1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-15 10:17:20 +00:00

Support target mode operations. This involves having some variant

dma mapping callback routines to select from as target mode
entries are handled a fair bit differently from normal initiator
mode entries.
This commit is contained in:
Matt Jacob 2000-01-03 23:50:13 +00:00
parent a9758dac1a
commit 9e11e5bea2
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=55369
2 changed files with 712 additions and 102 deletions

View File

@ -957,11 +957,10 @@ isp_pci_mbxdma(struct ispsoftc *isp)
return (0); return (0);
} }
static void dma2 __P((void *, bus_dma_segment_t *, int, int));
typedef struct { typedef struct {
struct ispsoftc *isp; struct ispsoftc *isp;
ISP_SCSI_XFER_T *ccb; void *cmd_token;
ispreq_t *rq; void *rq;
u_int16_t *iptrp; u_int16_t *iptrp;
u_int16_t optr; u_int16_t optr;
u_int error; u_int error;
@ -969,20 +968,37 @@ typedef struct {
#define MUSHERR_NOQENTRIES -2 #define MUSHERR_NOQENTRIES -2
#ifdef ISP_TARGET_MODE
/*
* We need to handle DMA for target mode differently from initiator mode.
*
* DMA mapping and construction and submission of CTIO Request Entries
* and rendevous for completion are very tightly coupled because we start
* out by knowing (per platform) how much data we have to move, but we
* don't know, up front, how many DMA mapping segments will have to be used
* cover that data, so we don't know how many CTIO Request Entries we
* will end up using. Further, for performance reasons we may want to
* (on the last CTIO for Fibre Channel), send status too (if all went well).
*
* The standard vector still goes through isp_pci_dmasetup, but the callback
* for the DMA mapping routines comes here instead with the whole transfer
* mapped and a pointer to a partially filled in already allocated request
* queue entry. We finish the job.
*/
static void dma2_tgt __P((void *, bus_dma_segment_t *, int, int));
static void dma2_tgt_fc __P((void *, bus_dma_segment_t *, int, int));
static void static void
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) dma2_tgt(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{ {
mush_t *mp; mush_t *mp;
ISP_SCSI_XFER_T *ccb; struct ccb_scsiio *csio;
struct ispsoftc *isp;
struct isp_pcisoftc *pci; struct isp_pcisoftc *pci;
bus_dmamap_t *dp; bus_dmamap_t *dp;
bus_dma_segment_t *eseg; u_int8_t scsi_status, send_status;
ispreq_t *rq; ct_entry_t *cto;
u_int16_t *iptrp; u_int32_t handle;
u_int16_t optr; int nctios;
ispcontreq_t *crq;
int drq, seglim, datalen;
mp = (mush_t *) arg; mp = (mush_t *) arg;
if (error) { if (error) {
@ -990,41 +1006,315 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
return; return;
} }
isp = mp->isp;
if (nseg < 1) { if (nseg < 1) {
printf("%s: zero or negative segment count\n", isp->isp_name); printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg);
mp->error = EFAULT; mp->error = EFAULT;
return; return;
} }
ccb = mp->ccb;
rq = mp->rq;
iptrp = mp->iptrp;
optr = mp->optr;
pci = (struct isp_pcisoftc *)isp;
dp = &pci->dmaps[rq->req_handle - 1];
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { csio = mp->cmd_token;
cto = mp->rq;
/*
* Save handle, and potentially any SCSI status, which
* we'll reinsert on the last CTIO we're going to send.
*/
handle = cto->ct_reserved;
cto->ct_reserved = 0;
scsi_status = cto->ct_scsi_status;
cto->ct_scsi_status = 0;
send_status = cto->ct_flags & CT_SENDSTATUS;
cto->ct_flags &= ~CT_SENDSTATUS;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[handle - 1];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
drq = REQFLAG_DATA_IN;
} else { } else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
drq = REQFLAG_DATA_OUT;
} }
datalen = XS_XFRLEN(ccb); nctios = nseg / ISP_RQDSEG;
if (IS_FC(isp)) { if (nseg % ISP_RQDSEG) {
nctios++;
}
cto->ct_xfrlen = 0;
cto->ct_resid = 0;
cto->ct_seg_count = 0;
bzero(cto->ct_dataseg, sizeof (cto->ct_dataseg));
while (nctios--) {
int seg, seglim;
seglim = nseg;
if (seglim > ISP_RQDSEG)
seglim = ISP_RQDSEG;
for (seg = 0; seg < seglim; seg++) {
cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
cto->ct_xfrlen += dm_segs->ds_len;
dm_segs++;
}
cto->ct_seg_count = seg;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cto->ct_flags |= CT_DATA_IN;
} else {
cto->ct_flags |= CT_DATA_OUT;
}
if (nctios == 0) {
/*
* We're the last in a sequence of CTIOs, so mark this
* CTIO and save the handle to the CCB such that when
* this CTIO completes we can free dma resources and
* do whatever else we need to do to finish the rest
* of the command.
