mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-23 11:18:54 +00:00
Switch to fletcher4 as the default checksum algorithm. Fletcher2 was proven to
be a bit weak and OpenSolaris also switched to fletcher4. PR: kern/139072 Reported by: Daniel Grund <bugs@dgrund.de> MFC after: 3 days
This commit is contained in:
parent
54680451c3
commit
86758476b4
Notes:
svn2git
2020-12-20 02:59:44 +00:00
svn path=/head/; revision=197497
@ -19,11 +19,111 @@
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
|
||||
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
||||
* Use is subject to license terms.
|
||||
*/
|
||||
|
||||
#pragma ident "%Z%%M% %I% %E% SMI"
|
||||
/*
|
||||
* Fletcher Checksums
|
||||
* ------------------
|
||||
*
|
||||
* ZFS's 2nd and 4th order Fletcher checksums are defined by the following
|
||||
* recurrence relations:
|
||||
*
|
||||
* a = a + f
|
||||
* i i-1 i-1
|
||||
*
|
||||
* b = b + a
|
||||
* i i-1 i
|
||||
*
|
||||
* c = c + b (fletcher-4 only)
|
||||
* i i-1 i
|
||||
*
|
||||
* d = d + c (fletcher-4 only)
|
||||
* i i-1 i
|
||||
*
|
||||
* Where
|
||||
* a_0 = b_0 = c_0 = d_0 = 0
|
||||
* and
|
||||
* f_0 .. f_(n-1) are the input data.
|
||||
*
|
||||
* Using standard techniques, these translate into the following series:
|
||||
*
|
||||
* __n_ __n_
|
||||
* \ | \ |
|
||||
* a = > f b = > i * f
|
||||
* n /___| n - i n /___| n - i
|
||||
* i = 1 i = 1
|
||||
*
|
||||
*
|
||||
* __n_ __n_
|
||||
* \ | i*(i+1) \ | i*(i+1)*(i+2)
|
||||
* c = > ------- f d = > ------------- f
|
||||
* n /___| 2 n - i n /___| 6 n - i
|
||||
* i = 1 i = 1
|
||||
*
|
||||
* For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
|
||||
* Since the additions are done mod (2^64), errors in the high bits may not
|
||||
* be noticed. For this reason, fletcher-2 is deprecated.
|
||||
*
|
||||
* For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
|
||||
* A conservative estimate of how big the buffer can get before we overflow
|
||||
* can be estimated using f_i = 0xffffffff for all i:
|
||||
*
|
||||
* % bc
|
||||
* f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
|
||||
* 2264
|
||||
* quit
|
||||
* %
|
||||
*
|
||||
* So blocks of up to 2k will not overflow. Our largest block size is
|
||||
* 128k, which has 32k 4-byte words, so we can compute the largest possible
|
||||
* accumulators, then divide by 2^64 to figure the max amount of overflow:
|
||||
*
|
||||
* % bc
|
||||
* a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
|
||||
* a/2^64;b/2^64;c/2^64;d/2^64
|
||||
* 0
|
||||
* 0
|
||||
* 1365
|
||||
* 11186858
|
||||
* quit
|
||||
* %
|
||||
*
|
||||
* So a and b cannot overflow. To make sure each bit of input has some
|
||||
* effect on the contents of c and d, we can look at what the factors of
|
||||
* the coefficients in the equations for c_n and d_n are. The number of 2s
|
||||
* in the factors determines the lowest set bit in the multiplier. Running
|
||||
* through the cases for n*(n+1)/2 reveals that the highest power of 2 is
|
||||
* 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
|
||||
* the 64-bit accumulators, every bit of every f_i effects every accumulator,
|
||||
* even for 128k blocks.
|
||||
*
|
||||
* If we wanted to make a stronger version of fletcher4 (fletcher4c?),
|
||||
* we could do our calculations mod (2^32 - 1) by adding in the carries
|
||||
* periodically, and store the number of carries in the top 32-bits.
|
||||
*
|
||||
* --------------------
|
||||
* Checksum Performance
|
||||
* --------------------
|
||||
*
|
||||
* There are two interesting components to checksum performance: cached and
|
||||
* uncached performance. With cached data, fletcher-2 is about four times
|
||||
* faster than fletcher-4. With uncached data, the performance difference is
|
||||
* negligible, since the cost of a cache fill dominates the processing time.
|
||||
* Even though fletcher-4 is slower than fletcher-2, it is still a pretty
|
||||
* efficient pass over the data.
|
||||
*
|
||||
* In normal operation, the data which is being checksummed is in a buffer
|
||||
* which has been filled either by:
|
||||
*
|
||||
* 1. a compression step, which will be mostly cached, or
|
||||
* 2. a bcopy() or copyin(), which will be uncached (because the
|
||||
* copy is cache-bypassing).
|
||||
*
|
||||
* For both cached and uncached data, both fletcher checksums are much faster
|
||||
* than sha-256, and slower than 'off', which doesn't touch the data at all.
|
||||
*/
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysmacros.h>
|
||||
|
@ -76,7 +76,7 @@ enum zio_checksum {
|
||||
ZIO_CHECKSUM_FUNCTIONS
|
||||
};
|
||||
|
||||
#define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_2
|
||||
#define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_4
|
||||
#define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON
|
||||
|
||||
enum zio_compress {
|
||||
|
Loading…
Reference in New Issue
Block a user