mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-02 08:42:48 +00:00
Move ttyinfo() into its own C file.
The ttyinfo() routine generates the fancy output when pressing ^T. Right now it is stored in tty.c. In the MPSAFE TTY code it is already stored in tty_info.c. To make integration of the MPSAFE TTY code a little easier, take the same approach. This makes the TTY code a little bit more readable, because having the proc_*/thread_* routines in tty.c is very distractful. Approved by: philip (mentor)
This commit is contained in:
parent
4ab0b22f96
commit
bea45cdda3
Notes:
svn2git
2020-12-20 02:59:44 +00:00
svn path=/head/; revision=180801
@ -1659,6 +1659,7 @@ kern/tty.c standard
|
||||
kern/tty_compat.c optional compat_43tty
|
||||
kern/tty_conf.c standard
|
||||
kern/tty_cons.c standard
|
||||
kern/tty_info.c standard
|
||||
kern/tty_pts.c optional pty
|
||||
kern/tty_pty.c optional pty
|
||||
kern/tty_tty.c standard
|
||||
|
269
sys/kern/tty.c
269
sys/kern/tty.c
@ -99,19 +99,13 @@ __FBSDID("$FreeBSD$");
|
||||
#include <sys/vnode.h>
|
||||
#include <sys/serial.h>
|
||||
#include <sys/signalvar.h>
|
||||
#include <sys/resourcevar.h>
|
||||
#include <sys/malloc.h>
|
||||
#include <sys/filedesc.h>
|
||||
#include <sys/sched.h>
|
||||
#include <sys/sysctl.h>
|
||||
#include <sys/timepps.h>
|
||||
|
||||
#include <machine/stdarg.h>
|
||||
|
||||
#include <vm/vm.h>
|
||||
#include <vm/pmap.h>
|
||||
#include <vm/vm_map.h>
|
||||
|
||||
MALLOC_DEFINE(M_TTYS, "ttys", "tty data structures");
|
||||
|
||||
long tk_cancc;
|
||||
@ -148,9 +142,6 @@ static struct cdevsw ttys_cdevsw = {
|
||||
.d_flags = D_TTY | D_NEEDGIANT,
|
||||
};
|
||||
|
||||
static int proc_sum(struct proc *, int *);
|
||||
static int proc_compare(struct proc *, struct proc *);
|
||||
static int thread_compare(struct thread *, struct thread *);
|
||||
static int ttnread(struct tty *tp);
|
||||
static void ttyecho(int c, struct tty *tp);
|
||||
static int ttyoutput(int c, struct tty *tp);
|
||||
@ -2531,266 +2522,6 @@ ttsetwater(struct tty *tp)
|
||||
#undef CLAMP
|
||||
}
|
||||
|
||||
/*
|
||||
* Report on state of foreground process group.
|
||||
*/
|
||||
void
|
||||
ttyinfo(struct tty *tp)
|
||||
{
|
||||
struct timeval utime, stime;
|
||||
struct proc *p, *pick;
|
||||
struct thread *td, *picktd;
|
||||
const char *stateprefix, *state;
|
||||
long rss;
|
||||
int load, pctcpu;
|
||||
pid_t pid;
|
||||
char comm[MAXCOMLEN + 1];
|
||||
struct rusage ru;
|
||||
|
||||
if (ttycheckoutq(tp,0) == 0)
|
||||
return;
|
||||
|
||||
/* Print load average. */
|
||||
load = (averunnable.ldavg[0] * 100 + FSCALE / 2) >> FSHIFT;
|
||||
ttyprintf(tp, "load: %d.%02d ", load / 100, load % 100);
|
||||
|
||||
/*
|
||||
* On return following a ttyprintf(), we set tp->t_rocount to 0 so
|
||||
* that pending input will be retyped on BS.
|
||||
*/
|
||||
if (tp->t_session == NULL) {
|
||||
ttyprintf(tp, "not a controlling terminal\n");
|
||||
tp->t_rocount = 0;
|
||||
return;
|
||||
}
|
||||
if (tp->t_pgrp == NULL) {
|
||||
ttyprintf(tp, "no foreground process group\n");
|
||||
tp->t_rocount = 0;
|
||||
return;
|
||||
}
|
||||
PGRP_LOCK(tp->t_pgrp);
|
||||
if (LIST_EMPTY(&tp->t_pgrp->pg_members)) {
|
||||
PGRP_UNLOCK(tp->t_pgrp);
|
||||
ttyprintf(tp, "empty foreground process group\n");
|
||||
tp->t_rocount = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Pick the most interesting process and copy some of its
|
||||
* state for printing later. This operation could rely on stale
|
||||
* data as we can't hold the proc slock or thread locks over the
|
||||
* whole list. However, we're guaranteed not to reference an exited
|
||||
* thread or proc since we hold the tty locked.