*/
cto->ct_header.rqs_seqno = 1;
cto->ct_reserved = handle;
cto->ct_scsi_status = scsi_status;
cto->ct_flags |= send_status;
ISP_TDQE(mp->isp, "last dma2_tgt", *mp->iptrp, cto);
} else {
ct_entry_t *octo = cto;
cto->ct_reserved = 0;
cto->ct_header.rqs_seqno = 0;
ISP_TDQE(mp->isp, "dma2_tgt", *mp->iptrp, cto);
cto = (ct_entry_t *)
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
*mp->iptrp =
ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN);
if (*mp->iptrp == mp->optr) {
printf("%s: Queue Overflow in dma2_tgt\n",
mp->isp->isp_name);
mp->error = MUSHERR_NOQENTRIES;
return;
}
/*
* Fill in the new CTIO with info from the old one.
*/
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_flags = 0;
/* ct_header.rqs_seqno && ct_reserved filled in later */
cto->ct_lun = octo->ct_lun;
cto->ct_iid = octo->ct_iid;
cto->ct_reserved2 = octo->ct_reserved2;
cto->ct_tgt = octo->ct_tgt;
cto->ct_flags = octo->ct_flags & ~CT_DATAMASK;
cto->ct_status = 0;
cto->ct_scsi_status = 0;
cto->ct_tag_val = octo->ct_tag_val;
cto->ct_tag_type = octo->ct_tag_type;
cto->ct_xfrlen = 0;
cto->ct_resid = 0;
cto->ct_timeout = octo->ct_timeout;
cto->ct_seg_count = 0;
bzero(cto->ct_dataseg, sizeof (cto->ct_dataseg));
}
}
}
static void
dma2_tgt_fc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ccb_scsiio *csio;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
ct2_entry_t *cto;
u_int16_t scsi_status, send_status;
u_int32_t handle, reloff;
int nctios;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
if (nseg < 1) {
printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg);
mp->error = EFAULT;
return;
}
csio = mp->cmd_token;
cto = mp->rq;
/*
* Save handle, and potentially any SCSI status, which
* we'll reinsert on the last CTIO we're going to send.
*/
handle = cto->ct_reserved;
cto->ct_reserved = 0;
scsi_status = cto->rsp.m0.ct_scsi_status;
cto->rsp.m0.ct_scsi_status = 0;
send_status = cto->ct_flags & CT2_SENDSTATUS;
cto->ct_flags &= ~CT2_SENDSTATUS;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[handle - 1];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
nctios = nseg / ISP_RQDSEG_T2;
if (nseg % ISP_RQDSEG_T2) {
nctios++;
}
cto->ct_reloff = 0;
cto->ct_resid = 0;
cto->ct_seg_count = 0;
cto->ct_reloff = reloff = 0;
bzero(&cto->rsp, sizeof (cto->rsp));
while (nctios--) {
int seg, seglim;
seglim = nseg;
if (seglim > ISP_RQDSEG_T2)
seglim = ISP_RQDSEG_T2;
for (seg = 0; seg < seglim; seg++) {
cto->rsp.m0.ct_dataseg[seg].ds_base = dm_segs->ds_addr;
cto->rsp.m0.ct_dataseg[seg].ds_count = dm_segs->ds_len;
cto->rsp.m0.ct_xfrlen += dm_segs->ds_len;
reloff += dm_segs->ds_len;
dm_segs++;
}
cto->ct_seg_count = seg;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cto->ct_flags |= CT2_DATA_IN;
} else {
cto->ct_flags |= CT2_DATA_OUT;
}
if (nctios == 0) {
/*
* We're the last in a sequence of CTIOs, so mark this
* CTIO and save the handle to the CCB such that when
* this CTIO completes we can free dma resources and
* do whatever else we need to do to finish the rest
* of the command.
*/
cto->ct_header.rqs_seqno = 1;
cto->ct_reserved = handle;
cto->rsp.m0.ct_scsi_status = scsi_status;
cto->ct_flags |= send_status;
ISP_TDQE(mp->isp, "last dma2_tgt_fc", *mp->iptrp, cto);
} else {
ct2_entry_t *octo = cto;
cto->ct_reserved = 0;
cto->ct_header.rqs_seqno = 0;
ISP_TDQE(mp->isp, "dma2_tgt_fc", *mp->iptrp, cto);
cto = (ct2_entry_t *)
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
*mp->iptrp =
ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN);
if (*mp->iptrp == mp->optr) {
printf("%s: Queue Overflow in dma2_tgt_fc\n",
mp->isp->isp_name);
mp->error = MUSHERR_NOQENTRIES;
return;
}
/*
* Fill in the new CTIO with info from the old one.
