_queue(const _Compare& __x) : c(), comp(__x) {}
priority_queue(const _Compare& __x, const _Sequence& __s)
: c(__s), comp(__x)
{ make_heap(c.begin(), c.end(), comp); }
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last, const Compare& x)
: c(first, last), comp(x) { make_heap(c.begin(), c.end(), comp); }
template <class InputIterator>
priority_queue(InputIterator first, InputIterator last)
: c(first, last) { make_heap(c.begin(), c.end(), comp); }
#else /* __STL_MEMBER_TEMPLATES */
priority_queue(const value_type* first, const value_type* last,
const Compare& x) : c(first, last), comp(x) {
template <class _InputIterator>
priority_queue(_InputIterator __first, _InputIterator __last)
: c(__first, __last) { make_heap(c.begin(), c.end(), comp); }
template <class _InputIterator>
priority_queue(_InputIterator __first,
_InputIterator __last, const _Compare& __x)
: c(__first, __last), comp(__x)
{ make_heap(c.begin(), c.end(), comp); }
template <class _InputIterator>
priority_queue(_InputIterator __first, _InputIterator __last,
const _Compare& __x, const _Sequence& __s)
: c(__s), comp(__x)
{
c.insert(c.end(), __first, __last);
make_heap(c.begin(), c.end(), comp);
}
#else /* __STL_MEMBER_TEMPLATES */
priority_queue(const value_type* __first, const value_type* __last)
: c(__first, __last) { make_heap(c.begin(), c.end(), comp); }
priority_queue(const value_type* __first, const value_type* __last,
const _Compare& __x)
: c(__first, __last), comp(__x)
{ make_heap(c.begin(), c.end(), comp); }
priority_queue(const value_type* __first, const value_type* __last,
const _Compare& __x, const _Sequence& __c)
: c(__c), comp(__x)
{
c.insert(c.end(), __first, __last);
make_heap(c.begin(), c.end(), comp);
}
priority_queue(const value_type* first, const value_type* last)
: c(first, last) { make_heap(c.begin(), c.end(), comp); }
#endif /* __STL_MEMBER_TEMPLATES */
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const_reference top() const { return c.front(); }
void push(const value_type& x) {
void push(const value_type& __x) {
__STL_TRY {
c.push_back(x);
c.push_back(__x);
push_heap(c.begin(), c.end(), comp);
}
__STL_UNWIND(c.clear());

View File

@ -25,7 +25,7 @@
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_RAW_STORAGE_ITERATOR_H
@ -33,10 +33,10 @@
__STL_BEGIN_NAMESPACE
template <class ForwardIterator, class T>
template <class _ForwardIterator, class _Tp>
class raw_storage_iterator {
protected:
ForwardIterator iter;
_ForwardIterator _M_iter;
public:
typedef output_iterator_tag iterator_category;
typedef void value_type;
@ -44,38 +44,38 @@ class raw_storage_iterator {
typedef void pointer;
typedef void reference;
explicit raw_storage_iterator(ForwardIterator x) : iter(x) {}
raw_storage_iterator<ForwardIterator, T>& operator*() { return *this; }
raw_storage_iterator<ForwardIterator, T>& operator=(const T& element) {
construct(&*iter, element);
explicit raw_storage_iterator(_ForwardIterator __x) : _M_iter(__x) {}
raw_storage_iterator& operator*() { return *this; }
raw_storage_iterator& operator=(const _Tp& __element) {
construct(&*_M_iter, __element);
return *this;
}
raw_storage_iterator<ForwardIterator, T>& operator++() {
++iter;
raw_storage_iterator<_ForwardIterator, _Tp>& operator++() {
++_M_iter;
return *this;
}
raw_storage_iterator<ForwardIterator, T> operator++(int) {
raw_storage_iterator<ForwardIterator, T> tmp = *this;
++iter;
return tmp;
raw_storage_iterator<_ForwardIterator, _Tp> operator++(int) {
raw_storage_iterator<_ForwardIterator, _Tp> __tmp = *this;
++_M_iter;
return __tmp;
}
};
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class ForwardIterator, class T>
template <class _ForwardIterator, class _Tp>
inline output_iterator_tag
iterator_category(const raw_storage_iterator<ForwardIterator, T>&)
iterator_category(const raw_storage_iterator<_ForwardIterator, _Tp>&)
{
return output_iterator_tag();
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
#endif /* __SGI_STL_INTERNAL_RAW_STORAGE_ITERATOR_H */
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_RAW_STORAGE_ITERATOR_H */
// Local Variables:
// mode:C++
// End:

View File

@ -33,24 +33,24 @@
__STL_BEGIN_RELOPS_NAMESPACE
template <class T>
inline bool operator!=(const T& x, const T& y) {
return !(x == y);
template <class _Tp>
inline bool operator!=(const _Tp& __x, const _Tp& __y) {
return !(__x == __y);
}
template <class T>
inline bool operator>(const T& x, const T& y) {
return y < x;
template <class _Tp>
inline bool operator>(const _Tp& __x, const _Tp& __y) {
return __y < __x;
}
template <class T>
inline bool operator<=(const T& x, const T& y) {
return !(y < x);
template <class _Tp>
inline bool operator<=(const _Tp& __x, const _Tp& __y) {
return !(__y < __x);
}
template <class T>
inline bool operator>=(const T& x, const T& y) {
return !(x < y);
template <class _Tp>
inline bool operator>=(const _Tp& __x, const _Tp& __y) {
return !(__x < __y);
}
__STL_END_RELOPS_NAMESPACE

