mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-03 09:00:21 +00:00
MFV r350898, r351075: 8423 8199 7432 Implement large_dnode pool feature
8423 8199 7432 Implement large_dnode pool feature 7432 Large dnode pool feature 8199 multi-threaded dmu_object_alloc() 8423 Implement large_dnode pool feature 10406 large_dnode changes broke zfs recv of legacy stream llumos/illumos-gate@54811da5ac54811da5ac
https://www.illumos.org/issues/8423 https://www.illumos.org/issues/8199 https://www.illumos.org/issues/7432 illumos/illumos-gate@811964cd9f811964cd9f
https://www.illumos.org/issues/10406 ZoL issues: Improved dnode allocation #6564 Clean up large dnode code #6262 Fix dnode_hold() freeing dnode behavior #8172 Fix dnode allocation race #6414, #6439 Partial: Raw sends must be able to decrease nlevels #6821, #6864 Remove unnecessary txg syncs from receive_object() Closes #7197 This updates FreeBSD large_dnode code (that was imported from ZoL) to a version that was committed to illumos. It has some cleanups, improvements and fixes comparing to what we have in FreeBSD now. I think that the most significant update is 8199 multi-threaded dmu_object_alloc(). This commit reverts r351077 that was a revert of r351074 and r351076 and restores those changes. Required atomic operations should be available now on all platforms where we build ZFS. Obtained from: illumos MFC after: 3 weeks
This commit is contained in:
commit
862c20fd89
Notes:
svn2git
2020-12-20 02:59:44 +00:00
svn path=/head/; revision=353176
@ -2134,7 +2134,8 @@ static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
|
||||
};
|
||||
|
||||
static void
|
||||
dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header)
|
||||
dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header,
|
||||
uint64_t *dnode_slots_used)
|
||||
{
|
||||
dmu_buf_t *db = NULL;
|
||||
dmu_object_info_t doi;
|
||||
@ -2154,7 +2155,7 @@ dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header)
|
||||
CTASSERT(sizeof (bonus_size) >= NN_NUMBUF_SZ);
|
||||
|
||||
if (*print_header) {
|
||||
(void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
|
||||
(void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
|
||||
"Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
|
||||
"lsize", "%full", "type");
|
||||
*print_header = 0;
|
||||
@ -2173,6 +2174,9 @@ dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header)
|
||||
}
|
||||
dmu_object_info_from_dnode(dn, &doi);
|
||||
|
||||
if (dnode_slots_used != NULL)
|
||||
*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
|
||||
|
||||
zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
|
||||
zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
|
||||
zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
|
||||
@ -2195,8 +2199,9 @@ dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header)
|
||||
ZDB_COMPRESS_NAME(doi.doi_compress));
|
||||
}
|
||||
|
||||
(void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
|
||||
(u_longlong_t)object, doi.doi_indirection, iblk, dblk,
|
||||
(void) printf("%10" PRIu64
|
||||
" %3u %5s %5s %5s %5s %5s %6s %s%s\n",
|
||||
object, doi.doi_indirection, iblk, dblk,
|
||||
asize, dnsize, lsize, fill, ZDB_OT_NAME(doi.doi_type), aux);
|
||||
|
||||
if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
|
||||
@ -2305,6 +2310,9 @@ dump_dir(objset_t *os)
|
||||
int print_header = 1;
|
||||
unsigned i;
|
||||
int error;
|
||||
uint64_t total_slots_used = 0;
|
||||
uint64_t max_slot_used = 0;
|
||||
uint64_t dnode_slots;
|
||||
|
||||
/* make sure nicenum has enough space */
|
||||
CTASSERT(sizeof (numbuf) >= NN_NUMBUF_SZ);
|
||||
@ -2349,7 +2357,7 @@ dump_dir(objset_t *os)
|
||||
if (zopt_objects != 0) {
|
||||
for (i = 0; i < zopt_objects; i++)
|
||||
dump_object(os, zopt_object[i], verbosity,
|
||||
&print_header);
|
||||
&print_header, NULL);
|
||||
(void) printf("\n");
|
||||
return;
|
||||
}
|
||||
@ -2374,22 +2382,37 @@ dump_dir(objset_t *os)
|
||||
if (BP_IS_HOLE(os->os_rootbp))
|
||||
return;
|
||||
|
||||
dump_object(os, 0, verbosity, &print_header);
|
||||
dump_object(os, 0, verbosity, &print_header, NULL);
|
||||
object_count = 0;
|
||||
if (DMU_USERUSED_DNODE(os) != NULL &&
|
||||
DMU_USERUSED_DNODE(os)->dn_type != 0) {
|
||||
dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header);
|
||||
dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header);
|
||||
dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
|
||||
NULL);
|
||||
dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
|
||||
NULL);
|
||||
}
|
||||
|
||||
object = 0;
|
||||
while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
|
||||
dump_object(os, object, verbosity, &print_header);
|
||||
dump_object(os, object, verbosity, &print_header, &dnode_slots);
|
||||
object_count++;
|
||||
total_slots_used += dnode_slots;
|
||||
max_slot_used = object + dnode_slots - 1;
|
||||
}
|
||||
|
||||
(void) printf("\n");
|
||||
|
||||
(void) printf(" Dnode slots:\n");
|
||||
(void) printf("\tTotal used: %10llu\n",
|
||||
(u_longlong_t)total_slots_used);
|
||||
(void) printf("\tMax used: %10llu\n",
|
||||
(u_longlong_t)max_slot_used);
|
||||
(void) printf("\tPercent empty: %10lf\n",
|
||||
(double)(max_slot_used - total_slots_used)*100 /
|
||||
(double)max_slot_used);
|
||||
|
||||
(void) printf("\n");
|
||||
|
||||
if (error != ESRCH) {
|
||||
(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
|
||||
abort();
|
||||
@ -2581,7 +2604,7 @@ dump_path_impl(objset_t *os, uint64_t obj, char *name)
|
||||
return (dump_path_impl(os, child_obj, s + 1));
|
||||
/*FALLTHROUGH*/
|
||||
case DMU_OT_PLAIN_FILE_CONTENTS:
|
||||
dump_object(os, child_obj, dump_opt['v'], &header);
|
||||
dump_object(os, child_obj, dump_opt['v'], &header, NULL);
|
||||
return (0);
|
||||
default:
|
||||
(void) fprintf(stderr, "object %llu has non-file/directory "
|
||||
|
@ -84,15 +84,15 @@ zil_prt_rec_create(zilog_t *zilog, int txtype, void *arg)
|
||||
}
|
||||
|
||||
(void) printf("%s%s", tab_prefix, ctime(&crtime));
|
||||
(void) printf("%sdoid %llu, foid %llu, slots %llu, mode %llo\n", tab_prefix,
|
||||
(u_longlong_t)lr->lr_doid,
|
||||
(u_longlong_t)LR_FOID_GET_OBJ(lr->lr_foid),
|
||||
(u_longlong_t)LR_FOID_GET_SLOTS(lr->lr_foid),
|
||||
(longlong_t)lr->lr_mode);
|
||||
(void) printf("%suid %llu, gid %llu, gen %llu, rdev 0x%llx\n",
|
||||
tab_prefix,
|
||||
(u_longlong_t)lr->lr_uid, (u_longlong_t)lr->lr_gid,
|
||||
(u_longlong_t)lr->lr_gen, (u_longlong_t)lr->lr_rdev);
|
||||
(void) printf("%sdoid %" PRIu64 ", foid %" PRIu64 ", slots %" PRIu64
|
||||
", mode %" PRIo64 "\n",
|
||||
tab_prefix, lr->lr_doid,
|
||||
(uint64_t)LR_FOID_GET_OBJ(lr->lr_foid),
|
||||
(uint64_t)LR_FOID_GET_SLOTS(lr->lr_foid),
|
||||
lr->lr_mode);
|
||||
(void) printf("%suid %" PRIu64 ", gid %" PRIu64 ", gen %" PRIu64
|
||||
", rdev %#" PRIx64 "\n",
|
||||
tab_prefix, lr->lr_uid, lr->lr_gid, lr->lr_gen, lr->lr_rdev);
|
||||
}
|
||||
|
||||
/* ARGSUSED */
|
||||
|
@ -416,13 +416,15 @@ main(int argc, char *argv[])
|
||||
drro->drr_toguid = BSWAP_64(drro->drr_toguid);
|
||||
}
|
||||
if (verbose) {
|
||||
(void) printf("OBJECT object = %llu type = %u "
|
||||
"bonustype = %u blksz = %u bonuslen = %u\n",
|
||||
(u_longlong_t)drro->drr_object,
|
||||
(void) printf("OBJECT object = %" PRIu64
|
||||
" type = %u bonustype = %u blksz = %u"
|
||||
" bonuslen = %u dn_slots = %u\n",
|
||||
drro->drr_object,
|
||||
drro->drr_type,
|
||||
drro->drr_bonustype,
|
||||
drro->drr_blksz,
|
||||
drro->drr_bonuslen);
|
||||
drro->drr_bonuslen,
|
||||
drro->drr_dn_slots);
|
||||
}
|
||||
if (drro->drr_bonuslen > 0) {
|
||||
(void) ssread(buf,
|
||||
|
@ -196,6 +196,7 @@ extern uint64_t zfs_deadman_synctime_ms;
|
||||
extern int metaslab_preload_limit;
|
||||
extern boolean_t zfs_compressed_arc_enabled;
|
||||
extern boolean_t zfs_abd_scatter_enabled;
|
||||
extern int dmu_object_alloc_chunk_shift;
|
||||
extern boolean_t zfs_force_some_double_word_sm_entries;
|
||||
|
||||
static ztest_shared_opts_t *ztest_shared_opts;
|
||||
@ -322,6 +323,7 @@ static ztest_shared_callstate_t *ztest_shared_callstate;
|
||||
ztest_func_t ztest_dmu_read_write;
|
||||
ztest_func_t ztest_dmu_write_parallel;
|
||||
ztest_func_t ztest_dmu_object_alloc_free;
|
||||
ztest_func_t ztest_dmu_object_next_chunk;
|
||||
ztest_func_t ztest_dmu_commit_callbacks;
|
||||
ztest_func_t ztest_zap;
|
||||
ztest_func_t ztest_zap_parallel;
|
||||
@ -363,6 +365,7 @@ ztest_info_t ztest_info[] = {
|
||||
{ ztest_dmu_read_write, 1, &zopt_always },
|
||||
{ ztest_dmu_write_parallel, 10, &zopt_always },
|
||||
{ ztest_dmu_object_alloc_free, 1, &zopt_always },
|
||||
{ ztest_dmu_object_next_chunk, 1, &zopt_sometimes },
|
||||
{ ztest_dmu_commit_callbacks, 1, &zopt_always },
|
||||
{ ztest_zap, 30, &zopt_always },
|
||||
{ ztest_zap_parallel, 100, &zopt_always },
|
||||
@ -1366,7 +1369,7 @@ ztest_bt_bonus(dmu_buf_t *db)
|
||||
* it unique to the object, generation, and offset to verify that data
|
||||
* is not getting overwritten by data from other dnodes.
|
||||
*/
|
||||
#define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
|
||||
#define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
|
||||
(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
|
||||
|
||||
/*
|
||||
@ -1895,6 +1898,7 @@ ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
|
||||
ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
|
||||
txg, crtxg);
|
||||
ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
|
||||
|
||||
dmu_buf_rele(db, FTAG);
|
||||
|
||||
(void) ztest_log_setattr(zd, tx, lr);
|
||||
@ -3815,8 +3819,10 @@ ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
|
||||
ztest_od_t od[4];
|
||||
int batchsize = sizeof (od) / sizeof (od[0]);
|
||||
|
||||
for (int b = 0; b < batchsize; b++)
|
||||
ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0, 0);
|
||||
for (int b = 0; b < batchsize; b++) {
|
||||
ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER,
|
||||
0, 0, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Destroy the previous batch of objects, create a new batch,
|
||||
@ -3830,6 +3836,26 @@ ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
|
||||
ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
|
||||
}
|
||||
|
||||
/*
|
||||
* Rewind the global allocator to verify object allocation backfilling.
|
||||
*/
|
||||
void
|
||||
ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
|
||||
{
|
||||
objset_t *os = zd->zd_os;
|
||||
int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
|
||||
uint64_t object;
|
||||
|
||||
/*
|
||||
* Rewind the global allocator randomly back to a lower object number
|
||||
* to force backfilling and reclamation of recently freed dnodes.
|
||||
*/
|
||||
mutex_enter(&os->os_obj_lock);
|
||||
object = ztest_random(os->os_obj_next_chunk);
|
||||
os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
|
||||
mutex_exit(&os->os_obj_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify that dmu_{read,write} work as expected.