*/
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_flags = 0;
/* ct_header.rqs_seqno && ct_reserved filled in later */
cto->ct_lun = octo->ct_lun;
cto->ct_iid = octo->ct_iid;
cto->ct_rxid = octo->ct_rxid;
cto->ct_flags = octo->ct_flags & ~CT2_DATAMASK;
cto->ct_status = 0;
cto->ct_resid = 0;
cto->ct_timeout = octo->ct_timeout;
cto->ct_seg_count = 0;
cto->ct_reloff = reloff;
bzero(&cto->rsp, sizeof (cto->rsp));
}
}
}
#endif
static void dma2 __P((void *, bus_dma_segment_t *, int, int));
static void
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ccb_scsiio *csio;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
bus_dma_segment_t *eseg;
ispreq_t *rq;
ispcontreq_t *crq;
int seglim, datalen;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
if (nseg < 1) {
printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg);
mp->error = EFAULT;
return;
}
csio = mp->cmd_token;
rq = mp->rq;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[rq->req_handle - 1];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
datalen = XS_XFRLEN(csio);
/*
* We're passed an initial partially filled in entry that
* has most fields filled in except for data transfer
* related values.
*
* Our job is to fill in the initial request queue entry and
* then to start allocating and filling in continuation entries
* until we've covered the entire transfer.
*/
if (IS_FC(mp->isp)) {
seglim = ISP_RQDSEG_T2; seglim = ISP_RQDSEG_T2;
((ispreqt2_t *)rq)->req_totalcnt = datalen; ((ispreqt2_t *)rq)->req_totalcnt = datalen;
((ispreqt2_t *)rq)->req_flags |= drq; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
} else {
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
}
} else { } else {
seglim = ISP_RQDSEG; seglim = ISP_RQDSEG;
rq->req_flags |= drq; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
rq->req_flags |= REQFLAG_DATA_IN;
} else {
rq->req_flags |= REQFLAG_DATA_OUT;
}
} }
eseg = dm_segs + nseg; eseg = dm_segs + nseg;
while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) { while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
if (IS_FC(isp)) { if (IS_FC(mp->isp)) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq; ispreqt2_t *rq2 = (ispreqt2_t *)rq;
rq2->req_dataseg[rq2->req_seg_count].ds_base = rq2->req_dataseg[rq2->req_seg_count].ds_base =
dm_segs->ds_addr; dm_segs->ds_addr;
@ -1038,15 +1328,15 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
} }
datalen -= dm_segs->ds_len; datalen -= dm_segs->ds_len;
#if 0 #if 0
if (IS_FC(isp)) { if (IS_FC(mp->isp)) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq; ispreqt2_t *rq2 = (ispreqt2_t *)rq;
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n", printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_seg_count, mp->isp->isp_name, rq->req_seg_count,
rq2->req_dataseg[rq2->req_seg_count].ds_count, rq2->req_dataseg[rq2->req_seg_count].ds_count,
rq2->req_dataseg[rq2->req_seg_count].ds_base); rq2->req_dataseg[rq2->req_seg_count].ds_base);
} else { } else {
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n", printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_seg_count, mp->isp->isp_name, rq->req_seg_count,
rq->req_dataseg[rq->req_seg_count].ds_count, rq->req_dataseg[rq->req_seg_count].ds_count,
rq->req_dataseg[rq->req_seg_count].ds_base); rq->req_dataseg[rq->req_seg_count].ds_base);
} }
@ -1056,11 +1346,13 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
} }
while (datalen > 0 && dm_segs != eseg) { while (datalen > 0 && dm_segs != eseg) {
crq = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, *iptrp); crq = (ispcontreq_t *)
*iptrp = ISP_NXT_QENTRY(*iptrp, RQUEST_QUEUE_LEN); ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
if (*iptrp == optr) { *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN);
if (*mp->iptrp == mp->optr) {
#if 0 #if 0
printf("%s: Request Queue Overflow++\n", isp->isp_name); printf("%s: Request Queue Overflow++\n",
mp->isp->isp_name);
#endif #endif
mp->error = MUSHERR_NOQENTRIES; mp->error = MUSHERR_NOQENTRIES;
return; return;
@ -1078,7 +1370,7 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
dm_segs->ds_len; dm_segs->ds_len;
#if 0 #if 0
printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n", printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_header.rqs_entry_count-1, mp->isp->isp_name, rq->req_header.rqs_entry_count-1,
seglim, crq->req_dataseg[seglim].ds_count, seglim, crq->req_dataseg[seglim].ds_count,
crq->req_dataseg[seglim].ds_base); crq->req_dataseg[seglim].ds_base);
#endif #endif
@ -1091,19 +1383,32 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
} }
static int static int
isp_pci_dmasetup(struct ispsoftc *isp, ISP_SCSI_XFER_T *ccb, ispreq_t *rq, isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
u_int16_t *iptrp, u_int16_t optr) u_int16_t *iptrp, u_int16_t optr)
{ {
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
struct ccb_hdr *ccb_h;
struct ccb_scsiio *csio;
bus_dmamap_t *dp = NULL; bus_dmamap_t *dp = NULL;
mush_t mush, *mp; mush_t mush, *mp;
void (*eptr) __P((void *, bus_dma_segment_t *, int, int));
csio = (struct ccb_scsiio *) ccb; #ifdef ISP_TARGET_MODE
ccb_h = &csio->ccb_h; if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
if (IS_FC(isp)) {
eptr = dma2_tgt_fc;
} else {
eptr = dma2_tgt;
}
} else
#endif
eptr = dma2;
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_NONE) { /*
* NB: if we need to do request queue entry swizzling,
* NB: this is where it would need to be done for cmds
* NB: that move no data. For commands that move data,
* NB: swizzling would take place in those functions.