File diff suppressed because it is too large Load Diff

View File

@ -35,158 +35,176 @@ __STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class Compare = less<Key>, class Alloc = alloc>
template <class _Key, class _Compare = less<_Key>,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Key) >
#else
template <class Key, class Compare, class Alloc = alloc>
template <class _Key, class _Compare,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Key) >
#endif
class set {
public:
// typedefs:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef _Key key_type;
typedef _Key value_type;
typedef _Compare key_compare;
typedef _Compare value_compare;
private:
typedef rb_tree<key_type, value_type,
identity<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing set
typedef _Rb_tree<key_type, value_type,
_Identity<value_type>, key_compare, _Alloc> _Rep_type;
_Rep_type _M_t; // red-black tree representing set
public:
typedef typename rep_type::const_pointer pointer;
typedef typename rep_type::const_pointer const_pointer;
typedef typename rep_type::const_reference reference;
typedef typename rep_type::const_reference const_reference;
typedef typename rep_type::const_iterator iterator;
typedef typename rep_type::const_iterator const_iterator;
typedef typename rep_type::const_reverse_iterator reverse_iterator;
typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename rep_type::size_type size_type;
typedef typename rep_type::difference_type difference_type;
typedef typename _Rep_type::const_pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::const_reference reference;
typedef typename _Rep_type::const_reference const_reference;
typedef typename _Rep_type::const_iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
// allocation/deallocation
set() : t(Compare()) {}
explicit set(const Compare& comp) : t(comp) {}
set() : _M_t(_Compare(), allocator_type()) {}
explicit set(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
set(InputIterator first, InputIterator last)
: t(Compare()) { t.insert_unique(first, last); }
template <class _InputIterator>
set(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
template <class InputIterator>
set(InputIterator first, InputIterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
template <class _InputIterator>
set(_InputIterator __first, _InputIterator __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
#else
set(const value_type* first, const value_type* last)
: t(Compare()) { t.insert_unique(first, last); }
set(const value_type* first, const value_type* last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
set(const value_type* __first, const value_type* __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
set(const_iterator first, const_iterator last)
: t(Compare()) { t.insert_unique(first, last); }
set(const_iterator first, const_iterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
set(const value_type* __first,
const value_type* __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
set(const_iterator __first, const_iterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
set(const_iterator __first, const_iterator __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
set(const set<Key, Compare, Alloc>& x) : t(x.t) {}
set<Key, Compare, Alloc>& operator=(const set<Key, Compare, Alloc>& x) {
t = x.t;
set(const set<_Key,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {}
set<_Key,_Compare,_Alloc>& operator=(const set<_Key, _Compare, _Alloc>& __x)
{
_M_t = __x._M_t;
return *this;
}
// accessors:
key_compare key_comp() const { return t.key_comp(); }
value_compare value_comp() const { return t.key_comp(); }
iterator begin() const { return t.begin(); }
iterator end() const { return t.end(); }
reverse_iterator rbegin() const { return t.rbegin(); }
reverse_iterator rend() const { return t.rend(); }
bool empty() const { return t.empty(); }
size_type size() const { return t.size(); }
size_type max_size() const { return t.max_size(); }
void swap(set<Key, Compare, Alloc>& x) { t.swap(x.t); }
key_compare key_comp() const { return _M_t.key_comp(); }
value_compare value_comp() const { return _M_t.key_comp(); }
allocator_type get_allocator() const { return _M_t.get_allocator(); }
iterator begin() const { return _M_t.begin(); }
iterator end() const { return _M_t.end(); }
reverse_iterator rbegin() const { return _M_t.rbegin(); }
reverse_iterator rend() const { return _M_t.rend(); }
bool empty() const { return _M_t.empty(); }
size_type size() const { return _M_t.size(); }
size_type max_size() const { return _M_t.max_size(); }
void swap(set<_Key,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
// insert/erase
typedef pair<iterator, bool> pair_iterator_bool;
pair<iterator,bool> insert(const value_type& x) {
pair<typename rep_type::iterator, bool> p = t.insert_unique(x);
return pair<iterator, bool>(p.first, p.second);
pair<iterator,bool> insert(const value_type& __x) {
pair<typename _Rep_type::iterator, bool> __p = _M_t.insert_unique(__x);
return pair<iterator, bool>(__p.first, __p.second);
}
iterator insert(iterator position, const value_type& x) {
typedef typename rep_type::iterator rep_iterator;
return t.insert_unique((rep_iterator&)position, x);
iterator insert(iterator __position, const value_type& __x) {
typedef typename _Rep_type::iterator _Rep_iterator;
return _M_t.insert_unique((_Rep_iterator&)__position, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator first, InputIterator last) {
t.insert_unique(first, last);
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
_M_t.insert_unique(__first, __last);
}
#else
void insert(const_iterator first, const_iterator last) {
t.insert_unique(first, last);
void insert(const_iterator __first, const_iterator __last) {
_M_t.insert_unique(__first, __last);
}
void insert(const value_type* first, const value_type* last) {
t.insert_unique(first, last);
void insert(const value_type* __first, const value_type* __last) {
_M_t.insert_unique(__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position) {
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)position);
void erase(iterator __position) {
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__position);
}
size_type erase(const key_type& x) {
return t.erase(x);
size_type erase(const key_type& __x) {
return _M_t.erase(__x);
}
void erase(iterator first, iterator last) {
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)first, (rep_iterator&)last);
void erase(iterator __first, iterator __last) {
typedef typename _Rep_type::iterator _Rep_iterator;
_M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last);
}
void clear() { t.clear(); }
void clear() { _M_t.clear(); }
// set operations:
iterator find(const key_type& x) const { return t.find(x); }
size_type count(const key_type& x) const { return t.count(x); }
iterator lower_bound(const key_type& x) const {
return t.lower_bound(x);
iterator find(const key_type& __x) const { return _M_t.find(__x); }
size_type count(const key_type& __x) const { return _M_t.count(__x); }
iterator lower_bound(const key_type& __x) const {
return _M_t.lower_bound(__x);
}
iterator upper_bound(const key_type& x) const {
return t.upper_bound(x);
iterator upper_bound(const key_type& __x) const {
return _M_t.upper_bound(__x);
}
pair<iterator,iterator> equal_range(const key_type& x) const {
return t.equal_range(x);
pair<iterator,iterator> equal_range(const key_type& __x) const {
return _M_t.equal_range(__x);
}
friend bool operator== __STL_NULL_TMPL_ARGS (const set&, const set&);
friend bool operator< __STL_NULL_TMPL_ARGS (const set&, const set&);
};
template <class Key, class Compare, class Alloc>
inline bool operator==(const set<Key, Compare, Alloc>& x,
const set<Key, Compare, Alloc>& y) {
return x.t == y.t;
template <class _Key, class _Compare, class _Alloc>
inline bool operator==(const set<_Key,_Compare,_Alloc>& __x,
const set<_Key,_Compare,_Alloc>& __y) {
return __x._M_t == __y._M_t;
}
template <class Key, class Compare, class Alloc>
inline bool operator<(const set<Key, Compare, Alloc>& x,
const set<Key, Compare, Alloc>& y) {
return x.t < y.t;
template <class _Key, class _Compare, class _Alloc>
inline bool operator<(const set<_Key,_Compare,_Alloc>& __x,
const set<_Key,_Compare,_Alloc>& __y) {
return __x._M_t < __y._M_t;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class Key, class Compare, class Alloc>
inline void swap(set<Key, Compare, Alloc>& x,
set<Key, Compare, Alloc>& y) {
x.swap(y);
template <class _Key, class _Compare, class _Alloc>
inline void swap(set<_Key,_Compare,_Alloc>& __x,
set<_Key,_Compare,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE

File diff suppressed because it is too large Load Diff

View File

@ -34,39 +34,74 @@
__STL_BEGIN_NAMESPACE
#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class T, class Sequence = deque<T> >
template <class _Tp, class _Sequence = deque<_Tp> >
#else
template <class T, class Sequence>
template <class _Tp, class _Sequence>
#endif
class stack {
friend bool operator== __STL_NULL_TMPL_ARGS (const stack&, const stack&);
friend bool operator< __STL_NULL_TMPL_ARGS (const stack&, const stack&);
public:
typedef typename Sequence::value_type value_type;
typedef typename Sequence::size_type size_type;
typedef typename Sequence::reference reference;
typedef typename Sequence::const_reference const_reference;
typedef typename _Sequence::value_type value_type;
typedef typename _Sequence::size_type size_type;
typedef _Sequence container_type;
typedef typename _Sequence::reference reference;
typedef typename _Sequence::const_reference const_reference;
protected:
Sequence c;
_Sequence _M_c;
public:
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
reference top() { return c.back(); }
const_reference top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_back(); }
stack() : _M_c() {}
explicit stack(const _Sequence& __s) : _M_c(__s) {}
bool empty() const { return _M_c.empty(); }
size_type size() const { return _M_c.size(); }
reference top() { return _M_c.back(); }
const_reference top() const { return _M_c.back(); }
void push(const value_type& __x) { _M_c.push_back(__x); }
void pop() { _M_c.pop_back(); }
};
template <class T, class Sequence>
bool operator==(const stack<T, Sequence>& x, const stack<T, Sequence>& y) {
return x.c == y.c;
template <class _Tp, class _Seq>
bool operator==(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
{
return __x._M_c == __y._M_c;
}
template <class T, class Sequence>
bool operator<(const stack<T, Sequence>& x, const stack<T, Sequence>& y) {
return x.c < y.c;
template <class _Tp, class _Seq>
bool operator<(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
{
return __x._M_c < __y._M_c;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Tp, class _Seq>
bool operator!=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
{
return !(__x == __y);
}
template <class _Tp, class _Seq>
bool operator>(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
{
return __y < __x;
}
template <class _Tp, class _Seq>
bool operator<=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
{
return !(__y < __x);
}
template <class _Tp, class _Seq>
bool operator>=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
{
return !(__x < __y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_STACK_H */