|
||||
*/
|
||||
@ -3876,8 +3902,10 @@ ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
|
||||
/*
|
||||
* Read the directory info. If it's the first time, set things up.
|
||||
*/
|
||||
ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
|
||||
ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
|
||||
ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0,
|
||||
chunksize);
|
||||
ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
|
||||
chunksize);
|
||||
|
||||
if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
|
||||
return;
|
||||
@ -4146,8 +4174,10 @@ ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
|
||||
/*
|
||||
* Read the directory info. If it's the first time, set things up.
|
||||
*/
|
||||
ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
|
||||
ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
|
||||
ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
|
||||
0, 0);
|
||||
ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
|
||||
chunksize);
|
||||
|
||||
if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
|
||||
return;
|
||||
@ -4347,7 +4377,8 @@ ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
|
||||
* to verify that parallel writes to an object -- even to the
|
||||
* same blocks within the object -- doesn't cause any trouble.
|
||||
*/
|
||||
ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
|
||||
ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER,
|
||||
0, 0, 0);
|
||||
|
||||
if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
|
||||
return;
|
||||
@ -4366,7 +4397,8 @@ ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
|
||||
uint64_t blocksize = ztest_random_blocksize();
|
||||
void *data;
|
||||
|
||||
ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
|
||||
ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
|
||||
0, 0);
|
||||
|
||||
if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
|
||||
return;
|
||||
@ -4590,7 +4622,8 @@ ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
|
||||
char name[20], string_value[20];
|
||||
void *data;
|
||||
|
||||
ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
|
||||
ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER,
|
||||
0, 0, 0);
|
||||
|
||||
if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
|
||||
return;
|
||||
@ -5411,7 +5444,8 @@ ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
|
||||
blocksize = ztest_random_blocksize();
|
||||
blocksize = MIN(blocksize, 2048); /* because we write so many */
|
||||
|
||||
ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
|
||||
ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize,
|
||||
0, 0);
|
||||
|
||||
if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
|
||||
return;
|
||||
|
@ -292,10 +292,11 @@ zfs_prop_init(void)
|
||||
ZFS_VOLMODE_DEFAULT, PROP_INHERIT,
|
||||
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_SNAPSHOT | ZFS_TYPE_VOLUME,
|
||||
"default | geom | dev | none", "VOLMODE", volmode_table);
|
||||
|
||||
zprop_register_index(ZFS_PROP_DNODESIZE, "dnodesize",
|
||||
ZFS_DNSIZE_LEGACY, PROP_INHERIT, ZFS_TYPE_FILESYSTEM,
|
||||
"legacy | auto | 1k | 2k | 4k | 8k | 16k", "DNSIZE", dnsize_table);
|
||||
|
||||
|
||||
/* inherit index (boolean) properties */
|
||||
zprop_register_index(ZFS_PROP_ATIME, "atime", 1, PROP_INHERIT,
|
||||
ZFS_TYPE_FILESYSTEM, "on | off", "ATIME", boolean_table);
|
||||
|
@ -3757,7 +3757,8 @@ dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
|
||||
if (dn->dn_type == DMU_OT_DNODE) {
|
||||
i = 0;
|
||||
while (i < db->db.db_size) {
|
||||
dnode_phys_t *dnp = db->db.db_data + i;
|
||||
dnode_phys_t *dnp =
|
||||
(void *)(((char *)db->db.db_data) + i);
|
||||
|
||||
i += DNODE_MIN_SIZE;
|
||||
if (dnp->dn_type != DMU_OT_NONE) {
|
||||
|
@ -32,6 +32,14 @@
|
||||
#include <sys/zfeature.h>
|
||||
#include <sys/dsl_dataset.h>
|
||||
|
||||
/*
|
||||
* Each of the concurrent object allocators will grab
|
||||
* 2^dmu_object_alloc_chunk_shift dnode slots at a time. The default is to
|
||||
* grab 128 slots, which is 4 blocks worth. This was experimentally
|
||||
* determined to be the lowest value that eliminates the measurable effect
|
||||
* of lock contention from this code path.
|
||||
*/
|
||||
int dmu_object_alloc_chunk_shift = 7;
|
||||
|
||||
static uint64_t
|
||||
dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
|
||||
@ -44,6 +52,10 @@ dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
|
||||
dnode_t *dn = NULL;
|
||||
int dn_slots = dnodesize >> DNODE_SHIFT;
|
||||
boolean_t restarted = B_FALSE;
|
||||
uint64_t *cpuobj = &os->os_obj_next_percpu[CPU_SEQID %
|
||||
os->os_obj_next_percpu_len];
|
||||
int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
|
||||
int error;
|
||||
|
||||
if (dn_slots == 0) {
|
||||
dn_slots = DNODE_MIN_SLOTS;
|
||||
@ -51,55 +63,99 @@ dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
|
||||
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
|
||||
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
|
||||
}
|
||||
|
||||
mutex_enter(&os->os_obj_lock);
|
||||
|
||||
/*
|
||||
* The "chunk" of dnodes that is assigned to a CPU-specific
|
||||
* allocator needs to be at least one block's worth, to avoid
|
||||
* lock contention on the dbuf. It can be at most one L1 block's
|
||||
* worth, so that the "rescan after polishing off a L1's worth"
|
||||
* logic below will be sure to kick in.
|
||||
*/
|
||||
if (dnodes_per_chunk < DNODES_PER_BLOCK)
|
||||
dnodes_per_chunk = DNODES_PER_BLOCK;
|
||||
if (dnodes_per_chunk > L1_dnode_count)
|
||||
dnodes_per_chunk = L1_dnode_count;
|
||||
|
||||
object = *cpuobj;
|
||||
|
||||
for (;;) {
|
||||
object = os->os_obj_next;
|
||||
/*
|
||||
* Each time we polish off a L1 bp worth of dnodes (2^12
|
||||
* objects), move to another L1 bp that's still
|
||||
* reasonably sparse (at most 1/4 full). Look from the
|
||||
* beginning at most once per txg. If we still can't
|
||||
* allocate from that L1 block, search for an empty L0
|
||||
* block, which will quickly skip to the end of the
|
||||
* metadnode if the no nearby L0 blocks are empty. This
|
||||
* fallback avoids a pathology where full dnode blocks
|
||||
* containing large dnodes appear sparse because they
|
||||
* have a low blk_fill, leading to many failed
|
||||
* allocation attempts. In the long term a better
|
||||
* mechanism to search for sparse metadnode regions,
|
||||
* such as spacemaps, could be implemented.
|
||||
*
|
||||
* os_scan_dnodes is set during txg sync if enough objects
|
||||
* have been freed since the previous rescan to justify
|
||||
* backfilling again.
|
||||
*
|
||||
* Note that dmu_traverse depends on the behavior that we use
|
||||
* multiple blocks of the dnode object before going back to
|
||||
* reuse objects. Any change to this algorithm should preserve
|
||||
* that property or find another solution to the issues
|
||||
* described in traverse_visitbp.
|
||||
* If we finished a chunk of dnodes, get a new one from
|
||||
* the global allocator.
|
||||
*/
|
||||
if (P2PHASE(object, L1_dnode_count) == 0) {
|
||||
uint64_t offset;
|
||||
uint64_t blkfill;
|
||||
int minlvl;
|
||||
int error;
|
||||
if (os->os_rescan_dnodes) {
|
||||
offset = 0;
|
||||
os->os_rescan_dnodes = B_FALSE;
|
||||
} else {
|
||||
offset = object << DNODE_SHIFT;
|
||||
if ((P2PHASE(object, dnodes_per_chunk) == 0) ||
|
||||
(P2PHASE(object + dn_slots - 1, dnodes_per_chunk) <
|
||||
dn_slots)) {
|
||||
DNODE_STAT_BUMP(dnode_alloc_next_chunk);
|
||||
mutex_enter(&os->os_obj_lock);
|
||||
ASSERT0(P2PHASE(os->os_obj_next_chunk,
|
||||
dnodes_per_chunk));
|
||||
object = os->os_obj_next_chunk;
|
||||
|
||||
/*
|
||||
* Each time we polish off a L1 bp worth of dnodes
|
||||
* (2^12 objects), move to another L1 bp that's
|
||||
* still reasonably sparse (at most 1/4 full). Look
|
||||
* from the beginning at most once per txg. If we
|
||||
* still can't allocate from that L1 block, search
|
||||
* for an empty L0 block, which will quickly skip
|
||||
* to the end of the metadnode if the no nearby L0
|
||||
* blocks are empty. This fallback avoids a
|
||||
* pathology where full dnode blocks containing
|
||||
* large dnodes appear sparse because they have a
|
||||
* low blk_fill, leading to many failed allocation
|
||||
* attempts. In the long term a better mechanism to
|
||||
* search for sparse metadnode regions, such as
|
||||
* spacemaps, could be implemented.
|
||||
*
|
||||
* os_scan_dnodes is set during txg sync if enough
|
||||
* objects have been freed since the previous
|
||||
* rescan to justify backfilling again.
|
||||
*
|
||||
* Note that dmu_traverse depends on the behavior
|
||||
* that we use multiple blocks of the dnode object
|
||||
* before going back to reuse objects. Any change
|
||||
* to this algorithm should preserve that property
|
||||
* or find another solution to the issues described
|
||||
* in traverse_visitbp.
|
||||
*/
|
||||
if (P2PHASE(object, L1_dnode_count) == 0) {
|
||||
uint64_t offset;
|
||||
uint64_t blkfill;
|
||||
int minlvl;
|
||||
if (os->os_rescan_dnodes) {
|
||||
offset = 0;
|
||||
os->os_rescan_dnodes = B_FALSE;
|
||||
} else {
|
||||
offset = object << DNODE_SHIFT;
|
||||
}
|
||||
blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
|
||||
minlvl = restarted ? 1 : 2;
|
||||
restarted = B_TRUE;
|
||||
error = dnode_next_offset(DMU_META_DNODE(os),
|
||||
DNODE_FIND_HOLE, &offset, minlvl,
|
||||
blkfill, 0);
|
||||
if (error == 0) {
|
||||
object = offset >> DNODE_SHIFT;
|
||||
}
|
||||
}
|
||||
blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
|
||||
minlvl = restarted ? 1 : 2;
|
||||
restarted = B_TRUE;
|
||||
error = dnode_next_offset(DMU_META_DNODE(os),
|
||||
DNODE_FIND_HOLE, &offset, minlvl, blkfill, 0);
|
||||
if (error == 0)
|
||||
object = offset >> DNODE_SHIFT;
|
||||
/*
|
||||
* Note: if "restarted", we may find a L0 that
|
||||
* is not suitably aligned.
|
||||
*/
|
||||
os->os_obj_next_chunk =
|
||||
P2ALIGN(object, dnodes_per_chunk) +
|
||||
dnodes_per_chunk;
|
||||
(void) atomic_swap_64(cpuobj, object);
|
||||
mutex_exit(&os->os_obj_lock);
|
||||
}
|
||||
os->os_obj_next = object + dn_slots;
|
||||
|
||||
/*
|
||||
* The value of (*cpuobj) before adding dn_slots is the object
|
||||
* ID assigned to us. The value afterwards is the object ID
|
||||
* assigned to whoever wants to do an allocation next.
|
||||
*/
|
||||
object = atomic_add_64_nv(cpuobj, dn_slots) - dn_slots;
|
||||
|
||||
/*
|
||||
* XXX We should check for an i/o error here and return
|
||||
@ -107,37 +163,45 @@ dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
|
||||
* dmu_tx_assign(), but there is currently no mechanism
|
||||
* to do so.
|
||||
*/
|
||||
(void) dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
|
||||
FTAG, &dn);
|
||||
if (dn)
|
||||
break;
|
||||
|
||||
if (dmu_object_next(os, &object, B_TRUE, 0) == 0)
|
||||
os->os_obj_next = object;
|
||||
else
|
||||
error = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
|
||||
dn_slots, FTAG, &dn);
|
||||
if (error == 0) {
|
||||
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
||||
/*
|
||||
* Skip to next known valid starting point for a dnode.
|
||||
* Another thread could have allocated it; check
|
||||
* again now that we have the struct lock.
|
||||
*/
|
||||
os->os_obj_next = P2ROUNDUP(object + 1,
|
||||
DNODES_PER_BLOCK);
|
||||
if (dn->dn_type == DMU_OT_NONE) {
|
||||
dnode_allocate(dn, ot, blocksize, 0,
|
||||
bonustype, bonuslen, dn_slots, tx);
|
||||
rw_exit(&dn->dn_struct_rwlock);
|
||||
dmu_tx_add_new_object(tx, dn);
|
||||
dnode_rele(dn, FTAG);
|
||||
return (object);
|
||||
}
|
||||
rw_exit(&dn->dn_struct_rwlock);
|
||||
dnode_rele(dn, FTAG);
|
||||
DNODE_STAT_BUMP(dnode_alloc_race);
|
||||
}
|
||||
|
||||
/*
|
||||
* Skip to next known valid starting point on error. This
|
||||
* is the start of the next block of dnodes.