*/
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) {
rq->req_seg_count = 1; rq->req_seg_count = 1;
return (CMD_QUEUED); return (CMD_QUEUED);
} }
@ -1114,19 +1419,19 @@ isp_pci_dmasetup(struct ispsoftc *isp, ISP_SCSI_XFER_T *ccb, ispreq_t *rq,
*/ */
mp = &mush; mp = &mush;
mp->isp = isp; mp->isp = isp;
mp->ccb = ccb; mp->cmd_token = csio;
mp->rq = rq; mp->rq = rq;
mp->iptrp = iptrp; mp->iptrp = iptrp;
mp->optr = optr; mp->optr = optr;
mp->error = 0; mp->error = 0;
if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) { if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
if ((ccb_h->flags & CAM_DATA_PHYS) == 0) { if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
int error, s; int error, s;
dp = &pci->dmaps[rq->req_handle - 1]; dp = &pci->dmaps[rq->req_handle - 1];
s = splsoftvm(); s = splsoftvm();
error = bus_dmamap_load(pci->parent_dmat, *dp, error = bus_dmamap_load(pci->parent_dmat, *dp,
csio->data_ptr, csio->dxfer_len, dma2, mp, 0); csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
if (error == EINPROGRESS) { if (error == EINPROGRESS) {
bus_dmamap_unload(pci->parent_dmat, *dp); bus_dmamap_unload(pci->parent_dmat, *dp);
mp->error = EINVAL; mp->error = EINVAL;
@ -1145,23 +1450,23 @@ isp_pci_dmasetup(struct ispsoftc *isp, ISP_SCSI_XFER_T *ccb, ispreq_t *rq,
struct bus_dma_segment seg; struct bus_dma_segment seg;
seg.ds_addr = (bus_addr_t)csio->data_ptr; seg.ds_addr = (bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len; seg.ds_len = csio->dxfer_len;
dma2(mp, &seg, 1, 0); (*eptr)(mp, &seg, 1, 0);
} }
} else { } else {
struct bus_dma_segment *segs; struct bus_dma_segment *segs;
if ((ccb_h->flags & CAM_DATA_PHYS) != 0) { if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
printf("%s: Physical segment pointers unsupported", printf("%s: Physical segment pointers unsupported",
isp->isp_name); isp->isp_name);
mp->error = EINVAL; mp->error = EINVAL;
} else if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0) { } else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
printf("%s: Virtual segment addresses unsupported", printf("%s: Virtual segment addresses unsupported",
isp->isp_name); isp->isp_name);
mp->error = EINVAL; mp->error = EINVAL;
} else { } else {
/* Just use the segments provided */ /* Just use the segments provided */
segs = (struct bus_dma_segment *) csio->data_ptr; segs = (struct bus_dma_segment *) csio->data_ptr;
dma2(mp, segs, csio->sglist_cnt, 0); (*eptr)(mp, segs, csio->sglist_cnt, 0);
} }
} }
if (mp->error) { if (mp->error) {
@ -1181,7 +1486,7 @@ isp_pci_dmasetup(struct ispsoftc *isp, ISP_SCSI_XFER_T *ccb, ispreq_t *rq,
* Check to see if we weren't cancelled while sleeping on * Check to see if we weren't cancelled while sleeping on
* getting DMA resources... * getting DMA resources...