View File

@ -34,86 +34,119 @@
__STL_BEGIN_NAMESPACE
template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t len, T*) {
if (len > ptrdiff_t(INT_MAX / sizeof(T)))
len = INT_MAX / sizeof(T);
template <class _Tp>
pair<_Tp*, ptrdiff_t>
__get_temporary_buffer(ptrdiff_t __len, _Tp*)
{
if (__len > ptrdiff_t(INT_MAX / sizeof(_Tp)))
__len = INT_MAX / sizeof(_Tp);
while (len > 0) {
T* tmp = (T*) malloc((size_t)len * sizeof(T));
if (tmp != 0)
return pair<T*, ptrdiff_t>(tmp, len);
len /= 2;
while (__len > 0) {
_Tp* __tmp = (_Tp*) malloc((size_t)__len * sizeof(_Tp));
if (__tmp != 0)
return pair<_Tp*, ptrdiff_t>(__tmp, __len);
__len /= 2;
}
return pair<T*, ptrdiff_t>((T*)0, 0);
return pair<_Tp*, ptrdiff_t>((_Tp*)0, 0);
}
template <class T>
void return_temporary_buffer(T* p) {
free(p);
#ifdef __STL_EXPLICIT_FUNCTION_TMPL_ARGS
template <class _Tp>
inline pair<_Tp*, ptrdiff_t> get_temporary_buffer(ptrdiff_t __len) {
return __get_temporary_buffer(__len, (_Tp*) 0);
}
template <class ForwardIterator,
class T
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
= iterator_traits<ForwardIterator>::value_type
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
>
class temporary_buffer {
#endif /* __STL_EXPLICIT_FUNCTION_TMPL_ARGS */
// This overload is not required by the standard; it is an extension.
// It is supported for backward compatibility with the HP STL, and
// because not all compilers support the language feature (explicit
// function template arguments) that is required for the standard
// version of get_temporary_buffer.
template <class _Tp>
inline pair<_Tp*, ptrdiff_t> get_temporary_buffer(ptrdiff_t __len, _Tp*) {
return __get_temporary_buffer(__len, (_Tp*) 0);
}
template <class _Tp>
void return_temporary_buffer(_Tp* __p) {
free(__p);
}
template <class _ForwardIterator, class _Tp>
class _Temporary_buffer {
private:
ptrdiff_t original_len;
ptrdiff_t len;
T* buffer;
ptrdiff_t _M_original_len;
ptrdiff_t _M_len;
_Tp* _M_buffer;
void allocate_buffer() {
original_len = len;
buffer = 0;
void _M_allocate_buffer() {
_M_original_len = _M_len;
_M_buffer = 0;
if (len > (ptrdiff_t)(INT_MAX / sizeof(T)))
len = INT_MAX / sizeof(T);
if (_M_len > (ptrdiff_t)(INT_MAX / sizeof(_Tp)))
_M_len = INT_MAX / sizeof(_Tp);
while (len > 0) {
buffer = (T*) malloc(len * sizeof(T));
if (buffer)
while (_M_len > 0) {
_M_buffer = (_Tp*) malloc(_M_len * sizeof(_Tp));
if (_M_buffer)
break;
len /= 2;
_M_len /= 2;
}
}
void initialize_buffer(const T&, __true_type) {}
void initialize_buffer(const T& val, __false_type) {
uninitialized_fill_n(buffer, len, val);
void _M_initialize_buffer(const _Tp&, __true_type) {}
void _M_initialize_buffer(const _Tp& val, __false_type) {
uninitialized_fill_n(_M_buffer, _M_len, val);
}
public:
ptrdiff_t size() const { return len; }
ptrdiff_t requested_size() const { return original_len; }
T* begin() { return buffer; }
T* end() { return buffer + len; }
ptrdiff_t size() const { return _M_len; }
ptrdiff_t requested_size() const { return _M_original_len; }
_Tp* begin() { return _M_buffer; }
_Tp* end() { return _M_buffer + _M_len; }
temporary_buffer(ForwardIterator first, ForwardIterator last) {
_Temporary_buffer(_ForwardIterator __first, _ForwardIterator __last) {
typedef typename __type_traits<_Tp>::has_trivial_default_constructor
_Trivial;
__STL_TRY {
len = 0;
distance(first, last, len);
allocate_buffer();
if (len > 0)
initialize_buffer(*first,
typename __type_traits<T>::has_trivial_default_constructor());
_M_len = 0;
distance(__first, __last, _M_len);
_M_allocate_buffer();
if (_M_len > 0)
_M_initialize_buffer(*__first, _Trivial());
}
__STL_UNWIND(free(buffer); buffer = 0; len = 0);
__STL_UNWIND(free(_M_buffer); _M_buffer = 0; _M_len = 0);
}
~temporary_buffer() {
destroy(buffer, buffer + len);
free(buffer);
~_Temporary_buffer() {
destroy(_M_buffer, _M_buffer + _M_len);
free(_M_buffer);
}
private:
temporary_buffer(const temporary_buffer&) {}
void operator=(const temporary_buffer&) {}
// Disable copy constructor and assignment operator.
_Temporary_buffer(const _Temporary_buffer&) {}
void operator=(const _Temporary_buffer&) {}
};
// Class temporary_buffer is not part of the standard. It is an extension.
template <class _ForwardIterator,
class _Tp
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
= typename iterator_traits<_ForwardIterator>::value_type
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
>
struct temporary_buffer : public _Temporary_buffer<_ForwardIterator, _Tp>
{
temporary_buffer(_ForwardIterator __first, _ForwardIterator __last)
: _Temporary_buffer<_ForwardIterator, _Tp>(__first, __last) {}
~temporary_buffer() {}
};
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_TEMPBUF_H */