|
||||
*/
|
||||
if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
|
||||
object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
|
||||
DNODE_STAT_BUMP(dnode_alloc_next_block);
|
||||
}
|
||||
(void) atomic_swap_64(cpuobj, object);
|
||||
}
|
||||
|
||||
dnode_allocate(dn, ot, blocksize, indirect_blockshift,
|
||||
bonustype, bonuslen, dn_slots, tx);
|
||||
mutex_exit(&os->os_obj_lock);
|
||||
|
||||
dmu_tx_add_new_object(tx, dn);
|
||||
dnode_rele(dn, FTAG);
|
||||
|
||||
return (object);
|
||||
}
|
||||
|
||||
uint64_t
|
||||
dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
|
||||
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
||||
{
|
||||
return dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
|
||||
bonuslen, 0, tx);
|
||||
return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
|
||||
bonuslen, 0, tx));
|
||||
}
|
||||
|
||||
uint64_t
|
||||
@ -145,8 +209,8 @@ dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
|
||||
int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
|
||||
dmu_tx_t *tx)
|
||||
{
|
||||
return dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
|
||||
bonustype, bonuslen, 0, tx);
|
||||
return (dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
|
||||
bonustype, bonuslen, 0, tx));
|
||||
}
|
||||
|
||||
uint64_t
|
||||
@ -178,7 +242,7 @@ dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
||||
dn_slots = DNODE_MIN_SLOTS;
|
||||
ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
|
||||
ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
|
||||
|
||||
|
||||
if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
|
||||
return (SET_ERROR(EBADF));
|
||||
|
||||
@ -211,6 +275,9 @@ dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
|
||||
int dn_slots = dnodesize >> DNODE_SHIFT;
|
||||
int err;
|
||||
|
||||
if (dn_slots == 0)
|
||||
dn_slots = DNODE_MIN_SLOTS;
|
||||
|
||||
if (object == DMU_META_DNODE_OBJECT)
|
||||
return (SET_ERROR(EBADF));
|
||||
|
||||
@ -260,28 +327,52 @@ int
|
||||
dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
|
||||
{
|
||||
uint64_t offset;
|
||||
dmu_object_info_t doi;
|
||||
uint64_t start_obj;
|
||||
struct dsl_dataset *ds = os->os_dsl_dataset;
|
||||
int dnodesize;
|
||||
int error;
|
||||
|
||||
/*
|
||||
* Avoid expensive dnode hold if this dataset doesn't use large dnodes.
|
||||
*/
|
||||
if (ds && ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) {
|
||||
error = dmu_object_info(os, *objectp, &doi);
|
||||
if (error && !(error == EINVAL && *objectp == 0))
|
||||
return (SET_ERROR(error));
|
||||
else
|
||||
dnodesize = doi.doi_dnodesize;
|
||||
if (*objectp == 0) {
|
||||
start_obj = 1;
|
||||
} else if (ds && ds->ds_feature_inuse[SPA_FEATURE_LARGE_DNODE]) {
|
||||
uint64_t i = *objectp + 1;
|
||||
uint64_t last_obj = *objectp | (DNODES_PER_BLOCK - 1);
|
||||
dmu_object_info_t doi;
|
||||
|
||||
/*
|
||||
* Scan through the remaining meta dnode block. The contents
|
||||
* of each slot in the block are known so it can be quickly
|
||||
* checked. If the block is exhausted without a match then
|
||||
* hand off to dnode_next_offset() for further scanning.
|
||||
*/
|
||||
while (i <= last_obj) {
|
||||
error = dmu_object_info(os, i, &doi);
|
||||
if (error == ENOENT) {
|
||||
if (hole) {
|
||||
*objectp = i;
|
||||
return (0);
|
||||
} else {
|
||||
i++;
|
||||
}
|
||||
} else if (error == EEXIST) {
|
||||
i++;
|
||||
} else if (error == 0) {
|
||||
if (hole) {
|
||||
i += doi.doi_dnodesize >> DNODE_SHIFT;
|
||||
} else {
|
||||
*objectp = i;
|
||||
return (0);
|
||||
}
|
||||
} else {
|
||||
return (error);
|
||||
}
|
||||
}
|
||||
|
||||
start_obj = i;
|
||||
} else {
|
||||
dnodesize = DNODE_MIN_SIZE;
|
||||
start_obj = *objectp + 1;
|
||||
}
|
||||
|
||||
if (*objectp == 0)
|
||||
offset = 1 << DNODE_SHIFT;
|
||||
else
|
||||
offset = (*objectp << DNODE_SHIFT) + dnodesize;
|
||||
offset = start_obj << DNODE_SHIFT;
|
||||
|
||||
error = dnode_next_offset(DMU_META_DNODE(os),
|
||||
(hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
|
||||
|
@ -566,6 +566,9 @@ dmu_objset_open_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,
|
||||
mutex_init(&os->os_userused_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
mutex_init(&os->os_obj_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
mutex_init(&os->os_user_ptr_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
os->os_obj_next_percpu_len = boot_ncpus;
|
||||
os->os_obj_next_percpu = kmem_zalloc(os->os_obj_next_percpu_len *
|
||||
sizeof (os->os_obj_next_percpu[0]), KM_SLEEP);
|
||||
|
||||
dnode_special_open(os, &os->os_phys->os_meta_dnode,
|
||||
DMU_META_DNODE_OBJECT, &os->os_meta_dnode);
|
||||
@ -844,6 +847,9 @@ dmu_objset_evict_done(objset_t *os)
|
||||
rw_enter(&os_lock, RW_READER);
|
||||
rw_exit(&os_lock);
|
||||
|
||||
kmem_free(os->os_obj_next_percpu,
|
||||
os->os_obj_next_percpu_len * sizeof (os->os_obj_next_percpu[0]));
|
||||
|
||||
mutex_destroy(&os->os_lock);
|
||||
mutex_destroy(&os->os_userused_lock);
|
||||
mutex_destroy(&os->os_obj_lock);
|
||||
|
@ -1441,17 +1441,12 @@ dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
|
||||
/*
|
||||
* The receiving code doesn't know how to translate large blocks
|
||||
* to smaller ones, so the pool must have the LARGE_BLOCKS
|
||||
* feature enabled if the stream has LARGE_BLOCKS.
|
||||
* feature enabled if the stream has LARGE_BLOCKS. Same with
|
||||
* large dnodes.
|
||||
*/
|
||||
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
||||
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
|
||||
/*
|
||||
* The receiving code doesn't know how to translate large dnodes
|
||||
* to smaller ones, so the pool must have the LARGE_DNODE
|
||||
* feature enabled if the stream has LARGE_DNODE.
|
||||
*/
|
||||
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
|
||||
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
@ -1659,6 +1654,9 @@ dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
|
||||
dsl_dataset_t *ds;
|
||||
const char *tofs = drba->drba_cookie->drc_tofs;
|
||||
|
||||
/* 6 extra bytes for /%recv */
|
||||
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
||||
|
||||
/* already checked */
|
||||
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
||||
ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
|
||||
@ -1686,8 +1684,18 @@ dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
|
||||
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
|
||||
/* 6 extra bytes for /%recv */
|
||||
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
||||
/*
|
||||
* The receiving code doesn't know how to translate large blocks
|
||||
* to smaller ones, so the pool must have the LARGE_BLOCKS
|
||||
* feature enabled if the stream has LARGE_BLOCKS. Same with
|
||||
* large dnodes.
|
||||
*/
|
||||
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
||||
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
|
||||
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
|
||||
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
|
||||
tofs, recv_clone_name);
|
||||
@ -2149,6 +2157,8 @@ receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
|
||||
dmu_tx_t *tx;
|
||||
uint64_t object;
|
||||
int err;
|
||||
uint8_t dn_slots = drro->drr_dn_slots != 0 ?
|
||||
drro->drr_dn_slots : DNODE_MIN_SLOTS;
|
||||
|
||||
if (drro->drr_type == DMU_OT_NONE ||
|
||||
!DMU_OT_IS_VALID(drro->drr_type) ||
|
||||
@ -2159,15 +2169,16 @@ receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
|
||||
drro->drr_blksz < SPA_MINBLOCKSIZE ||
|
||||
drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
|
||||
drro->drr_bonuslen >
|
||||
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os)))) {
|
||||
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
|
||||
dn_slots >
|
||||
(spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
|
||||
return (SET_ERROR(EINVAL));
|
||||
}
|
||||
|
||||
err = dmu_object_info(rwa->os, drro->drr_object, &doi);
|
||||
|
||||
if (err != 0 && err != ENOENT)
|
||||
if (err != 0 && err != ENOENT && err != EEXIST)
|
||||
return (SET_ERROR(EINVAL));
|
||||
object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
|
||||
|
||||
if (drro->drr_object > rwa->max_object)
|
||||
rwa->max_object = drro->drr_object;
|
||||
@ -2180,16 +2191,64 @@ receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
|
||||
if (err == 0) {
|
||||
int nblkptr;
|
||||
|
||||
object = drro->drr_object;
|
||||
|
||||
nblkptr = deduce_nblkptr(drro->drr_bonustype,
|
||||
drro->drr_bonuslen);
|
||||
|
||||
if (drro->drr_blksz != doi.doi_data_block_size ||
|
||||
nblkptr < doi.doi_nblkptr) {
|
||||
nblkptr < doi.doi_nblkptr ||
|
||||
dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) {
|
||||
err = dmu_free_long_range(rwa->os, drro->drr_object,
|
||||
0, DMU_OBJECT_END);
|
||||
if (err != 0)
|
||||
return (SET_ERROR(EINVAL));
|
||||
}
|
||||
} else if (err == EEXIST) {
|
||||
/*
|
||||
* The object requested is currently an interior slot of a
|
||||
* multi-slot dnode. This will be resolved when the next txg
|
||||
* is synced out, since the send stream will have told us
|
||||
* to free this slot when we freed the associated dnode
|
||||
* earlier in the stream.
|
||||
*/
|
||||
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
||||
object = drro->drr_object;
|
||||
} else {
|
||||
/* object is free and we are about to allocate a new one */
|
||||
object = DMU_NEW_OBJECT;
|
||||
}
|
||||
|
||||
/*
|
||||
* If this is a multi-slot dnode there is a chance that this
|
||||
* object will expand into a slot that is already used by
|
||||
* another object from the previous snapshot. We must free
|
||||
* these objects before we attempt to allocate the new dnode.
|
||||
*/
|
||||
if (dn_slots > 1) {
|
||||
boolean_t need_sync = B_FALSE;
|
||||
|
||||
for (uint64_t slot = drro->drr_object + 1;
|
||||
slot < drro->drr_object + dn_slots;
|
||||
slot++) {
|
||||
dmu_object_info_t slot_doi;
|
||||
|
||||
err = dmu_object_info(rwa->os, slot, &slot_doi);
|
||||
if (err == ENOENT || err == EEXIST)
|
||||
continue;
|
||||
else if (err != 0)
|
||||
return (err);
|
||||
|
||||
err = dmu_free_long_object(rwa->os, slot);
|
||||
|
||||
if (err != 0)
|
||||
return (err);
|
||||
|
||||
need_sync = B_TRUE;
|
||||
}
|
||||
|
||||
if (need_sync)
|
||||
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
||||
}
|
||||
|
||||
tx = dmu_tx_create(rwa->os);
|
||||
@ -2205,7 +2264,7 @@ receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
|
||||
err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
|
||||
drro->drr_type, drro->drr_blksz,
|
||||
drro->drr_bonustype, drro->drr_bonuslen,
|
||||
drro->drr_dn_slots << DNODE_SHIFT, tx);
|
||||
dn_slots << DNODE_SHIFT, tx);
|
||||
} else if (drro->drr_type != doi.doi_type ||
|
||||
drro->drr_blksz != doi.doi_data_block_size ||
|
||||
drro->drr_bonustype != doi.doi_bonus_type ||
|
||||
@ -2263,10 +2322,10 @@ receive_freeobjects(struct receive_writer_arg *rwa,
|
||||
dmu_object_info_t doi;
|
||||
int err;
|
||||
|
||||
err = dmu_object_info(rwa->os, obj, &doi);
|
||||
err = dmu_object_info(rwa->os, obj, NULL);
|
||||
if (err == ENOENT) {
|
||||
obj++;
|
||||
continue;
|
||||
continue;
|
||||
} else if (err != 0) {
|
||||
return (err);
|
||||
}
|
||||
|
@ -1252,11 +1252,13 @@ dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
|
||||
void
|
||||
dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
|
||||
{
|
||||
dmu_tx_hold_t *txh = dmu_tx_hold_object_impl(tx,
|
||||
tx->tx_objset, object, THT_SPILL, 0, 0);
|
||||
dmu_tx_hold_t *txh;
|
||||
|
||||
(void) refcount_add_many(&txh->txh_space_towrite,
|
||||
SPA_OLD_MAXBLOCKSIZE, FTAG);
|
||||
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
|
||||
THT_SPILL, 0, 0);
|
||||
if (txh != NULL)
|
||||
(void) refcount_add_many(&txh->txh_space_towrite,
|
||||
SPA_OLD_MAXBLOCKSIZE, FTAG);
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -40,20 +40,40 @@
|
||||
#include <sys/dmu_zfetch.h>
|
||||
#include <sys/range_tree.h>
|
||||
|
||||
static kmem_cache_t *dnode_cache;
|
||||
/*
|
||||
* Define DNODE_STATS to turn on statistic gathering. By default, it is only
|
||||
* turned on when DEBUG is also defined.