|
||||
*/
|
||||
pick = NULL;
|
||||
LIST_FOREACH(p, &tp->t_pgrp->pg_members, p_pglist)
|
||||
if (proc_compare(pick, p))
|
||||
pick = p;
|
||||
|
||||
PROC_LOCK(pick);
|
||||
picktd = NULL;
|
||||
td = FIRST_THREAD_IN_PROC(pick);
|
||||
FOREACH_THREAD_IN_PROC(pick, td)
|
||||
if (thread_compare(picktd, td))
|
||||
picktd = td;
|
||||
td = picktd;
|
||||
stateprefix = "";
|
||||
thread_lock(td);
|
||||
if (TD_IS_RUNNING(td))
|
||||
state = "running";
|
||||
else if (TD_ON_RUNQ(td) || TD_CAN_RUN(td))
|
||||
state = "runnable";
|
||||
else if (TD_IS_SLEEPING(td)) {
|
||||
/* XXX: If we're sleeping, are we ever not in a queue? */
|
||||
if (TD_ON_SLEEPQ(td))
|
||||
state = td->td_wmesg;
|
||||
else
|
||||
state = "sleeping without queue";
|
||||
} else if (TD_ON_LOCK(td)) {
|
||||
state = td->td_lockname;
|
||||
stateprefix = "*";
|
||||
} else if (TD_IS_SUSPENDED(td))
|
||||
state = "suspended";
|
||||
else if (TD_AWAITING_INTR(td))
|
||||
state = "intrwait";
|
||||
else
|
||||
state = "unknown";
|
||||
pctcpu = (sched_pctcpu(td) * 10000 + FSCALE / 2) >> FSHIFT;
|
||||
thread_unlock(td);
|
||||
if (pick->p_state == PRS_NEW || pick->p_state == PRS_ZOMBIE)
|
||||
rss = 0;
|
||||
else
|
||||
rss = pgtok(vmspace_resident_count(pick->p_vmspace));
|
||||
PROC_UNLOCK(pick);
|
||||
PROC_LOCK(pick);
|
||||
PGRP_UNLOCK(tp->t_pgrp);
|
||||
rufetchcalc(pick, &ru, &utime, &stime);
|
||||
pid = pick->p_pid;
|
||||
bcopy(pick->p_comm, comm, sizeof(comm));
|
||||
PROC_UNLOCK(pick);
|
||||
|
||||
/* Print command, pid, state, utime, stime, %cpu, and rss. */
|
||||
ttyprintf(tp,
|
||||
" cmd: %s %d [%s%s] %ld.%02ldu %ld.%02lds %d%% %ldk\n",
|
||||
comm, pid, stateprefix, state,
|
||||
(long)utime.tv_sec, utime.tv_usec / 10000,
|
||||
(long)stime.tv_sec, stime.tv_usec / 10000,
|
||||
pctcpu / 100, rss);
|
||||
tp->t_rocount = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns 1 if p2 is "better" than p1
|
||||
*
|
||||
* The algorithm for picking the "interesting" process is thus:
|
||||
*
|
||||
* 1) Only foreground processes are eligible - implied.
|
||||
* 2) Runnable processes are favored over anything else. The runner
|
||||
* with the highest cpu utilization is picked (p_estcpu). Ties are
|
||||
* broken by picking the highest pid.
|
||||
* 3) The sleeper with the shortest sleep time is next. With ties,
|
||||
* we pick out just "short-term" sleepers (P_SINTR == 0).
|
||||
* 4) Further ties are broken by picking the highest pid.
|
||||
*/
|
||||
|
||||
#define TESTAB(a, b) ((a)<<1 | (b))
|
||||
#define ONLYA 2
|
||||
#define ONLYB 1
|
||||
#define BOTH 3
|
||||
|
||||
static int
|
||||
proc_sum(struct proc *p, int *estcpup)
|
||||
{
|
||||
struct thread *td;
|
||||
int estcpu;
|
||||
int val;
|
||||
|
||||
val = 0;
|
||||
estcpu = 0;
|
||||
FOREACH_THREAD_IN_PROC(p, td) {
|
||||
thread_lock(td);
|
||||
if (TD_ON_RUNQ(td) ||
|
||||
TD_IS_RUNNING(td))
|
||||
val = 1;
|
||||
estcpu += sched_pctcpu(td);
|
||||
thread_unlock(td);
|
||||
}
|
||||
*estcpup = estcpu;
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
static int
|
||||
thread_compare(struct thread *td, struct thread *td2)
|
||||
{
|
||||
int runa, runb;
|
||||
int slpa, slpb;
|
||||
fixpt_t esta, estb;
|
||||
|
||||
if (td == NULL)
|
||||
return (1);
|
||||
|
||||
/*
|
||||
* Fetch running stats, pctcpu usage, and interruptable flag.