File diff suppressed because it is too large Load Diff

View File

@ -33,204 +33,241 @@
__STL_BEGIN_NAMESPACE
// uninitialized_copy
// Valid if copy construction is equivalent to assignment, and if the
// destructor is trivial.
template <class InputIterator, class ForwardIterator>
inline ForwardIterator
__uninitialized_copy_aux(InputIterator first, InputIterator last,
ForwardIterator result,
__true_type) {
return copy(first, last, result);
template <class _InputIter, class _ForwardIter>
inline _ForwardIter
__uninitialized_copy_aux(_InputIter __first, _InputIter __last,
_ForwardIter __result,
__true_type)
{
return copy(__first, __last, __result);
}
template <class InputIterator, class ForwardIterator>
ForwardIterator
__uninitialized_copy_aux(InputIterator first, InputIterator last,
ForwardIterator result,
__false_type) {
ForwardIterator cur = result;
template <class _InputIter, class _ForwardIter>
_ForwardIter
__uninitialized_copy_aux(_InputIter __first, _InputIter __last,
_ForwardIter __result,
__false_type)
{
_ForwardIter __cur = __result;
__STL_TRY {
for ( ; first != last; ++first, ++cur)
construct(&*cur, *first);
return cur;
for ( ; __first != __last; ++__first, ++__cur)
construct(&*__cur, *__first);
return __cur;
}
__STL_UNWIND(destroy(result, cur));
__STL_UNWIND(destroy(__result, __cur));
}
template <class InputIterator, class ForwardIterator, class T>
inline ForwardIterator
__uninitialized_copy(InputIterator first, InputIterator last,
ForwardIterator result, T*) {
typedef typename __type_traits<T>::is_POD_type is_POD;
return __uninitialized_copy_aux(first, last, result, is_POD());
template <class _InputIter, class _ForwardIter, class _Tp>
inline _ForwardIter
__uninitialized_copy(_InputIter __first, _InputIter __last,
_ForwardIter __result, _Tp*)
{
typedef typename __type_traits<_Tp>::is_POD_type _Is_POD;
return __uninitialized_copy_aux(__first, __last, __result, _Is_POD());
}
template <class InputIterator, class ForwardIterator>
inline ForwardIterator
uninitialized_copy(InputIterator first, InputIterator last,
ForwardIterator result) {
return __uninitialized_copy(first, last, result, value_type(result));
template <class _InputIter, class _ForwardIter>
inline _ForwardIter
uninitialized_copy(_InputIter __first, _InputIter __last,
_ForwardIter __result)
{
return __uninitialized_copy(__first, __last, __result,
__VALUE_TYPE(__result));
}
inline char* uninitialized_copy(const char* first, const char* last,
char* result) {
memmove(result, first, last - first);
return result + (last - first);
inline char* uninitialized_copy(const char* __first, const char* __last,
char* __result) {
memmove(__result, __first, __last - __first);
return __result + (__last - __first);
}
inline wchar_t* uninitialized_copy(const wchar_t* first, const wchar_t* last,
wchar_t* result) {
memmove(result, first, sizeof(wchar_t) * (last - first));
return result + (last - first);
inline wchar_t*
uninitialized_copy(const wchar_t* __first, const wchar_t* __last,
wchar_t* __result)
{
memmove(__result, __first, sizeof(wchar_t) * (__last - __first));
return __result + (__last - __first);
}
template <class InputIterator, class Size, class ForwardIterator>
pair<InputIterator, ForwardIterator>
__uninitialized_copy_n(InputIterator first, Size count,
ForwardIterator result,
input_iterator_tag) {
ForwardIterator cur = result;
// uninitialized_copy_n (not part of the C++ standard)
template <class _InputIter, class _Size, class _ForwardIter>
pair<_InputIter, _ForwardIter>
__uninitialized_copy_n(_InputIter __first, _Size __count,
_ForwardIter __result,
input_iterator_tag)
{
_ForwardIter __cur = __result;
__STL_TRY {
for ( ; count > 0 ; --count, ++first, ++cur)
construct(&*cur, *first);
return pair<InputIterator, ForwardIterator>(first, cur);
for ( ; __count > 0 ; --__count, ++__first, ++__cur)
construct(&*__cur, *__first);
return pair<_InputIter, _ForwardIter>(__first, __cur);
}
__STL_UNWIND(destroy(result, cur));
__STL_UNWIND(destroy(__result, __cur));
}
template <class RandomAccessIterator, class Size, class ForwardIterator>
inline pair<RandomAccessIterator, ForwardIterator>
__uninitialized_copy_n(RandomAccessIterator first, Size count,
ForwardIterator result,
template <class _RandomAccessIter, class _Size, class _ForwardIter>
inline pair<_RandomAccessIter, _ForwardIter>
__uninitialized_copy_n(_RandomAccessIter __first, _Size __count,
_ForwardIter __result,
random_access_iterator_tag) {
RandomAccessIterator last = first + count;
return make_pair(last, uninitialized_copy(first, last, result));
_RandomAccessIter __last = __first + __count;
return pair<_RandomAccessIter, _ForwardIter>(
__last,
uninitialized_copy(__first, __last, __result));
}
template <class InputIterator, class Size, class ForwardIterator>
inline pair<InputIterator, ForwardIterator>
uninitialized_copy_n(InputIterator first, Size count,
ForwardIterator result) {
return __uninitialized_copy_n(first, count, result,
iterator_category(first));
template <class _InputIter, class _Size, class _ForwardIter>
inline pair<_InputIter, _ForwardIter>
__uninitialized_copy_n(_InputIter __first, _Size __count,
_ForwardIter __result) {
return __uninitialized_copy_n(__first, __count, __result,
__ITERATOR_CATEGORY(__first));
}
template <class _InputIter, class _Size, class _ForwardIter>
inline pair<_InputIter, _ForwardIter>
uninitialized_copy_n(_InputIter __first, _Size __count,
_ForwardIter __result) {
return __uninitialized_copy_n(__first, __count, __result,
__ITERATOR_CATEGORY(__first));
}
// Valid if copy construction is equivalent to assignment, and if the
// destructor is trivial.
template <class ForwardIterator, class T>
// destructor is trivial.
template <class _ForwardIter, class _Tp>
inline void
__uninitialized_fill_aux(ForwardIterator first, ForwardIterator last,
const T& x, __true_type)
__uninitialized_fill_aux(_ForwardIter __first, _ForwardIter __last,
const _Tp& __x, __true_type)
{
fill(first, last, x);
fill(__first, __last, __x);
}
template <class ForwardIterator, class T>
template <class _ForwardIter, class _Tp>
void