|
||||
*/
|
||||
#ifdef DEBUG
|
||||
#define DNODE_STATS
|
||||
#endif /* DEBUG */
|
||||
dnode_stats_t dnode_stats = {
|
||||
{ "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_free_hits", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_free_misses", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_free_overflow", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_free_refcount", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_hold_free_txg", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_allocate", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_reallocate", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_buf_evict", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_alloc_race", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_alloc_next_block", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_move_invalid", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_move_recheck1", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_move_recheck2", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_move_special", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_move_handle", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_move_rwlock", KSTAT_DATA_UINT64 },
|
||||
{ "dnode_move_active", KSTAT_DATA_UINT64 },
|
||||
};
|
||||
|
||||
#ifdef DNODE_STATS
|
||||
#define DNODE_STAT_ADD(stat) ((stat)++)
|
||||
#else
|
||||
#define DNODE_STAT_ADD(stat) /* nothing */
|
||||
#endif /* DNODE_STATS */
|
||||
static kstat_t *dnode_ksp;
|
||||
static kmem_cache_t *dnode_cache;
|
||||
|
||||
static dnode_phys_t dnode_phys_zero;
|
||||
|
||||
@ -215,12 +235,25 @@ dnode_init(void)
|
||||
0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
|
||||
#ifdef _KERNEL
|
||||
kmem_cache_set_move(dnode_cache, dnode_move);
|
||||
|
||||
dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
|
||||
KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
|
||||
KSTAT_FLAG_VIRTUAL);
|
||||
if (dnode_ksp != NULL) {
|
||||
dnode_ksp->ks_data = &dnode_stats;
|
||||
kstat_install(dnode_ksp);
|
||||
}
|
||||
#endif /* _KERNEL */
|
||||
}
|
||||
|
||||
void
|
||||
dnode_fini(void)
|
||||
{
|
||||
if (dnode_ksp != NULL) {
|
||||
kstat_delete(dnode_ksp);
|
||||
dnode_ksp = NULL;
|
||||
}
|
||||
|
||||
kmem_cache_destroy(dnode_cache);
|
||||
dnode_cache = NULL;
|
||||
}
|
||||
@ -333,6 +366,7 @@ dnode_byteswap(dnode_phys_t *dnp)
|
||||
/* Swap SPILL block if we have one */
|
||||
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
|
||||
byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
|
||||
|
||||
}
|
||||
|
||||
void
|
||||
@ -344,7 +378,7 @@ dnode_buf_byteswap(void *vbuf, size_t size)
|
||||
ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
|
||||
|
||||
while (i < size) {
|
||||
dnode_phys_t *dnp = vbuf + i;
|
||||
dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
|
||||
dnode_byteswap(dnp);
|
||||
|
||||
i += DNODE_MIN_SIZE;
|
||||
@ -448,14 +482,10 @@ dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
|
||||
dmu_zfetch_init(&dn->dn_zfetch, dn);
|
||||
|
||||
ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
|
||||
ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
|
||||
ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
|
||||
|
||||
mutex_enter(&os->os_lock);
|
||||
if (dnh->dnh_dnode != NULL) {
|
||||
/* Lost the allocation race. */
|
||||
mutex_exit(&os->os_lock);
|
||||
kmem_cache_free(dnode_cache, dn);
|
||||
return (dnh->dnh_dnode);
|
||||
}
|
||||
|
||||
/*
|
||||
* Exclude special dnodes from os_dnodes so an empty os_dnodes
|
||||
@ -478,6 +508,7 @@ dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
|
||||
mutex_exit(&os->os_lock);
|
||||
|
||||
arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
|
||||
|
||||
return (dn);
|
||||
}
|
||||
|
||||
@ -503,7 +534,8 @@ dnode_destroy(dnode_t *dn)
|
||||
mutex_exit(&os->os_lock);
|
||||
|
||||
/* the dnode can no longer move, so we can release the handle */
|
||||
zrl_remove(&dn->dn_handle->dnh_zrlock);
|
||||
if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
|
||||
zrl_remove(&dn->dn_handle->dnh_zrlock);
|
||||
|
||||
dn->dn_allocated_txg = 0;
|
||||
dn->dn_free_txg = 0;
|
||||
@ -559,8 +591,10 @@ dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
|
||||
|
||||
ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
|
||||
|
||||
dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
|
||||
dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64
|
||||
" blocksize=%d ibs=%d dn_slots=%d\n",
|
||||
dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
|
||||
DNODE_STAT_BUMP(dnode_allocate);
|
||||
|
||||
ASSERT(dn->dn_type == DMU_OT_NONE);
|
||||
ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
|
||||
@ -645,10 +679,13 @@ dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
|
||||
(bonustype == DMU_OT_SA && bonuslen == 0));
|
||||
ASSERT(DMU_OT_IS_VALID(bonustype));
|
||||
ASSERT3U(bonuslen, <=,
|
||||
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
|
||||
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
|
||||
|
||||
dn_slots = dn_slots > 0 ? dn_slots : DNODE_MIN_SLOTS;
|
||||
|
||||
dnode_free_interior_slots(dn);
|
||||
DNODE_STAT_BUMP(dnode_reallocate);
|
||||
|
||||
/* clean up any unreferenced dbufs */
|
||||
dnode_evict_dbufs(dn);
|
||||
|
||||
@ -700,7 +737,7 @@ dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
|
||||
if (dn->dn_bonus) {
|
||||
dn->dn_bonus->db.db_size =
|
||||
DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
|
||||
(dn->dn_nblkptr-1) * sizeof (blkptr_t);
|
||||
(dn->dn_nblkptr - 1) * sizeof (blkptr_t);
|
||||
ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
|
||||
}
|
||||
|
||||
@ -708,18 +745,6 @@ dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
|
||||
mutex_exit(&dn->dn_mtx);
|
||||
}
|
||||
|
||||
#ifdef DNODE_STATS
|
||||
static struct {
|
||||
uint64_t dms_dnode_invalid;
|
||||
uint64_t dms_dnode_recheck1;
|
||||
uint64_t dms_dnode_recheck2;
|
||||
uint64_t dms_dnode_special;
|
||||
uint64_t dms_dnode_handle;
|
||||
uint64_t dms_dnode_rwlock;
|
||||
uint64_t dms_dnode_active;
|
||||
} dnode_move_stats;
|
||||
#endif /* DNODE_STATS */
|
||||
|
||||
#ifdef _KERNEL
|
||||
static void
|
||||
dnode_move_impl(dnode_t *odn, dnode_t *ndn)
|
||||
@ -749,6 +774,7 @@ dnode_move_impl(dnode_t *odn, dnode_t *ndn)
|
||||
ndn->dn_datablkszsec = odn->dn_datablkszsec;
|
||||
ndn->dn_datablksz = odn->dn_datablksz;
|
||||
ndn->dn_maxblkid = odn->dn_maxblkid;
|
||||
ndn->dn_num_slots = odn->dn_num_slots;
|
||||
bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
|
||||
sizeof (odn->dn_next_type));
|
||||
bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
|
||||
@ -880,7 +906,7 @@ dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
||||
*/
|
||||
os = odn->dn_objset;
|
||||
if (!POINTER_IS_VALID(os)) {
|
||||
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
|
||||
DNODE_STAT_BUMP(dnode_move_invalid);
|
||||
return (KMEM_CBRC_DONT_KNOW);
|
||||
}
|
||||
|
||||
@ -890,7 +916,7 @@ dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
||||
rw_enter(&os_lock, RW_WRITER);
|
||||
if (os != odn->dn_objset) {
|
||||
rw_exit(&os_lock);
|
||||
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
|
||||
DNODE_STAT_BUMP(dnode_move_recheck1);
|
||||
return (KMEM_CBRC_DONT_KNOW);
|
||||
}
|
||||
|
||||
@ -908,7 +934,7 @@ dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
||||
if (os != odn->dn_objset) {
|
||||
mutex_exit(&os->os_lock);
|
||||
rw_exit(&os_lock);
|
||||
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
|
||||
DNODE_STAT_BUMP(dnode_move_recheck2);
|
||||
return (KMEM_CBRC_DONT_KNOW);
|
||||
}
|
||||
|
||||
@ -921,7 +947,7 @@ dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
||||
rw_exit(&os_lock);
|
||||
if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
|
||||
mutex_exit(&os->os_lock);
|
||||
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
|
||||
DNODE_STAT_BUMP(dnode_move_special);
|
||||
return (KMEM_CBRC_NO);
|
||||
}
|
||||
ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
|
||||
@ -936,7 +962,7 @@ dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
||||
*/
|
||||
if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
|
||||
mutex_exit(&os->os_lock);
|
||||
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
|
||||
DNODE_STAT_BUMP(dnode_move_handle);
|
||||
return (KMEM_CBRC_LATER);
|
||||
}
|
||||
|
||||
@ -952,7 +978,7 @@ dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
||||
if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
|
||||
zrl_exit(&odn->dn_handle->dnh_zrlock);
|
||||
mutex_exit(&os->os_lock);
|
||||
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
|
||||
DNODE_STAT_BUMP(dnode_move_rwlock);
|
||||
return (KMEM_CBRC_LATER);
|
||||
}
|
||||
|
||||
@ -978,7 +1004,7 @@ dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
||||
rw_exit(&odn->dn_struct_rwlock);
|
||||
zrl_exit(&odn->dn_handle->dnh_zrlock);
|
||||
mutex_exit(&os->os_lock);
|
||||
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
|
||||
DNODE_STAT_BUMP(dnode_move_active);
|
||||
return (KMEM_CBRC_LATER);
|
||||
}
|
||||
|
||||
@ -1003,6 +1029,132 @@ dnode_move(void *buf, void *newbuf, size_t size, void *arg)
|
||||
#endif /* illumos */
|
||||
#endif /* _KERNEL */
|
||||
|
||||
static void
|
||||
dnode_slots_hold(dnode_children_t *children, int idx, int slots)
|
||||
{
|
||||
ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
|
||||
|
||||
for (int i = idx; i < idx + slots; i++) {
|
||||
dnode_handle_t *dnh = &children->dnc_children[i];
|
||||
zrl_add(&dnh->dnh_zrlock);
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
dnode_slots_rele(dnode_children_t *children, int idx, int slots)
|
||||
{
|
||||
ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
|
||||
|
||||
for (int i = idx; i < idx + slots; i++) {
|
||||
dnode_handle_t *dnh = &children->dnc_children[i];
|
||||
|
||||
if (zrl_is_locked(&dnh->dnh_zrlock))
|
||||
zrl_exit(&dnh->dnh_zrlock);
|
||||
else
|
||||
zrl_remove(&dnh->dnh_zrlock);
|
||||
}
|
||||
}
|
||||
|
||||
static int
|
||||
dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
|
||||
{
|
||||
ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
|
||||
|
||||
for (int i = idx; i < idx + slots; i++) {
|
||||
dnode_handle_t *dnh = &children->dnc_children[i];
|
||||
|
||||
if (!zrl_tryenter(&dnh->dnh_zrlock)) {
|
||||
for (int j = idx; j < i; j++) {
|
||||
dnh = &children->dnc_children[j];
|
||||
zrl_exit(&dnh->dnh_zrlock);
|
||||
}
|
||||
|
||||
return (0);
|
||||
}
|
||||
}
|
||||
|
||||
return (1);
|
||||
}
|
||||
|
||||
static void
|
||||
dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
|
||||
{
|
||||
ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
|
||||
|
||||
for (int i = idx; i < idx + slots; i++) {
|
||||
dnode_handle_t *dnh = &children->dnc_children[i];
|
||||
dnh->dnh_dnode = ptr;
|
||||
}
|
||||
}
|
||||
|
||||
static boolean_t
|
||||
dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
|
||||
{
|
||||
ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
|
||||
|
||||
for (int i = idx; i < idx + slots; i++) {
|
||||
dnode_handle_t *dnh = &children->dnc_children[i];
|
||||
dnode_t *dn = dnh->dnh_dnode;
|
||||
|
||||
if (dn == DN_SLOT_FREE) {
|
||||
continue;
|
||||
} else if (DN_SLOT_IS_PTR(dn)) {
|
||||
mutex_enter(&dn->dn_mtx);
|
||||
dmu_object_type_t type = dn->dn_type;
|
||||
mutex_exit(&dn->dn_mtx);
|
||||
|
||||
if (type != DMU_OT_NONE)
|
||||
return (B_FALSE);
|
||||
|
||||
continue;
|
||||
} else {
|
||||
return (B_FALSE);
|
||||
}
|
||||
|
||||
return (B_FALSE);
|
||||
}
|
||||
|
||||
return (B_TRUE);
|
||||
}
|
||||
|
||||
static void
|
||||
dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
|
||||
{
|
||||
ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
|
||||
|
||||
for (int i = idx; i < idx + slots; i++) {
|
||||
dnode_handle_t *dnh = &children->dnc_children[i];
|
||||
|
||||
ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
|
||||
|
||||
if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
|
||||
ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
|
||||
dnode_destroy(dnh->dnh_dnode);
|
||||
dnh->dnh_dnode = DN_SLOT_FREE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
dnode_free_interior_slots(dnode_t *dn)
|
||||
{
|
||||
dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
|
||||
int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
|
||||
int idx = (dn->dn_object & (epb - 1)) + 1;
|
||||
int slots = dn->dn_num_slots - 1;
|
||||
|
||||
if (slots == 0)
|
||||
return;
|
||||
|
||||
ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
|
||||
|
||||
while (!dnode_slots_tryenter(children, idx, slots))
|
||||
DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
|
||||
|
||||
dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
|
||||
dnode_slots_rele(children, idx, slots);
|
||||
}
|
||||
|
||||
void
|
||||
dnode_special_close(dnode_handle_t *dnh)
|
||||
{
|
||||
@ -1010,7 +1162,7 @@ dnode_special_close(dnode_handle_t *dnh)
|
||||
|
||||
/*
|
||||
* Wait for final references to the dnode to clear. This can
|
||||
* only happen if the arc is asyncronously evicting state that
|
||||
* only happen if the arc is asynchronously evicting state that
|
||||
* has a hold on this dnode while we are trying to evict this
|
||||
* dnode.