*/ */
if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
if (dp) { if (dp) {
bus_dmamap_unload(pci->parent_dmat, *dp); bus_dmamap_unload(pci->parent_dmat, *dp);
} }

View File

@ -957,11 +957,10 @@ isp_pci_mbxdma(struct ispsoftc *isp)
return (0); return (0);
} }
static void dma2 __P((void *, bus_dma_segment_t *, int, int));
typedef struct { typedef struct {
struct ispsoftc *isp; struct ispsoftc *isp;
ISP_SCSI_XFER_T *ccb; void *cmd_token;
ispreq_t *rq; void *rq;
u_int16_t *iptrp; u_int16_t *iptrp;
u_int16_t optr; u_int16_t optr;
u_int error; u_int error;
@ -969,20 +968,37 @@ typedef struct {
#define MUSHERR_NOQENTRIES -2 #define MUSHERR_NOQENTRIES -2
#ifdef ISP_TARGET_MODE
/*
* We need to handle DMA for target mode differently from initiator mode.
*
* DMA mapping and construction and submission of CTIO Request Entries
* and rendevous for completion are very tightly coupled because we start
* out by knowing (per platform) how much data we have to move, but we
* don't know, up front, how many DMA mapping segments will have to be used
* cover that data, so we don't know how many CTIO Request Entries we
* will end up using. Further, for performance reasons we may want to
* (on the last CTIO for Fibre Channel), send status too (if all went well).
*
* The standard vector still goes through isp_pci_dmasetup, but the callback
* for the DMA mapping routines comes here instead with the whole transfer
* mapped and a pointer to a partially filled in already allocated request
* queue entry. We finish the job.
*/
static void dma2_tgt __P((void *, bus_dma_segment_t *, int, int));
static void dma2_tgt_fc __P((void *, bus_dma_segment_t *, int, int));
static void static void
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) dma2_tgt(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{ {
mush_t *mp; mush_t *mp;
ISP_SCSI_XFER_T *ccb; struct ccb_scsiio *csio;
struct ispsoftc *isp;
struct isp_pcisoftc *pci; struct isp_pcisoftc *pci;
bus_dmamap_t *dp; bus_dmamap_t *dp;
bus_dma_segment_t *eseg; u_int8_t scsi_status, send_status;
ispreq_t *rq; ct_entry_t *cto;
u_int16_t *iptrp; u_int32_t handle;
u_int16_t optr; int nctios;
ispcontreq_t *crq;
int drq, seglim, datalen;
mp = (mush_t *) arg; mp = (mush_t *) arg;
if (error) { if (error) {
@ -990,41 +1006,315 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
return; return;
} }
isp = mp->isp;
if (nseg < 1) { if (nseg < 1) {
printf("%s: zero or negative segment count\n", isp->isp_name); printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg);
mp->error = EFAULT; mp->error = EFAULT;
return; return;
} }
ccb = mp->ccb;
rq = mp->rq;
iptrp = mp->iptrp;
optr = mp->optr;
pci = (struct isp_pcisoftc *)isp;
dp = &pci->dmaps[rq->req_handle - 1];
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { csio = mp->cmd_token;
cto = mp->rq;
/*
* Save handle, and potentially any SCSI status, which
* we'll reinsert on the last CTIO we're going to send.
*/
handle = cto->ct_reserved;
cto->ct_reserved = 0;
scsi_status = cto->ct_scsi_status;
cto->ct_scsi_status = 0;
send_status = cto->ct_flags & CT_SENDSTATUS;
cto->ct_flags &= ~CT_SENDSTATUS;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[handle - 1];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
drq = REQFLAG_DATA_IN;
} else { } else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
drq = REQFLAG_DATA_OUT;
} }
datalen = XS_XFRLEN(ccb); nctios = nseg / ISP_RQDSEG;
if (IS_FC(isp)) { if (nseg % ISP_RQDSEG) {
nctios++;
}
cto->ct_xfrlen = 0;
cto->ct_resid = 0;
cto->ct_seg_count = 0;
bzero(cto->ct_dataseg, sizeof (cto->ct_dataseg));
while (nctios--) {
int seg, seglim;
seglim = nseg;
if (seglim > ISP_RQDSEG)
seglim = ISP_RQDSEG;
for (seg = 0; seg < seglim; seg++) {
cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr;
cto->ct_dataseg[seg].ds_count = dm_segs->ds_len;
cto->ct_xfrlen += dm_segs->ds_len;
dm_segs++;
}
cto->ct_seg_count = seg;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cto->ct_flags |= CT_DATA_IN;
} else {
cto->ct_flags |= CT_DATA_OUT;
}
if (nctios == 0) {
/*
* We're the last in a sequence of CTIOs, so mark this
* CTIO and save the handle to the CCB such that when
* this CTIO completes we can free dma resources and
* do whatever else we need to do to finish the rest
* of the command.