__uninitialized_fill_aux(ForwardIterator first, ForwardIterator last,
const T& x, __false_type)
__uninitialized_fill_aux(_ForwardIter __first, _ForwardIter __last,
const _Tp& __x, __false_type)
{
ForwardIterator cur = first;
_ForwardIter __cur = __first;
__STL_TRY {
for ( ; cur != last; ++cur)
construct(&*cur, x);
for ( ; __cur != __last; ++__cur)
construct(&*__cur, __x);
}
__STL_UNWIND(destroy(first, cur));
__STL_UNWIND(destroy(__first, __cur));
}
template <class ForwardIterator, class T, class T1>
inline void __uninitialized_fill(ForwardIterator first, ForwardIterator last,
const T& x, T1*) {
typedef typename __type_traits<T1>::is_POD_type is_POD;
__uninitialized_fill_aux(first, last, x, is_POD());
template <class _ForwardIter, class _Tp, class _Tp1>
inline void __uninitialized_fill(_ForwardIter __first,
_ForwardIter __last, const _Tp& __x, _Tp1*)
{
typedef typename __type_traits<_Tp1>::is_POD_type _Is_POD;
__uninitialized_fill_aux(__first, __last, __x, _Is_POD());
}
template <class ForwardIterator, class T>
inline void uninitialized_fill(ForwardIterator first, ForwardIterator last,
const T& x) {
__uninitialized_fill(first, last, x, value_type(first));
template <class _ForwardIter, class _Tp>
inline void uninitialized_fill(_ForwardIter __first,
_ForwardIter __last,
const _Tp& __x)
{
__uninitialized_fill(__first, __last, __x, __VALUE_TYPE(__first));
}
// Valid if copy construction is equivalent to assignment, and if the
// destructor is trivial.
template <class ForwardIterator, class Size, class T>
inline ForwardIterator
__uninitialized_fill_n_aux(ForwardIterator first, Size n,
const T& x, __true_type) {
return fill_n(first, n, x);
template <class _ForwardIter, class _Size, class _Tp>
inline _ForwardIter
__uninitialized_fill_n_aux(_ForwardIter __first, _Size __n,
const _Tp& __x, __true_type)
{
return fill_n(__first, __n, __x);
}
template <class ForwardIterator, class Size, class T>
ForwardIterator
__uninitialized_fill_n_aux(ForwardIterator first, Size n,
const T& x, __false_type) {
ForwardIterator cur = first;
template <class _ForwardIter, class _Size, class _Tp>
_ForwardIter
__uninitialized_fill_n_aux(_ForwardIter __first, _Size __n,
const _Tp& __x, __false_type)
{
_ForwardIter __cur = __first;
__STL_TRY {
for ( ; n > 0; --n, ++cur)
construct(&*cur, x);
return cur;
for ( ; __n > 0; --__n, ++__cur)
construct(&*__cur, __x);
return __cur;
}
__STL_UNWIND(destroy(first, cur));
__STL_UNWIND(destroy(__first, __cur));
}
template <class ForwardIterator, class Size, class T, class T1>
inline ForwardIterator __uninitialized_fill_n(ForwardIterator first, Size n,
const T& x, T1*) {
typedef typename __type_traits<T1>::is_POD_type is_POD;
return __uninitialized_fill_n_aux(first, n, x, is_POD());
template <class _ForwardIter, class _Size, class _Tp, class _Tp1>
inline _ForwardIter
__uninitialized_fill_n(_ForwardIter __first, _Size __n, const _Tp& __x, _Tp1*)
{
typedef typename __type_traits<_Tp1>::is_POD_type _Is_POD;
return __uninitialized_fill_n_aux(__first, __n, __x, _Is_POD());
}
template <class ForwardIterator, class Size, class T>
inline ForwardIterator uninitialized_fill_n(ForwardIterator first, Size n,
const T& x) {
return __uninitialized_fill_n(first, n, x, value_type(first));
template <class _ForwardIter, class _Size, class _Tp>
inline _ForwardIter
uninitialized_fill_n(_ForwardIter __first, _Size __n, const _Tp& __x)
{
return __uninitialized_fill_n(__first, __n, __x, __VALUE_TYPE(__first));
}
// Extensions: __uninitialized_copy_copy, __uninitialized_copy_fill,
// __uninitialized_fill_copy.
// __uninitialized_copy_copy
// Copies [first1, last1) into [result, result + (last1 - first1)), and
// copies [first2, last2) into
// [result, result + (last1 - first1) + (last2 - first2)).
template <class InputIterator1, class InputIterator2, class ForwardIterator>
inline ForwardIterator
__uninitialized_copy_copy(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
ForwardIterator result) {
ForwardIterator mid = uninitialized_copy(first1, last1, result);
template <class _InputIter1, class _InputIter2, class _ForwardIter>
inline _ForwardIter
__uninitialized_copy_copy(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_ForwardIter __result)
{
_ForwardIter __mid = uninitialized_copy(__first1, __last1, __result);
__STL_TRY {
return uninitialized_copy(first2, last2, mid);
return uninitialized_copy(__first2, __last2, __mid);
}
__STL_UNWIND(destroy(result, mid));
__STL_UNWIND(destroy(__result, __mid));
}
// __uninitialized_fill_copy
// Fills [result, mid) with x, and copies [first, last) into
// [mid, mid + (last - first)).
template <class ForwardIterator, class T, class InputIterator>
inline ForwardIterator
__uninitialized_fill_copy(ForwardIterator result, ForwardIterator mid,
const T& x,
InputIterator first, InputIterator last) {
uninitialized_fill(result, mid, x);
template <class _ForwardIter, class _Tp, class _InputIter>
inline _ForwardIter
__uninitialized_fill_copy(_ForwardIter __result, _ForwardIter __mid,
const _Tp& __x,
_InputIter __first, _InputIter __last)
{
uninitialized_fill(__result, __mid, __x);
__STL_TRY {
return uninitialized_copy(first, last, mid);
return uninitialized_copy(__first, __last, __mid);
}
__STL_UNWIND(destroy(result, mid));
__STL_UNWIND(destroy(__result, __mid));
}
// __uninitialized_copy_fill
// Copies [first1, last1) into [first2, first2 + (last1 - first1)), and
// fills [first2 + (last1 - first1), last2) with x.
template <class InputIterator, class ForwardIterator, class T>
template <class _InputIter, class _ForwardIter, class _Tp>
inline void
__uninitialized_copy_fill(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2,
const T& x) {
ForwardIterator mid2 = uninitialized_copy(first1, last1, first2);
__uninitialized_copy_fill(_InputIter __first1, _InputIter __last1,
_ForwardIter __first2, _ForwardIter __last2,
const _Tp& __x)
{
_ForwardIter __mid2 = uninitialized_copy(__first1, __last1, __first2);
__STL_TRY {
uninitialized_fill(mid2, last2, x);
uninitialized_fill(__mid2, __last2, __x);
}
__STL_UNWIND(destroy(first2, mid2));
__STL_UNWIND(destroy(__first2, __mid2));
}
__STL_END_NAMESPACE