|
||||
*/
|
||||
@ -1030,19 +1182,24 @@ dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
|
||||
{
|
||||
dnode_t *dn;
|
||||
|
||||
dn = dnode_create(os, dnp, NULL, object, dnh);
|
||||
zrl_init(&dnh->dnh_zrlock);
|
||||
zrl_tryenter(&dnh->dnh_zrlock);
|
||||
|
||||
dn = dnode_create(os, dnp, NULL, object, dnh);
|
||||
DNODE_VERIFY(dn);
|
||||
|
||||
zrl_exit(&dnh->dnh_zrlock);
|
||||
}
|
||||
|
||||
static void
|
||||
dnode_buf_evict_async(void *dbu)
|
||||
{
|
||||
dnode_children_t *children_dnodes = dbu;
|
||||
int i;
|
||||
dnode_children_t *dnc = dbu;
|
||||
|
||||
for (i = 0; i < children_dnodes->dnc_count; i++) {
|
||||
dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
|
||||
DNODE_STAT_BUMP(dnode_buf_evict);
|
||||
|
||||
for (int i = 0; i < dnc->dnc_count; i++) {
|
||||
dnode_handle_t *dnh = &dnc->dnc_children[i];
|
||||
dnode_t *dn;
|
||||
|
||||
/*
|
||||
@ -1050,8 +1207,9 @@ dnode_buf_evict_async(void *dbu)
|
||||
* another valid address, so there is no need here to guard
|
||||
* against changes to or from NULL.
|
||||
*/
|
||||
if (dnh->dnh_dnode == NULL) {
|
||||
if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
|
||||
zrl_destroy(&dnh->dnh_zrlock);
|
||||
dnh->dnh_dnode = DN_SLOT_UNINIT;
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -1066,140 +1224,36 @@ dnode_buf_evict_async(void *dbu)
|
||||
ASSERT(refcount_is_zero(&dn->dn_holds));
|
||||
ASSERT(refcount_is_zero(&dn->dn_tx_holds));
|
||||
|
||||
dnode_destroy(dn); /* implicit zrl_remove() */
|
||||
dnode_destroy(dn); /* implicit zrl_remove() for first slot */
|
||||
zrl_destroy(&dnh->dnh_zrlock);
|
||||
dnh->dnh_dnode = NULL;
|
||||
dnh->dnh_dnode = DN_SLOT_UNINIT;
|
||||
}
|
||||
kmem_free(children_dnodes, sizeof (dnode_children_t) +
|
||||
children_dnodes->dnc_count * sizeof (dnode_handle_t));
|
||||
kmem_free(dnc, sizeof (dnode_children_t) +
|
||||
dnc->dnc_count * sizeof (dnode_handle_t));
|
||||
}
|
||||
|
||||
/*
|
||||
* Return true if the given index is interior to a dnode already
|
||||
* allocated in the block. That is, the index is neither free nor
|
||||
* allocated, but is consumed by a large dnode.
|
||||
* When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
|
||||
* to ensure the hole at the specified object offset is large enough to
|
||||
* hold the dnode being created. The slots parameter is also used to ensure
|
||||
* a dnode does not span multiple dnode blocks. In both of these cases, if
|
||||
* a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
|
||||
* are only possible when using DNODE_MUST_BE_FREE.
|
||||
*
|
||||
* The dnode_phys_t buffer may not be in sync with the in-core dnode
|
||||
* structure, so we try to check the dnode structure first and fall back
|
||||
* to the dnode_phys_t buffer it doesn't exist.
|
||||
*/
|
||||
static boolean_t
|
||||
dnode_is_consumed(dmu_buf_impl_t *db, int idx)
|
||||
{
|
||||
dnode_handle_t *dnh;
|
||||
dmu_object_type_t ot;
|
||||
dnode_children_t *children_dnodes;
|
||||
dnode_phys_t *dn_block;
|
||||
int skip;
|
||||
int i;
|
||||
|
||||
children_dnodes = dmu_buf_get_user(&db->db);
|
||||
dn_block = (dnode_phys_t *)db->db.db_data;
|
||||
|
||||
for (i = 0; i < idx; i += skip) {
|
||||
dnh = &children_dnodes->dnc_children[i];
|
||||
|
||||
zrl_add(&dnh->dnh_zrlock);
|
||||
if (dnh->dnh_dnode != NULL) {
|
||||
ot = dnh->dnh_dnode->dn_type;
|
||||
skip = dnh->dnh_dnode->dn_num_slots;
|
||||
} else {
|
||||
ot = dn_block[i].dn_type;
|
||||
skip = dn_block[i].dn_extra_slots + 1;
|
||||
}
|
||||
zrl_remove(&dnh->dnh_zrlock);
|
||||
|
||||
if (ot == DMU_OT_NONE)
|
||||
skip = 1;
|
||||
}
|
||||
|
||||
return (i > idx);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return true if the given index in the dnode block is a valid
|
||||
* allocated dnode. That is, the index is not consumed by a large
|
||||
* dnode and is not free.
|
||||
* If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
|
||||
* dnode_hold_impl() will check if the requested dnode is already consumed
|
||||
* as an extra dnode slot by an large dnode, in which case it returns
|
||||
* ENOENT.
|
||||
*
|
||||
* The dnode_phys_t buffer may not be in sync with the in-core dnode
|
||||
* structure, so we try to check the dnode structure first and fall back
|
||||
* to the dnode_phys_t buffer it doesn't exist.
|
||||
*/
|
||||
static boolean_t
|
||||
dnode_is_allocated(dmu_buf_impl_t *db, int idx)
|
||||
{
|
||||
dnode_handle_t *dnh;
|
||||
dmu_object_type_t ot;
|
||||
dnode_children_t *children_dnodes;
|
||||
dnode_phys_t *dn_block;
|
||||
|
||||
if (dnode_is_consumed(db, idx))
|
||||
return (B_FALSE);
|
||||
|
||||
children_dnodes = dmu_buf_get_user(&db->db);
|
||||
dn_block = (dnode_phys_t *)db->db.db_data;
|
||||
|
||||
dnh = &children_dnodes->dnc_children[idx];
|
||||
|
||||
zrl_add(&dnh->dnh_zrlock);
|
||||
if (dnh->dnh_dnode != NULL)
|
||||
ot = dnh->dnh_dnode->dn_type;
|
||||
else
|
||||
ot = dn_block[idx].dn_type;
|
||||
zrl_remove(&dnh->dnh_zrlock);
|
||||
|
||||
return (ot != DMU_OT_NONE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return true if the given range of indices in the dnode block are
|
||||
* free. That is, the starting index is not consumed by a large dnode
|
||||
* and none of the indices are allocated.
|
||||
*
|
||||
* The dnode_phys_t buffer may not be in sync with the in-core dnode
|
||||
* structure, so we try to check the dnode structure first and fall back
|
||||
* to the dnode_phys_t buffer it doesn't exist.
|
||||
*/
|
||||
static boolean_t
|
||||
dnode_is_free(dmu_buf_impl_t *db, int idx, int slots)
|
||||
{
|
||||
dnode_handle_t *dnh;
|
||||
dmu_object_type_t ot;
|
||||
dnode_children_t *children_dnodes;
|
||||
dnode_phys_t *dn_block;
|
||||
int i;
|
||||
|
||||
if (idx + slots > DNODES_PER_BLOCK)
|
||||
return (B_FALSE);
|
||||
|
||||
children_dnodes = dmu_buf_get_user(&db->db);
|
||||
dn_block = (dnode_phys_t *)db->db.db_data;
|
||||
|
||||
if (dnode_is_consumed(db, idx))
|
||||
return (B_FALSE);
|
||||
|
||||
for (i = idx; i < idx + slots; i++) {
|
||||
dnh = &children_dnodes->dnc_children[i];
|
||||
|
||||
zrl_add(&dnh->dnh_zrlock);
|
||||
if (dnh->dnh_dnode != NULL)
|
||||
ot = dnh->dnh_dnode->dn_type;
|
||||
else
|
||||
ot = dn_block[i].dn_type;
|
||||
zrl_remove(&dnh->dnh_zrlock);
|
||||
|
||||
if (ot != DMU_OT_NONE)
|
||||
return (B_FALSE);
|
||||
}
|
||||
|
||||
return (B_TRUE);
|
||||
}
|
||||
|
||||
/*
|
||||
* errors:
|
||||
* EINVAL - invalid object number.
|
||||
* ENOSPC - hole too small to fulfill "slots" request
|
||||
* EIO - i/o error.
|
||||
* EINVAL - invalid object number or flags.
|
||||
* ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
|
||||
* EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
|
||||
* - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
|
||||
* - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
|
||||
* ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
|
||||
* - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
|
||||
* EIO - i/o error error when reading the meta dnode dbuf.
|
||||
* succeeds even for free dnodes.