*/
cto->ct_header.rqs_seqno = 1;
cto->ct_reserved = handle;
cto->ct_scsi_status = scsi_status;
cto->ct_flags |= send_status;
ISP_TDQE(mp->isp, "last dma2_tgt", *mp->iptrp, cto);
} else {
ct_entry_t *octo = cto;
cto->ct_reserved = 0;
cto->ct_header.rqs_seqno = 0;
ISP_TDQE(mp->isp, "dma2_tgt", *mp->iptrp, cto);
cto = (ct_entry_t *)
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
*mp->iptrp =
ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN);
if (*mp->iptrp == mp->optr) {
printf("%s: Queue Overflow in dma2_tgt\n",
mp->isp->isp_name);
mp->error = MUSHERR_NOQENTRIES;
return;
}
/*
* Fill in the new CTIO with info from the old one.
*/
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_flags = 0;
/* ct_header.rqs_seqno && ct_reserved filled in later */
cto->ct_lun = octo->ct_lun;
cto->ct_iid = octo->ct_iid;
cto->ct_reserved2 = octo->ct_reserved2;
cto->ct_tgt = octo->ct_tgt;
cto->ct_flags = octo->ct_flags & ~CT_DATAMASK;
cto->ct_status = 0;
cto->ct_scsi_status = 0;
cto->ct_tag_val = octo->ct_tag_val;
cto->ct_tag_type = octo->ct_tag_type;
cto->ct_xfrlen = 0;
cto->ct_resid = 0;
cto->ct_timeout = octo->ct_timeout;
cto->ct_seg_count = 0;
bzero(cto->ct_dataseg, sizeof (cto->ct_dataseg));
}
}
}
static void
dma2_tgt_fc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ccb_scsiio *csio;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
ct2_entry_t *cto;
u_int16_t scsi_status, send_status;
u_int32_t handle, reloff;
int nctios;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
if (nseg < 1) {
printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg);
mp->error = EFAULT;
return;
}
csio = mp->cmd_token;
cto = mp->rq;
/*
* Save handle, and potentially any SCSI status, which
* we'll reinsert on the last CTIO we're going to send.
*/
handle = cto->ct_reserved;
cto->ct_reserved = 0;
scsi_status = cto->rsp.m0.ct_scsi_status;
cto->rsp.m0.ct_scsi_status = 0;
send_status = cto->ct_flags & CT2_SENDSTATUS;
cto->ct_flags &= ~CT2_SENDSTATUS;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[handle - 1];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
nctios = nseg / ISP_RQDSEG_T2;
if (nseg % ISP_RQDSEG_T2) {
nctios++;
}
cto->ct_reloff = 0;
cto->ct_resid = 0;
cto->ct_seg_count = 0;
cto->ct_reloff = reloff = 0;
bzero(&cto->rsp, sizeof (cto->rsp));
while (nctios--) {
int seg, seglim;
seglim = nseg;
if (seglim > ISP_RQDSEG_T2)
seglim = ISP_RQDSEG_T2;
for (seg = 0; seg < seglim; seg++) {
cto->rsp.m0.ct_dataseg[seg].ds_base = dm_segs->ds_addr;
cto->rsp.m0.ct_dataseg[seg].ds_count = dm_segs->ds_len;
cto->rsp.m0.ct_xfrlen += dm_segs->ds_len;
reloff += dm_segs->ds_len;
dm_segs++;
}
cto->ct_seg_count = seg;
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cto->ct_flags |= CT2_DATA_IN;
} else {
cto->ct_flags |= CT2_DATA_OUT;
}
if (nctios == 0) {
/*
* We're the last in a sequence of CTIOs, so mark this
* CTIO and save the handle to the CCB such that when
* this CTIO completes we can free dma resources and
* do whatever else we need to do to finish the rest
* of the command.
*/
cto->ct_header.rqs_seqno = 1;
cto->ct_reserved = handle;
cto->rsp.m0.ct_scsi_status = scsi_status;
cto->ct_flags |= send_status;
ISP_TDQE(mp->isp, "last dma2_tgt_fc", *mp->iptrp, cto);
} else {
ct2_entry_t *octo = cto;
cto->ct_reserved = 0;
cto->ct_header.rqs_seqno = 0;
ISP_TDQE(mp->isp, "dma2_tgt_fc", *mp->iptrp, cto);
cto = (ct2_entry_t *)
ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
*mp->iptrp =
ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN);
if (*mp->iptrp == mp->optr) {
printf("%s: Queue Overflow in dma2_tgt_fc\n",
mp->isp->isp_name);
mp->error = MUSHERR_NOQENTRIES;
return;
}
/*
* Fill in the new CTIO with info from the old one.