File diff suppressed because it is too large Load Diff

View File

@ -30,15 +30,18 @@
#ifndef __SGI_STL_PAIR_H
#include <pair.h>
#endif
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <limits.h> /* XXX should use <climits> */
#include <stddef.h> /* XXX should use <cstddef> */
#include <stdlib.h> /* XXX should use <cstdlib> */
#ifndef __TYPE_TRAITS_H
#include <type_traits.h>
#endif
#ifndef __SGI_STL_INTERNAL_CONSTRUCT_H
#include <stl_construct.h>
#endif
#ifndef __SGI_STL_INTERNAL_UNINITIALIZED_H
#include <stl_uninitialized.h>
#endif
#ifndef __SGI_STL_INTERNAL_TEMPBUF_H
#include <stl_tempbuf.h>
#endif

View File

@ -40,13 +40,14 @@ attain their correct values by one of these means:
EXAMPLE:
//Copy an array of elements which have non-trivial copy constructors
template <class T> void copy(T* source,T* destination,int n,__false_type);
template <class T> void copy(T* source, T* destination, int n, __false_type);
//Copy an array of elements which have trivial copy constructors. Use memcpy.
template <class T> void copy(T* source,T* destination,int n,__true_type);
template <class T> void copy(T* source, T* destination, int n, __true_type);
//Copy an array of any type by using the most efficient copy mechanism
template <class T> inline void copy(T* source,T* destination,int n) {
copy(source,destination,n,typename __type_traits<T>::has_trivial_copy_constructor());
copy(source, destination, n,
typename __type_traits<T>::has_trivial_copy_constructor());
}
*/
@ -57,7 +58,7 @@ struct __true_type {
struct __false_type {
};
template <class type>
template <class _Tp>
struct __type_traits {
typedef __true_type this_dummy_member_must_be_first;
/* Do not remove this member. It informs a compiler which
@ -90,6 +91,18 @@ struct __type_traits {
// have built-in __types_traits support, and essential for compilers
// that don't.
#ifndef __STL_NO_BOOL
__STL_TEMPLATE_NULL struct __type_traits<bool> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};
#endif /* __STL_NO_BOOL */
__STL_TEMPLATE_NULL struct __type_traits<char> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
@ -114,6 +127,18 @@ __STL_TEMPLATE_NULL struct __type_traits<unsigned char> {
typedef __true_type is_POD_type;
};
#ifdef __STL_HAS_WCHAR_T
__STL_TEMPLATE_NULL struct __type_traits<wchar_t> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};
#endif /* __STL_HAS_WCHAR_T */
__STL_TEMPLATE_NULL struct __type_traits<short> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
@ -162,6 +187,26 @@ __STL_TEMPLATE_NULL struct __type_traits<unsigned long> {
typedef __true_type is_POD_type;
};
#ifdef __STL_LONG_LONG
__STL_TEMPLATE_NULL struct __type_traits<long long> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};
__STL_TEMPLATE_NULL struct __type_traits<unsigned long long> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};
#endif /* __STL_LONG_LONG */
__STL_TEMPLATE_NULL struct __type_traits<float> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
@ -188,8 +233,8 @@ __STL_TEMPLATE_NULL struct __type_traits<long double> {
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class T>
struct __type_traits<T*> {
template <class _Tp>
struct __type_traits<_Tp*> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
@ -199,7 +244,7 @@ struct __type_traits<T*> {
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
struct __type_traits<char*> {
__STL_TEMPLATE_NULL struct __type_traits<char*> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
@ -207,7 +252,7 @@ struct __type_traits<char*> {
typedef __true_type is_POD_type;
};
struct __type_traits<signed char*> {
__STL_TEMPLATE_NULL struct __type_traits<signed char*> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
@ -215,7 +260,31 @@ struct __type_traits<signed char*> {
typedef __true_type is_POD_type;
};
struct __type_traits<unsigned char*> {
__STL_TEMPLATE_NULL struct __type_traits<unsigned char*> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};
__STL_TEMPLATE_NULL struct __type_traits<const char*> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};
__STL_TEMPLATE_NULL struct __type_traits<const signed char*> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};
__STL_TEMPLATE_NULL struct __type_traits<const unsigned char*> {
typedef __true_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
@ -226,6 +295,77 @@ struct __type_traits<unsigned char*> {
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
// The following could be written in terms of numeric_limits.
// We're doing it separately to reduce the number of dependencies.
template <class _Tp> struct _Is_integer {
typedef __false_type _Integral;
};
#ifndef __STL_NO_BOOL
__STL_TEMPLATE_NULL struct _Is_integer<bool> {
typedef __true_type _Integral;
};
#endif /* __STL_NO_BOOL */
__STL_TEMPLATE_NULL struct _Is_integer<char> {
typedef __true_type _Integral;
};
__STL_TEMPLATE_NULL struct _Is_integer<signed char> {
typedef __true_type _Integral;
};
__STL_TEMPLATE_NULL struct _Is_integer<unsigned char> {
typedef __true_type _Integral;
};
#ifdef __STL_HAS_WCHAR_T
__STL_TEMPLATE_NULL struct _Is_integer<wchar_t> {
typedef __true_type _Integral;
};
#endif /* __STL_HAS_WCHAR_T */
__STL_TEMPLATE_NULL struct _Is_integer<short> {
typedef __true_type _Integral;
};
__STL_TEMPLATE_NULL struct _Is_integer<unsigned short> {
typedef __true_type _Integral;
};
__STL_TEMPLATE_NULL struct _Is_integer<int> {
typedef __true_type _Integral;
};
__STL_TEMPLATE_NULL struct _Is_integer<unsigned int> {
typedef __true_type _Integral;
};
__STL_TEMPLATE_NULL struct _Is_integer<long> {
typedef __true_type _Integral;
};
__STL_TEMPLATE_NULL struct _Is_integer<unsigned long> {
typedef __true_type _Integral;
};
#ifdef __STL_LONG_LONG
__STL_TEMPLATE_NULL struct _Is_integer<long long> {
typedef __true_type _Integral;
};
__STL_TEMPLATE_NULL struct _Is_integer<unsigned long long> {
typedef __true_type _Integral;
};
#endif /* __STL_LONG_LONG */
#endif /* __TYPE_TRAITS_H */
// Local Variables:

View File

@ -3,6 +3,8 @@
#include <alloc.h>
#ifndef __USE_MALLOC
template class __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0>;
#endif
template class __malloc_alloc_template<0>;

View File

@ -1,6 +1,14 @@
Sun Mar 14 02:38:07 PST 1999 Jeff Law (law@cygnus.com)
Mon Aug 16 01:29:24 PDT 1999 Jeff Law (law@cygnus.com)
* egcs-1.1.2 Released.
* gcc-2.95.1 Released.
Wed Jul 28 21:39:31 PDT 1999 Jeff Law (law@cygnus.com)
* gcc-2.95 Released.
Sun Jul 25 23:40:51 PDT 1999 Jeff Law (law@cygnus.com)
* gcc-2.95 Released.
1998-07-17 Jason Merrill <jason@yorick.cygnus.com>

View File

@ -1,6 +1,18 @@
Sun Mar 14 02:38:07 PST 1999 Jeff Law (law@cygnus.com)
Mon Aug 16 01:29:24 PDT 1999 Jeff Law (law@cygnus.com)
* egcs-1.1.2 Released.
* gcc-2.95.1 Released.
Wed Jul 28 21:39:31 PDT 1999 Jeff Law (law@cygnus.com)
* gcc-2.95 Released.
Sun Jul 25 23:40:51 PDT 1999 Jeff Law (law@cygnus.com)
* gcc-2.95 Released.
Wed Nov 25 01:00:07 1998 Marc Espie <espie@quatramaran.ens.fr>
* Makefile.in (just-check): Ignore errors.
Sun Jun 28 00:00:10 1998 Carlo Wood <carlo@runaway.xs4all.nl>

View File

@ -13,7 +13,8 @@
#
# You should have received a copy of the GNU General Public License
# along with GNU CC; see the file COPYING. If not, write to
# the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
# the Free Software Foundation, 59 Temple Place - Suite 330,
# Boston, MA 02111-1307, USA. */
srcdir = libstdc++.tests
@ -57,7 +58,7 @@ site.exp: ./config.status Makefile
-@rm -f ./tmp?
just-check: site.exp
rootme=`pwd`; export rootme; \
-rootme=`pwd`; export rootme; \
srcdir=${srcdir} ; export srcdir ; \
EXPECT=${EXPECT} ; export EXPECT ; \
if [ -f $${rootme}/../../expect/expect ] ; then \

View File

@ -0,0 +1,8 @@
// Main header for -*- C++ -*- valarray classes.
#ifndef __VALARRAY__
#define __VALARRAY__
#include <std/std_valarray.h>
#endif

View File

@ -0,0 +1,50 @@
#include <std/std_valarray.h>
// Some Explicit Instanciations.
template class multiplies<size_t>;
template size_t accumulate(size_t*, size_t*, size_t, multiplies<size_t>);
template void
__valarray_fill(size_t* __restrict__, size_t, const size_t&);
template void
__valarray_copy(const size_t* __restrict__, size_t, size_t* __restrict__);
template valarray<size_t>::valarray(size_t);
template valarray<size_t>::~valarray();
template valarray<size_t>::valarray(const valarray<size_t>&);
template size_t valarray<size_t>::size() const;
template size_t& valarray<size_t>::operator[](size_t);
template size_t valarray<size_t>::product() const;
void __gslice_to_index(size_t __o, const valarray<size_t>& __l,
const valarray<size_t>& __s,
valarray<size_t>& __i)
{
const size_t __n = __l.size();
size_t* const __t = static_cast<size_t*>(alloca(__n*sizeof(size_t)));
__valarray_fill(__t, __n, size_t(0));
const size_t __z = __i.size();
__valarray_fill(&__i[0], __z, __o);
for (size_t __j=0; __j<__z; ++__j) {
for (size_t __k=0; __k<__n; ++__k)
__i[__j] += __s[__k]*__t[__k];
++__t[__n-1];
for (size_t __k=__n-1; __k; --__k) {
if (__t[__k] >= __l[__k]) {
__t[__k] = 0;
++__t[__k-1];
}
}
}
}
_Indexer::_Indexer(size_t __o, const valarray<size_t>& __l,
const valarray<size_t>& __s)
: _M_count(1), _M_start(__o), _M_size(__l), _M_stride(__s),
_M_index(__l.size() ? __l.product() : 0)
{ __gslice_to_index(__o, __l, __s, _M_index); }