|
||||
*/
|
||||
int
|
||||
@ -1212,7 +1266,8 @@ dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
|
||||
uint64_t blk;
|
||||
dnode_t *mdn, *dn;
|
||||
dmu_buf_impl_t *db;
|
||||
dnode_children_t *children_dnodes;
|
||||
dnode_children_t *dnc;
|
||||
dnode_phys_t *dn_block;
|
||||
dnode_phys_t *dn_block_begin;
|
||||
dnode_handle_t *dnh;
|
||||
|
||||
@ -1265,10 +1320,13 @@ dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
|
||||
db = dbuf_hold(mdn, blk, FTAG);
|
||||
if (drop_struct_lock)
|
||||
rw_exit(&mdn->dn_struct_rwlock);
|
||||
if (db == NULL)
|
||||
if (db == NULL) {
|
||||
DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
|
||||
return (SET_ERROR(EIO));
|
||||
}
|
||||
err = dbuf_read(db, NULL, DB_RF_CANFAIL);
|
||||
if (err) {
|
||||
DNODE_STAT_BUMP(dnode_hold_dbuf_read);
|
||||
dbuf_rele(db, FTAG);
|
||||
return (err);
|
||||
}
|
||||
@ -1276,68 +1334,194 @@ dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
|
||||
ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
|
||||
epb = db->db.db_size >> DNODE_SHIFT;
|
||||
|
||||
ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
|
||||
children_dnodes = dmu_buf_get_user(&db->db);
|
||||
if (children_dnodes == NULL) {
|
||||
dnode_children_t *winner;
|
||||
children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
|
||||
epb * sizeof (dnode_handle_t), KM_SLEEP);
|
||||
children_dnodes->dnc_count = epb;
|
||||
dnh = &children_dnodes->dnc_children[0];
|
||||
for (i = 0; i < epb; i++) {
|
||||
zrl_init(&dnh[i].dnh_zrlock);
|
||||
}
|
||||
dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL,
|
||||
dnode_buf_evict_async, NULL);
|
||||
winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
|
||||
if (winner != NULL) {
|
||||
idx = object & (epb - 1);
|
||||
dn_block = (dnode_phys_t *)db->db.db_data;
|
||||
|
||||
for (i = 0; i < epb; i++) {
|
||||
zrl_destroy(&dnh[i].dnh_zrlock);
|
||||
ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
|
||||
dnc = dmu_buf_get_user(&db->db);
|
||||
dnh = NULL;
|
||||
if (dnc == NULL) {
|
||||
dnode_children_t *winner;
|
||||
int skip = 0;
|
||||
|
||||
dnc = kmem_zalloc(sizeof (dnode_children_t) +
|
||||
epb * sizeof (dnode_handle_t), KM_SLEEP);
|
||||
dnc->dnc_count = epb;
|
||||
dnh = &dnc->dnc_children[0];
|
||||
|
||||
/* Initialize dnode slot status from dnode_phys_t */
|
||||
for (int i = 0; i < epb; i++) {
|
||||
zrl_init(&dnh[i].dnh_zrlock);
|
||||
|
||||
if (skip) {
|
||||
skip--;
|
||||
continue;
|
||||
}
|
||||
|
||||
kmem_free(children_dnodes, sizeof (dnode_children_t) +
|
||||
if (dn_block[i].dn_type != DMU_OT_NONE) {
|
||||
int interior = dn_block[i].dn_extra_slots;
|
||||
|
||||
dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
|
||||
dnode_set_slots(dnc, i + 1, interior,
|
||||
DN_SLOT_INTERIOR);
|
||||
skip = interior;
|
||||
} else {
|
||||
dnh[i].dnh_dnode = DN_SLOT_FREE;
|
||||
skip = 0;
|
||||
}
|
||||
}
|
||||
|
||||
dmu_buf_init_user(&dnc->dnc_dbu, NULL,
|
||||
dnode_buf_evict_async, NULL);
|
||||
winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
|
||||
if (winner != NULL) {
|
||||
|
||||
for (int i = 0; i < epb; i++)
|
||||
zrl_destroy(&dnh[i].dnh_zrlock);
|
||||
|
||||
kmem_free(dnc, sizeof (dnode_children_t) +
|
||||
epb * sizeof (dnode_handle_t));
|
||||
children_dnodes = winner;
|
||||
dnc = winner;
|
||||
}
|
||||
}
|
||||
ASSERT(children_dnodes->dnc_count == epb);
|
||||
|
||||
idx = object & (epb - 1);
|
||||
dn_block_begin = (dnode_phys_t *)db->db.db_data;
|
||||
ASSERT(dnc->dnc_count == epb);
|
||||
dn = DN_SLOT_UNINIT;
|
||||
|
||||
if ((flag & DNODE_MUST_BE_FREE) && !dnode_is_free(db, idx, slots)) {
|
||||
if (flag & DNODE_MUST_BE_ALLOCATED) {
|
||||
slots = 1;
|
||||
|
||||
while (dn == DN_SLOT_UNINIT) {
|
||||
dnode_slots_hold(dnc, idx, slots);
|
||||
dnh = &dnc->dnc_children[idx];
|
||||
|
||||
if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
|
||||
dn = dnh->dnh_dnode;
|
||||
break;
|
||||
} else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
|
||||
DNODE_STAT_BUMP(dnode_hold_alloc_interior);
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
dbuf_rele(db, FTAG);
|
||||
return (SET_ERROR(EEXIST));
|
||||
} else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
|
||||
DNODE_STAT_BUMP(dnode_hold_alloc_misses);
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
dbuf_rele(db, FTAG);
|
||||
return (SET_ERROR(ENOENT));
|
||||
}
|
||||
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
if (!dnode_slots_tryenter(dnc, idx, slots)) {
|
||||
DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Someone else won the race and called dnode_create()
|
||||
* after we checked DN_SLOT_IS_PTR() above but before
|
||||
* we acquired the lock.
|
||||
*/
|
||||
if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
|
||||
DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
|
||||
dn = dnh->dnh_dnode;
|
||||
} else {
|
||||
dn = dnode_create(os, dn_block + idx, db,
|
||||
object, dnh);
|
||||
}
|
||||
}
|
||||
|
||||
mutex_enter(&dn->dn_mtx);
|
||||
if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
|
||||
DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
|
||||
mutex_exit(&dn->dn_mtx);
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
dbuf_rele(db, FTAG);
|
||||
return (SET_ERROR(ENOENT));
|
||||
}
|
||||
|
||||
DNODE_STAT_BUMP(dnode_hold_alloc_hits);
|
||||
} else if (flag & DNODE_MUST_BE_FREE) {
|
||||
|
||||
if (idx + slots - 1 >= DNODES_PER_BLOCK) {
|
||||
DNODE_STAT_BUMP(dnode_hold_free_overflow);
|
||||
dbuf_rele(db, FTAG);
|
||||
return (SET_ERROR(ENOSPC));
|
||||
}
|
||||
|
||||
while (dn == DN_SLOT_UNINIT) {
|
||||
dnode_slots_hold(dnc, idx, slots);
|
||||
|
||||
if (!dnode_check_slots_free(dnc, idx, slots)) {
|
||||
DNODE_STAT_BUMP(dnode_hold_free_misses);
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
dbuf_rele(db, FTAG);
|
||||
return (SET_ERROR(ENOSPC));
|
||||
}
|
||||
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
if (!dnode_slots_tryenter(dnc, idx, slots)) {
|
||||
DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!dnode_check_slots_free(dnc, idx, slots)) {
|
||||
DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
dbuf_rele(db, FTAG);
|
||||
return (SET_ERROR(ENOSPC));
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocated but otherwise free dnodes which would
|
||||
* be in the interior of a multi-slot dnodes need
|
||||
* to be freed. Single slot dnodes can be safely
|
||||
* re-purposed as a performance optimization.
|
||||
*/
|
||||
if (slots > 1)
|
||||
dnode_reclaim_slots(dnc, idx + 1, slots - 1);
|
||||
|
||||
dnh = &dnc->dnc_children[idx];
|
||||
if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
|
||||
dn = dnh->dnh_dnode;
|
||||
} else {
|
||||
dn = dnode_create(os, dn_block + idx, db,
|
||||
object, dnh);
|
||||
}
|
||||
}
|
||||
|
||||
mutex_enter(&dn->dn_mtx);
|
||||
if (!refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
|
||||
DNODE_STAT_BUMP(dnode_hold_free_refcount);
|
||||
mutex_exit(&dn->dn_mtx);
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
dbuf_rele(db, FTAG);
|
||||
return (SET_ERROR(EEXIST));
|
||||
}
|
||||
|
||||
dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
|
||||
DNODE_STAT_BUMP(dnode_hold_free_hits);
|
||||
} else {
|
||||
dbuf_rele(db, FTAG);
|
||||
return (ENOSPC);
|
||||
} else if ((flag & DNODE_MUST_BE_ALLOCATED) &&
|
||||
!dnode_is_allocated(db, idx)) {
|
||||
dbuf_rele(db, FTAG);
|
||||
return (ENOENT);
|
||||
return (SET_ERROR(EINVAL));
|
||||
}
|
||||
|
||||
dnh = &children_dnodes->dnc_children[idx];
|
||||
zrl_add(&dnh->dnh_zrlock);
|
||||
dn = dnh->dnh_dnode;
|
||||
if (dn == NULL)
|
||||
dn = dnode_create(os, dn_block_begin + idx, db, object, dnh);
|
||||
|
||||
mutex_enter(&dn->dn_mtx);
|
||||
type = dn->dn_type;
|
||||
if (dn->dn_free_txg ||
|
||||
((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
|
||||
((flag & DNODE_MUST_BE_FREE) &&
|
||||
(type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
|
||||
if (dn->dn_free_txg) {
|
||||
DNODE_STAT_BUMP(dnode_hold_free_txg);
|
||||
type = dn->dn_type;
|
||||
mutex_exit(&dn->dn_mtx);
|
||||
zrl_remove(&dnh->dnh_zrlock);
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
dbuf_rele(db, FTAG);
|
||||
return ((flag & DNODE_MUST_BE_ALLOCATED) ? ENOENT : EEXIST);
|
||||
return (SET_ERROR((flag & DNODE_MUST_BE_ALLOCATED) ?
|
||||
ENOENT : EEXIST));
|
||||
}
|
||||
|
||||
if (refcount_add(&dn->dn_holds, tag) == 1)
|
||||
dbuf_add_ref(db, dnh);
|
||||
|
||||
mutex_exit(&dn->dn_mtx);
|
||||
|
||||
/* Now we can rely on the hold to prevent the dnode from moving. */
|
||||
zrl_remove(&dnh->dnh_zrlock);
|
||||
dnode_slots_rele(dnc, idx, slots);
|
||||
|
||||
DNODE_VERIFY(dn);
|
||||
ASSERT3P(dn->dn_dbuf, ==, db);
|
||||
|
@ -554,6 +554,7 @@ dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
|
||||
if (dn->dn_allocated_txg != dn->dn_free_txg)
|
||||
dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
|
||||
bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots);
|
||||
dnode_free_interior_slots(dn);
|
||||
|
||||
mutex_enter(&dn->dn_mtx);
|
||||
dn->dn_type = DMU_OT_NONE;
|
||||
@ -561,6 +562,7 @@ dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
|
||||
dn->dn_allocated_txg = 0;
|
||||
dn->dn_free_txg = 0;
|
||||
dn->dn_have_spill = B_FALSE;
|
||||
dn->dn_num_slots = 1;
|
||||
mutex_exit(&dn->dn_mtx);
|
||||
|
||||
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
|
||||
|
@ -660,6 +660,9 @@ sa_build_layouts(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count,
|
||||
dmu_object_dnsize_from_db(hdl->sa_bonus, &dnodesize);
|
||||
bonuslen = DN_BONUS_SIZE(dnodesize);
|
||||
|
||||
dmu_object_dnsize_from_db(hdl->sa_bonus, &dnodesize);
|
||||
bonuslen = DN_BONUS_SIZE(dnodesize);
|
||||
|
||||
/* first determine bonus header size and sum of all attributes */
|
||||
hdrsize = sa_find_sizes(sa, attr_desc, attr_count, hdl->sa_bonus,
|
||||
SA_BONUS, bonuslen, &i, &used, &spilling);
|
||||
|
@ -1109,10 +1109,10 @@ spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
|
||||
/*
|
||||
* Spares are tracked globally due to the following constraints:
|
||||
*
|
||||
* - A spare may be part of multiple pools.
|
||||
* - A spare may be added to a pool even if it's actively in use within
|
||||
* - A spare may be part of multiple pools.
|
||||
* - A spare may be added to a pool even if it's actively in use within
|
||||
* another pool.
|
||||
* - A spare in use in any pool can only be the source of a replacement if
|
||||
* - A spare in use in any pool can only be the source of a replacement if
|
||||
* the target is a spare in the same pool.
|
||||
*
|
||||
* We keep track of all spares on the system through the use of a reference
|
||||
@ -2255,7 +2255,6 @@ spa_maxdnodesize(spa_t *spa)
|
||||
return (DNODE_MIN_SIZE);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Returns the txg that the last device removal completed. No indirect mappings
|
||||
* have been added since this txg.