*/
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
cto->ct_header.rqs_entry_count = 1;
cto->ct_header.rqs_flags = 0;
/* ct_header.rqs_seqno && ct_reserved filled in later */
cto->ct_lun = octo->ct_lun;
cto->ct_iid = octo->ct_iid;
cto->ct_rxid = octo->ct_rxid;
cto->ct_flags = octo->ct_flags & ~CT2_DATAMASK;
cto->ct_status = 0;
cto->ct_resid = 0;
cto->ct_timeout = octo->ct_timeout;
cto->ct_seg_count = 0;
cto->ct_reloff = reloff;
bzero(&cto->rsp, sizeof (cto->rsp));
}
}
}
#endif
static void dma2 __P((void *, bus_dma_segment_t *, int, int));
static void
dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
{
mush_t *mp;
struct ccb_scsiio *csio;
struct isp_pcisoftc *pci;
bus_dmamap_t *dp;
bus_dma_segment_t *eseg;
ispreq_t *rq;
ispcontreq_t *crq;
int seglim, datalen;
mp = (mush_t *) arg;
if (error) {
mp->error = error;
return;
}
if (nseg < 1) {
printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg);
mp->error = EFAULT;
return;
}
csio = mp->cmd_token;
rq = mp->rq;
pci = (struct isp_pcisoftc *)mp->isp;
dp = &pci->dmaps[rq->req_handle - 1];
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE);
}
datalen = XS_XFRLEN(csio);
/*
* We're passed an initial partially filled in entry that
* has most fields filled in except for data transfer
* related values.
*
* Our job is to fill in the initial request queue entry and
* then to start allocating and filling in continuation entries
* until we've covered the entire transfer.
*/
if (IS_FC(mp->isp)) {
seglim = ISP_RQDSEG_T2; seglim = ISP_RQDSEG_T2;
((ispreqt2_t *)rq)->req_totalcnt = datalen; ((ispreqt2_t *)rq)->req_totalcnt = datalen;
((ispreqt2_t *)rq)->req_flags |= drq; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN;
} else {
((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT;
}
} else { } else {
seglim = ISP_RQDSEG; seglim = ISP_RQDSEG;
rq->req_flags |= drq; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
rq->req_flags |= REQFLAG_DATA_IN;
} else {
rq->req_flags |= REQFLAG_DATA_OUT;
}
} }
eseg = dm_segs + nseg; eseg = dm_segs + nseg;
while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) { while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) {
if (IS_FC(isp)) { if (IS_FC(mp->isp)) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq; ispreqt2_t *rq2 = (ispreqt2_t *)rq;
rq2->req_dataseg[rq2->req_seg_count].ds_base = rq2->req_dataseg[rq2->req_seg_count].ds_base =
dm_segs->ds_addr; dm_segs->ds_addr;
@ -1038,15 +1328,15 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
} }
datalen -= dm_segs->ds_len; datalen -= dm_segs->ds_len;
#if 0 #if 0
if (IS_FC(isp)) { if (IS_FC(mp->isp)) {
ispreqt2_t *rq2 = (ispreqt2_t *)rq; ispreqt2_t *rq2 = (ispreqt2_t *)rq;
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n", printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_seg_count, mp->isp->isp_name, rq->req_seg_count,
rq2->req_dataseg[rq2->req_seg_count].ds_count, rq2->req_dataseg[rq2->req_seg_count].ds_count,
rq2->req_dataseg[rq2->req_seg_count].ds_base); rq2->req_dataseg[rq2->req_seg_count].ds_base);
} else { } else {
printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n", printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_seg_count, mp->isp->isp_name, rq->req_seg_count,
rq->req_dataseg[rq->req_seg_count].ds_count, rq->req_dataseg[rq->req_seg_count].ds_count,
rq->req_dataseg[rq->req_seg_count].ds_base); rq->req_dataseg[rq->req_seg_count].ds_base);
} }
@ -1056,11 +1346,13 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
} }
while (datalen > 0 && dm_segs != eseg) { while (datalen > 0 && dm_segs != eseg) {
crq = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, *iptrp); crq = (ispcontreq_t *)
*iptrp = ISP_NXT_QENTRY(*iptrp, RQUEST_QUEUE_LEN); ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp);
if (*iptrp == optr) { *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN);
if (*mp->iptrp == mp->optr) {
#if 0 #if 0
printf("%s: Request Queue Overflow++\n", isp->isp_name); printf("%s: Request Queue Overflow++\n",
mp->isp->isp_name);
#endif #endif
mp->error = MUSHERR_NOQENTRIES; mp->error = MUSHERR_NOQENTRIES;
return; return;
@ -1078,7 +1370,7 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
dm_segs->ds_len; dm_segs->ds_len;
#if 0 #if 0
printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n", printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n",
isp->isp_name, rq->req_header.rqs_entry_count-1, mp->isp->isp_name, rq->req_header.rqs_entry_count-1,
seglim, crq->req_dataseg[seglim].ds_count, seglim, crq->req_dataseg[seglim].ds_count,
crq->req_dataseg[seglim].ds_base); crq->req_dataseg[seglim].ds_base);
#endif #endif
@ -1091,19 +1383,32 @@ dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error)
} }
static int static int
isp_pci_dmasetup(struct ispsoftc *isp, ISP_SCSI_XFER_T *ccb, ispreq_t *rq, isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq,
u_int16_t *iptrp, u_int16_t optr) u_int16_t *iptrp, u_int16_t optr)
{ {
struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp;
struct ccb_hdr *ccb_h;
struct ccb_scsiio *csio;
bus_dmamap_t *dp = NULL; bus_dmamap_t *dp = NULL;
mush_t mush, *mp; mush_t mush, *mp;
void (*eptr) __P((void *, bus_dma_segment_t *, int, int));
csio = (struct ccb_scsiio *) ccb; #ifdef ISP_TARGET_MODE
ccb_h = &csio->ccb_h; if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) {
if (IS_FC(isp)) {
eptr = dma2_tgt_fc;
} else {
eptr = dma2_tgt;
}
} else
#endif
eptr = dma2;
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_NONE) { /*
* NB: if we need to do request queue entry swizzling,
* NB: this is where it would need to be done for cmds
* NB: that move no data. For commands that move data,
* NB: swizzling would take place in those functions.