|
||||
|
@ -823,7 +823,7 @@ typedef struct dmu_object_info {
|
||||
uint8_t doi_checksum;
|
||||
uint8_t doi_compress;
|
||||
uint8_t doi_nblkptr;
|
||||
uint8_t doi_pad[4];
|
||||
int8_t doi_pad[4];
|
||||
uint64_t doi_dnodesize;
|
||||
uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
|
||||
uint64_t doi_max_offset;
|
||||
|
@ -130,7 +130,11 @@ struct objset {
|
||||
|
||||
/* Protected by os_obj_lock */
|
||||
kmutex_t os_obj_lock;
|
||||
uint64_t os_obj_next;
|
||||
uint64_t os_obj_next_chunk;
|
||||
|
||||
/* Per-CPU next object to allocate, protected by atomic ops. */
|
||||
uint64_t *os_obj_next_percpu;
|
||||
int os_obj_next_percpu_len;
|
||||
|
||||
/* Protected by os_lock */
|
||||
kmutex_t os_lock;
|
||||
|
@ -96,9 +96,16 @@ extern "C" {
|
||||
#define DN_SLOTS_TO_BONUSLEN(slots) DN_BONUS_SIZE((slots) << DNODE_SHIFT)
|
||||
#define DN_OLD_MAX_BONUSLEN (DN_BONUS_SIZE(DNODE_MIN_SIZE))
|
||||
#define DN_MAX_NBLKPTR ((DNODE_MIN_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT)
|
||||
#define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT)
|
||||
#define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT)
|
||||
#define DN_ZERO_BONUSLEN (DN_BONUS_SIZE(DNODE_MAX_SIZE) + 1)
|
||||
#define DN_KILL_SPILLBLK (1)
|
||||
#define DN_KILL_SPILLBLK (1)
|
||||
|
||||
#define DN_SLOT_UNINIT ((void *)NULL) /* Uninitialized */
|
||||
#define DN_SLOT_FREE ((void *)1UL) /* Free slot */
|
||||
#define DN_SLOT_ALLOCATED ((void *)2UL) /* Allocated slot */
|
||||
#define DN_SLOT_INTERIOR ((void *)3UL) /* Interior allocated slot */
|
||||
#define DN_SLOT_IS_PTR(dn) ((void *)dn > DN_SLOT_INTERIOR)
|
||||
#define DN_SLOT_IS_VALID(dn) ((void *)dn != NULL)
|
||||
|
||||
#define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT)
|
||||
#define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT)
|
||||
@ -120,7 +127,7 @@ extern "C" {
|
||||
((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? \
|
||||
(uint8_t *)DN_SPILL_BLKPTR(dnp) - (uint8_t *)DN_BONUS(dnp) : \
|
||||
(uint8_t *)(dnp + (dnp->dn_extra_slots + 1)) - (uint8_t *)DN_BONUS(dnp))
|
||||
|
||||
|
||||
#define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
|
||||
(dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
|
||||
|
||||
@ -143,6 +150,57 @@ enum dnode_dirtycontext {
|
||||
/* Does dnode have a SA spill blkptr in bonus? */
|
||||
#define DNODE_FLAG_SPILL_BLKPTR (1<<2)
|
||||
|
||||
/*
|
||||
* VARIABLE-LENGTH (LARGE) DNODES
|
||||
*
|
||||
* The motivation for variable-length dnodes is to eliminate the overhead
|
||||
* associated with using spill blocks. Spill blocks are used to store
|
||||
* system attribute data (i.e. file metadata) that does not fit in the
|
||||
* dnode's bonus buffer. By allowing a larger bonus buffer area the use of
|
||||
* a spill block can be avoided. Spill blocks potentially incur an
|
||||
* additional read I/O for every dnode in a dnode block. As a worst case
|
||||
* example, reading 32 dnodes from a 16k dnode block and all of the spill
|
||||
* blocks could issue 33 separate reads. Now suppose those dnodes have size
|
||||
* 1024 and therefore don't need spill blocks. Then the worst case number
|
||||
* of blocks read is reduced to from 33 to two--one per dnode block.
|
||||
*
|
||||
* ZFS-on-Linux systems that make heavy use of extended attributes benefit
|
||||
* from this feature. In particular, ZFS-on-Linux supports the xattr=sa
|
||||
* dataset property which allows file extended attribute data to be stored
|
||||
* in the dnode bonus buffer as an alternative to the traditional
|
||||
* directory-based format. Workloads such as SELinux and the Lustre
|
||||
* distributed filesystem often store enough xattr data to force spill
|
||||
* blocks when xattr=sa is in effect. Large dnodes may therefore provide a
|
||||
* performance benefit to such systems. Other use cases that benefit from
|
||||
* this feature include files with large ACLs and symbolic links with long
|
||||
* target names.
|
||||
*
|
||||
* The size of a dnode may be a multiple of 512 bytes up to the size of a
|
||||
* dnode block (currently 16384 bytes). The dn_extra_slots field of the
|
||||
* on-disk dnode_phys_t structure describes the size of the physical dnode
|
||||
* on disk. The field represents how many "extra" dnode_phys_t slots a
|
||||
* dnode consumes in its dnode block. This convention results in a value of
|
||||
* 0 for 512 byte dnodes which preserves on-disk format compatibility with
|
||||
* older software which doesn't support large dnodes.
|
||||
*
|
||||
* Similarly, the in-memory dnode_t structure has a dn_num_slots field
|
||||
* to represent the total number of dnode_phys_t slots consumed on disk.
|
||||
* Thus dn->dn_num_slots is 1 greater than the corresponding
|
||||
* dnp->dn_extra_slots. This difference in convention was adopted
|
||||
* because, unlike on-disk structures, backward compatibility is not a
|
||||
* concern for in-memory objects, so we used a more natural way to
|
||||
* represent size for a dnode_t.
|
||||
*
|
||||
* The default size for newly created dnodes is determined by the value of
|
||||
* the "dnodesize" dataset property. By default the property is set to
|
||||
* "legacy" which is compatible with older software. Setting the property
|
||||
* to "auto" will allow the filesystem to choose the most suitable dnode
|
||||
* size. Currently this just sets the default dnode size to 1k, but future
|
||||
* code improvements could dynamically choose a size based on observed
|
||||
* workload patterns. Dnodes of varying sizes can coexist within the same
|
||||
* dataset and even within the same dnode block.
|
||||
*/
|
||||
|
||||
typedef struct dnode_phys {
|
||||
uint8_t dn_type; /* dmu_object_type_t */
|
||||
uint8_t dn_indblkshift; /* ln2(indirect block size) */
|
||||
@ -169,22 +227,6 @@ typedef struct dnode_phys {
|
||||
* protected properly.
|
||||
*/
|
||||
uint64_t dn_pad3[4];
|
||||
/*
|
||||
* The tail region is 448 bytes for a 512 byte dnode, and
|
||||
* correspondingly larger for larger dnode sizes. The spill
|
||||
* block pointer, when present, is always at the end of the tail
|
||||
* region. There are three ways this space may be used, using
|
||||
* a 512 byte dnode for this diagram:
|
||||
*
|
||||
* 0 64 128 192 256 320 384 448 (offset)
|
||||
* +---------------+---------------+---------------+-------+
|
||||
* | dn_blkptr[0] | dn_blkptr[1] | dn_blkptr[2] | / |
|
||||
* +---------------+---------------+---------------+-------+
|
||||
* | dn_blkptr[0] | dn_bonus[0..319] |
|
||||
* +---------------+-----------------------+---------------+
|
||||
* | dn_blkptr[0] | dn_bonus[0..191] | dn_spill |
|
||||
* +---------------+-----------------------+---------------+
|
||||
*/
|
||||
union {
|
||||
blkptr_t dn_blkptr[1+DN_OLD_MAX_BONUSLEN/sizeof (blkptr_t)];
|
||||
struct {
|
||||
@ -196,7 +238,7 @@ typedef struct dnode_phys {
|
||||
uint8_t __dn_ignore3[DN_OLD_MAX_BONUSLEN -
|
||||
sizeof (blkptr_t)];
|
||||
blkptr_t dn_spill;
|
||||
};
|
||||
};
|
||||
};
|
||||
} dnode_phys_t;
|
||||
|
||||
@ -361,6 +403,7 @@ int dnode_next_offset(dnode_t *dn, int flags, uint64_t *off,
|
||||
int minlvl, uint64_t blkfill, uint64_t txg);
|
||||
void dnode_evict_dbufs(dnode_t *dn);
|
||||
void dnode_evict_bonus(dnode_t *dn);
|
||||
void dnode_free_interior_slots(dnode_t *dn);
|
||||
boolean_t dnode_needs_remap(const dnode_t *dn);
|
||||
|
||||
#define DNODE_IS_CACHEABLE(_dn) \
|
||||
@ -372,6 +415,140 @@ boolean_t dnode_needs_remap(const dnode_t *dn);
|
||||
((_dn)->dn_objset->os_primary_cache == ZFS_CACHE_ALL || \
|
||||
(_dn)->dn_objset->os_primary_cache == ZFS_CACHE_METADATA)
|
||||
|
||||
/*
|
||||
* Used for dnodestats kstat.
|
||||
*/
|
||||
typedef struct dnode_stats {
|
||||
/*
|
||||
* Number of failed attempts to hold a meta dnode dbuf.
|
||||
*/
|
||||
kstat_named_t dnode_hold_dbuf_hold;
|
||||
/*
|
||||
* Number of failed attempts to read a meta dnode dbuf.
|
||||
*/
|
||||
kstat_named_t dnode_hold_dbuf_read;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) was able
|
||||
* to hold the requested object number which was allocated. This is
|
||||
* the common case when looking up any allocated object number.
|
||||
*/
|
||||
kstat_named_t dnode_hold_alloc_hits;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) was not
|
||||
* able to hold the request object number because it was not allocated.
|
||||
*/
|
||||
kstat_named_t dnode_hold_alloc_misses;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) was not
|
||||
* able to hold the request object number because the object number
|
||||
* refers to an interior large dnode slot.
|
||||
*/
|
||||
kstat_named_t dnode_hold_alloc_interior;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) needed
|
||||
* to retry acquiring slot zrl locks due to contention.
|
||||
*/
|
||||
kstat_named_t dnode_hold_alloc_lock_retry;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) did not
|
||||
* need to create the dnode because another thread did so after
|
||||
* dropping the read lock but before acquiring the write lock.
|
||||
*/
|
||||
kstat_named_t dnode_hold_alloc_lock_misses;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_ALLOCATED) found
|
||||
* a free dnode instantiated by dnode_create() but not yet allocated
|
||||
* by dnode_allocate().
|
||||
*/
|
||||
kstat_named_t dnode_hold_alloc_type_none;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_FREE) was able
|
||||
* to hold the requested range of free dnode slots.
|
||||
*/
|
||||
kstat_named_t dnode_hold_free_hits;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_FREE) was not
|
||||
* able to hold the requested range of free dnode slots because
|
||||
* at least one slot was allocated.
|
||||
*/
|
||||
kstat_named_t dnode_hold_free_misses;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_FREE) was not
|
||||
* able to hold the requested range of free dnode slots because
|
||||
* after acquiring the zrl lock at least one slot was allocated.
|
||||
*/
|
||||
kstat_named_t dnode_hold_free_lock_misses;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_FREE) needed
|
||||
* to retry acquiring slot zrl locks due to contention.
|
||||
*/
|
||||
kstat_named_t dnode_hold_free_lock_retry;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_FREE) requested
|
||||
* a range of dnode slots which were held by another thread.
|
||||
*/
|
||||
kstat_named_t dnode_hold_free_refcount;
|
||||
/*
|
||||
* Number of times dnode_hold(..., DNODE_MUST_BE_FREE) requested
|
||||
* a range of dnode slots which would overflow the dnode_phys_t.
|
||||
*/
|
||||
kstat_named_t dnode_hold_free_overflow;
|
||||
/*
|
||||
* Number of times a dnode_hold(...) was attempted on a dnode
|
||||
* which had already been unlinked in an earlier txg.
|
||||
*/
|
||||
kstat_named_t dnode_hold_free_txg;
|
||||
/*
|
||||
* Number of times dnode_free_interior_slots() needed to retry
|
||||
* acquiring a slot zrl lock due to contention.
|
||||
*/
|
||||
kstat_named_t dnode_free_interior_lock_retry;
|
||||
/*
|
||||
* Number of new dnodes allocated by dnode_allocate().
|
||||
*/
|
||||
kstat_named_t dnode_allocate;
|
||||
/*
|
||||
* Number of dnodes re-allocated by dnode_reallocate().
|
||||
*/
|
||||
kstat_named_t dnode_reallocate;
|
||||
/*
|
||||
* Number of meta dnode dbufs evicted.
|
||||
*/
|
||||
kstat_named_t dnode_buf_evict;
|
||||
/*
|
||||
* Number of times dmu_object_alloc*() reached the end of the existing
|
||||
* object ID chunk and advanced to a new one.
|
||||
*/
|
||||
kstat_named_t dnode_alloc_next_chunk;
|
||||
/*
|
||||
* Number of times multiple threads attempted to allocate a dnode
|
||||
* from the same block of free dnodes.
|
||||
*/
|
||||
kstat_named_t dnode_alloc_race;
|
||||
/*
|
||||
* Number of times dmu_object_alloc*() was forced to advance to the
|
||||
* next meta dnode dbuf due to an error from dmu_object_next().
|
||||
*/
|
||||
kstat_named_t dnode_alloc_next_block;
|
||||
/*
|
||||
* Statistics for tracking dnodes which have been moved.
|
||||
*/
|
||||
kstat_named_t dnode_move_invalid;
|
||||
kstat_named_t dnode_move_recheck1;
|
||||
kstat_named_t dnode_move_recheck2;
|
||||
kstat_named_t dnode_move_special;
|
||||
kstat_named_t dnode_move_handle;
|
||||
kstat_named_t dnode_move_rwlock;
|
||||
kstat_named_t dnode_move_active;
|
||||
} dnode_stats_t;
|
||||
|
||||
extern dnode_stats_t dnode_stats;
|
||||
|
||||
#define DNODE_STAT_INCR(stat, val) \
|
||||
atomic_add_64(&dnode_stats.stat.value.ui64, (val));
|
||||
#define DNODE_STAT_BUMP(stat) \
|
||||
DNODE_STAT_INCR(stat, 1);
|
||||
|
||||
#ifdef ZFS_DEBUG
|
||||
|
||||
/*
|
||||
|
@ -101,7 +101,7 @@ typedef struct sa_lot {
|
||||
sa_attr_type_t *lot_attrs; /* array of attr #'s */
|
||||
uint32_t lot_var_sizes; /* how many aren't fixed size */
|
||||
uint32_t lot_attr_count; /* total attr count */
|
||||
list_t lot_idx_tab; /* should be only a couple of entries */
|
||||
list_t lot_idx_tab; /* should be only a couple of entries */
|
||||
int lot_instance; /* used with lot_hash to identify entry */
|
||||
} sa_lot_t;
|
||||
|
||||
@ -134,7 +134,7 @@ typedef struct sa_idx_tab {
|
||||
* adding a completely new attribute is a very rare operation.
|
||||
*/
|
||||
struct sa_os {
|
||||
kmutex_t sa_lock;
|
||||
kmutex_t sa_lock;
|
||||
boolean_t sa_need_attr_registration;
|
||||
boolean_t sa_force_spill;
|
||||
uint64_t sa_master_obj;
|
||||
|
@ -139,6 +139,8 @@ uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
|
||||
uint64_t parent_obj, const char *name, dmu_tx_t *tx);
|
||||
uint64_t zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot,
|
||||
uint64_t parent_obj, const char *name, int dnodesize, dmu_tx_t *tx);
|
||||
uint64_t zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot,
|
||||
uint64_t parent_obj, const char *name, int dnodesize, dmu_tx_t *tx);
|
||||
|
||||
/*
|
||||
* Initialize an already-allocated object.
|
||||
|
@ -97,6 +97,7 @@ extern "C" {
|
||||
#endif
|
||||
#include <sys/callo.h>
|
||||
#include <sys/disp.h>
|
||||
#include <machine/_inttypes.h>
|
||||
#include <machine/stdarg.h>
|
||||
|
||||
#include <vm/vm.h>
|
||||
|
@ -94,7 +94,7 @@ typedef enum drr_headertype {
|
||||
/* flag #21 is reserved for a Delphix feature */
|
||||
#define DMU_BACKUP_FEATURE_COMPRESSED (1 << 22)
|
||||
#define DMU_BACKUP_FEATURE_LARGE_DNODE (1 << 23)
|
||||
/* flag #24 is reserved for the raw send (encryption) feature */
|
||||
/* flag #24 is reserved for the raw send feature */
|
||||
/* flag #25 is reserved for the ZSTD compression feature */
|
||||
|
||||
/*
|
||||
@ -120,7 +120,7 @@ typedef enum dmu_send_resume_token_version {
|
||||
*
|
||||
* 64 56 48 40 32 24 16 8 0
|
||||
* +-------+-------+-------+-------+-------+-------+-------+-------+
|
||||
* | reserved | feature-flags |C|S|
|
||||
* | reserved | feature-flags |C|S|
|
||||
* +-------+-------+-------+-------+-------+-------+-------+-------+
|
||||
*
|
||||
* The low order two bits indicate the header type: SUBSTREAM (0x1)
|
||||
|
@ -157,7 +157,7 @@ typedef enum zil_create {
|
||||
#define TX_ACL 13 /* Set ACL */
|
||||
#define TX_CREATE_ACL 14 /* create with ACL */
|
||||
#define TX_CREATE_ATTR 15 /* create + attrs */
|
||||
#define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */
|
||||
#define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */
|
||||
#define TX_MKDIR_ACL 17 /* mkdir with ACL */
|
||||
#define TX_MKDIR_ATTR 18 /* mkdir with attr */
|
||||
#define TX_MKDIR_ACL_ATTR 19 /* mkdir with ACL + attrs */
|
||||
@ -436,7 +436,7 @@ extern void zil_commit_impl(zilog_t *zilog, uint64_t oid);
|
||||
extern int zil_reset(const char *osname, void *txarg);
|
||||
extern int zil_claim(struct dsl_pool *dp,
|
||||
struct dsl_dataset *ds, void *txarg);
|
||||
extern int zil_check_log_chain(struct dsl_pool *dp,
|
||||
extern int zil_check_log_chain(struct dsl_pool *dp,
|
||||
struct dsl_dataset *ds, void *tx);
|
||||
extern void zil_sync(zilog_t *zilog, dmu_tx_t *tx);
|
||||
extern void zil_clean(zilog_t *zilog, uint64_t synced_txg);
|
||||
|
@ -955,8 +955,8 @@ uint64_t
|
||||
zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
|
||||
const char *name, int dnodesize, dmu_tx_t *tx)
|
||||
{
|
||||
uint64_t new_obj;
|
||||
|
||||
uint64_t new_obj;
|
||||
|
||||
VERIFY((new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0,
|
||||
dnodesize, tx)) > 0);
|
||||
VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
|
||||
|
@ -726,9 +726,9 @@ int
|
||||
zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
|
||||
dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
|
||||
int dnodesize, dmu_tx_t *tx)
|
||||
{
|
||||
int err;
|
||||
|
||||
{
|
||||
int err;
|
||||
|
||||
err = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
|
||||
dnodesize, tx);
|
||||
if (err != 0)
|
||||
|
@ -892,7 +892,7 @@ zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
|
||||
int entry_type;
|
||||
mode_t mode;
|
||||
mode_t seen = 0;
|
||||
zfs_ace_hdr_t *acep = NULL;
|
||||
zfs_ace_hdr_t *acep = NULL;
|
||||
uint64_t who;
|
||||
uint16_t iflags, type;
|
||||
uint32_t access_mask;
|
||||
@ -1320,12 +1320,12 @@ zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim,
|
||||
uint64_t who;
|
||||
int new_count, new_bytes;
|
||||
int ace_size;
|
||||
int entry_type;
|
||||
int entry_type;
|
||||
uint16_t iflags, type;
|
||||
uint32_t access_mask;
|
||||
zfs_acl_node_t *newnode;
|
||||
size_t abstract_size = aclp->z_ops.ace_abstract_size();
|
||||
void *zacep;
|
||||
size_t abstract_size = aclp->z_ops.ace_abstract_size();
|
||||
void *zacep;
|
||||
boolean_t isdir;
|
||||
trivial_acl_t masks;
|
||||
|
||||
@ -1773,7 +1773,7 @@ zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
|
||||
zfs_acl_t *aclp;
|
||||
ulong_t mask;
|
||||
int error;
|
||||
int count = 0;
|
||||
int count = 0;
|
||||
int largeace = 0;
|
||||
|
||||
mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
|
||||
@ -2104,7 +2104,7 @@ zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
|
||||
zfs_acl_t *aclp;
|
||||
int error;
|
||||
uid_t uid = crgetuid(cr);
|
||||
uint64_t who;
|
||||
uint64_t who;
|
||||
uint16_t type, iflags;
|
||||
uint16_t entry_type;
|
||||
uint32_t access_mask;
|
||||
@ -2378,9 +2378,9 @@ zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
|
||||
uint32_t working_mode;
|
||||
int error;
|
||||
int is_attr;
|
||||
boolean_t check_privs;
|
||||
boolean_t check_privs;
|
||||
znode_t *xzp;
|
||||
znode_t *check_zp = zp;
|
||||
znode_t *check_zp = zp;
|
||||
mode_t needed_bits;
|
||||
uid_t owner;
|
||||
|
||||
|
@ -310,7 +310,7 @@ zfs_replay_create_acl(void *arg1, void *arg2, boolean_t byteswap)
|
||||
|
||||
objid = LR_FOID_GET_OBJ(lr->lr_foid);
|
||||
dnodesize = LR_FOID_GET_SLOTS(lr->lr_foid) << DNODE_SHIFT;
|
||||
|
||||
|
||||
xva_init(&xva);
|
||||
zfs_init_vattr(&xva.xva_vattr, AT_TYPE | AT_MODE | AT_UID | AT_GID,
|
||||
lr->lr_mode, lr->lr_uid, lr->lr_gid, lr->lr_rdev, objid);
|
||||
@ -322,7 +322,6 @@ zfs_replay_create_acl(void *arg1, void *arg2, boolean_t byteswap)
|
||||
* zfs_create() has no concept of these attributes, so we smuggle
|
||||
* the values inside the vattr's otherwise unused va_ctime,
|
||||
* va_nblocks, and va_fsid fields.
|
||||
|
||||
*/
|
||||
ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime);
|
||||
xva.xva_vattr.va_nblocks = lr->lr_gen;
|
||||
@ -464,8 +463,8 @@ zfs_replay_create(void *arg1, void *arg2, boolean_t byteswap)
|
||||
* eventually end up in zfs_mknode(), which assigns the object's
|
||||
* creation time, generation number, and dnode slot count. The
|
||||
* generic zfs_create() has no concept of these attributes, so
|
||||
* we smuggle the values inside * the vattr's otherwise unused
|
||||
* va_ctime, va_nblocks, and va_nlink fields.
|
||||
* we smuggle the values inside the vattr's otherwise unused
|
||||
* va_ctime, va_nblocks and va_fsid fields.
|
||||
*/
|
||||
ZFS_TIME_DECODE(&xva.xva_vattr.va_ctime, lr->lr_crtime);
|
||||
xva.xva_vattr.va_nblocks = lr->lr_gen;
|
||||
|
@ -832,7 +832,7 @@ zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
|
||||
}
|
||||
|
||||
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
|
||||
VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
|
||||
VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
|
||||
|
||||
/*
|
||||
* If this is the root, fix up the half-initialized parent pointer
|
||||
@ -1862,14 +1862,6 @@ zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
|
||||
DMU_OT_NONE, 0, tx);
|
||||
ASSERT(error == 0);
|
||||
|
||||
/*
|
||||
* Give dmu_object_alloc() a hint about where to start
|
||||
* allocating new objects. Otherwise, since the metadnode's
|
||||
* dnode_phys_t structure isn't initialized yet, dmu_object_next()
|
||||
* would fail and we'd have to skip to the next dnode block.
|
||||
*/
|
||||
os->os_obj_next = moid + 1;
|
||||
|
||||
/*
|
||||
* Set starting attributes.
|
||||
*/
|
||||
|
@ -63,9 +63,9 @@
|
||||
* representation, and the on-disk representation). The on-disk format
|
||||
* consists of 3 parts:
|
||||
*
|
||||
* - a single, per-dataset, ZIL header; which points to a chain of
|
||||
* - zero or more ZIL blocks; each of which contains
|
||||
* - zero or more ZIL records
|
||||
* - a single, per-dataset, ZIL header; which points to a chain of
|
||||
* - zero or more ZIL blocks; each of which contains
|
||||
* - zero or more ZIL records
|
||||
*
|
||||
* A ZIL record holds the information necessary to replay a single
|
||||
* system call transaction. A ZIL block can hold many ZIL records, and
|
||||
@ -3097,8 +3097,10 @@ zil_close(zilog_t *zilog)
|
||||
if (txg)
|
||||
txg_wait_synced(zilog->zl_dmu_pool, txg);
|
||||
|
||||
if (zilog_is_dirty(zilog))
|
||||
zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
|
||||
if (txg < spa_freeze_txg(zilog->zl_spa))
|
||||
ASSERT(!zilog_is_dirty(zilog));
|
||||
VERIFY(!zilog_is_dirty(zilog));
|
||||
|
||||
zilog->zl_get_data = NULL;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user