*/
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) {
rq->req_seg_count = 1; rq->req_seg_count = 1;
return (CMD_QUEUED); return (CMD_QUEUED);
} }
@ -1114,19 +1419,19 @@ isp_pci_dmasetup(struct ispsoftc *isp, ISP_SCSI_XFER_T *ccb, ispreq_t *rq,
*/ */
mp = &mush; mp = &mush;
mp->isp = isp; mp->isp = isp;
mp->ccb = ccb; mp->cmd_token = csio;
mp->rq = rq; mp->rq = rq;
mp->iptrp = iptrp; mp->iptrp = iptrp;
mp->optr = optr; mp->optr = optr;
mp->error = 0; mp->error = 0;
if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) { if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) {
if ((ccb_h->flags & CAM_DATA_PHYS) == 0) { if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) {
int error, s; int error, s;
dp = &pci->dmaps[rq->req_handle - 1]; dp = &pci->dmaps[rq->req_handle - 1];
s = splsoftvm(); s = splsoftvm();
error = bus_dmamap_load(pci->parent_dmat, *dp, error = bus_dmamap_load(pci->parent_dmat, *dp,
csio->data_ptr, csio->dxfer_len, dma2, mp, 0); csio->data_ptr, csio->dxfer_len, eptr, mp, 0);
if (error == EINPROGRESS) { if (error == EINPROGRESS) {
bus_dmamap_unload(pci->parent_dmat, *dp); bus_dmamap_unload(pci->parent_dmat, *dp);
mp->error = EINVAL; mp->error = EINVAL;
@ -1145,23 +1450,23 @@ isp_pci_dmasetup(struct ispsoftc *isp, ISP_SCSI_XFER_T *ccb, ispreq_t *rq,
struct bus_dma_segment seg; struct bus_dma_segment seg;
seg.ds_addr = (bus_addr_t)csio->data_ptr; seg.ds_addr = (bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len; seg.ds_len = csio->dxfer_len;
dma2(mp, &seg, 1, 0); (*eptr)(mp, &seg, 1, 0);
} }
} else { } else {
struct bus_dma_segment *segs; struct bus_dma_segment *segs;
if ((ccb_h->flags & CAM_DATA_PHYS) != 0) { if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) {
printf("%s: Physical segment pointers unsupported", printf("%s: Physical segment pointers unsupported",
isp->isp_name); isp->isp_name);
mp->error = EINVAL; mp->error = EINVAL;
} else if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0) { } else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) {
printf("%s: Virtual segment addresses unsupported", printf("%s: Virtual segment addresses unsupported",
isp->isp_name); isp->isp_name);
mp->error = EINVAL; mp->error = EINVAL;
} else { } else {
/* Just use the segments provided */ /* Just use the segments provided */
segs = (struct bus_dma_segment *) csio->data_ptr; segs = (struct bus_dma_segment *) csio->data_ptr;
dma2(mp, segs, csio->sglist_cnt, 0); (*eptr)(mp, segs, csio->sglist_cnt, 0);
} }
} }
if (mp->error) { if (mp->error) {
@ -1181,7 +1486,7 @@ isp_pci_dmasetup(struct ispsoftc *isp, ISP_SCSI_XFER_T *ccb, ispreq_t *rq,
* Check to see if we weren't cancelled while sleeping on * Check to see if we weren't cancelled while sleeping on
* getting DMA resources... * getting DMA resources...
*/ */
if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
if (dp) { if (dp) {
bus_dmamap_unload(pci->parent_dmat, *dp); bus_dmamap_unload(pci->parent_dmat, *dp);
} }