|
||||
*/
|
||||
thread_lock(td);
|
||||
runa = TD_IS_RUNNING(td) | TD_ON_RUNQ(td);
|
||||
slpa = td->td_flags & TDF_SINTR;
|
||||
esta = sched_pctcpu(td);
|
||||
thread_unlock(td);
|
||||
thread_lock(td2);
|
||||
runb = TD_IS_RUNNING(td2) | TD_ON_RUNQ(td2);
|
||||
estb = sched_pctcpu(td2);
|
||||
slpb = td2->td_flags & TDF_SINTR;
|
||||
thread_unlock(td2);
|
||||
/*
|
||||
* see if at least one of them is runnable
|
||||
*/
|
||||
switch (TESTAB(runa, runb)) {
|
||||
case ONLYA:
|
||||
return (0);
|
||||
case ONLYB:
|
||||
return (1);
|
||||
case BOTH:
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* favor one with highest recent cpu utilization
|
||||
*/
|
||||
if (estb > esta)
|
||||
return (1);
|
||||
if (esta > estb)
|
||||
return (0);
|
||||
/*
|
||||
* favor one sleeping in a non-interruptible sleep
|
||||
*/
|
||||
switch (TESTAB(slpa, slpb)) {
|
||||
case ONLYA:
|
||||
return (0);
|
||||
case ONLYB:
|
||||
return (1);
|
||||
case BOTH:
|
||||
break;
|
||||
}
|
||||
|
||||
return (td < td2);
|
||||
}
|
||||
|
||||
static int
|
||||
proc_compare(struct proc *p1, struct proc *p2)
|
||||
{
|
||||
|
||||
int runa, runb;
|
||||
fixpt_t esta, estb;
|
||||
|
||||
if (p1 == NULL)
|
||||
return (1);
|
||||
|
||||
/*
|
||||
* Fetch various stats about these processes. After we drop the
|
||||
* lock the information could be stale but the race is unimportant.
|
||||
*/
|
||||
PROC_LOCK(p1);
|
||||
runa = proc_sum(p1, &esta);
|
||||
PROC_UNLOCK(p1);
|
||||
PROC_LOCK(p2);
|
||||
runb = proc_sum(p2, &estb);
|
||||
PROC_UNLOCK(p2);
|
||||
|
||||
/*
|
||||
* see if at least one of them is runnable
|
||||
*/
|
||||
switch (TESTAB(runa, runb)) {
|
||||
case ONLYA:
|
||||
return (0);
|
||||
case ONLYB:
|
||||
return (1);
|
||||
case BOTH:
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* favor one with highest recent cpu utilization
|
||||
*/
|
||||
if (estb > esta)
|
||||
return (1);
|
||||
if (esta > estb)
|
||||
return (0);
|
||||
/*
|
||||
* weed out zombies
|
||||
*/
|
||||
switch (TESTAB(p1->p_state == PRS_ZOMBIE, p2->p_state == PRS_ZOMBIE)) {
|
||||
case ONLYA:
|
||||
return (1);
|
||||
case ONLYB:
|
||||
return (0);
|
||||
case BOTH:
|
||||
break;
|
||||
}
|
||||
|
||||
return (p2->p_pid > p1->p_pid); /* tie - return highest pid */
|
||||
}
|
||||
|
||||
/*
|
||||
* Output char to tty; console putchar style.
|
||||
*/
|
||||
|
317
sys/kern/tty_info.c
Normal file
317
sys/kern/tty_info.c
Normal file
@ -0,0 +1,317 @@
|
||||
/*-
|
||||
* Copyright (c) 1982, 1986, 1990, 1991, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
* (c) UNIX System Laboratories, Inc.
|
||||
* All or some portions of this file are derived from material licensed
|
||||
* to the University of California by American Telephone and Telegraph
|
||||
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
||||
* the permission of UNIX System Laboratories, Inc.
|
||||
*
|
||||
* Copyright (c) 2002 Networks Associates Technologies, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Portions of this software were developed for the FreeBSD Project by
|
||||
* ThinkSec AS and NAI Labs, the Security Research Division of Network
|
||||
* Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035
|
||||
* ("CBOSS"), as part of the DARPA CHATS research program.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 4. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <sys/param.h>
|
||||
#include <sys/lock.h>
|
||||
#include <sys/mutex.h>
|
||||
#include <sys/proc.h>
|
||||
#include <sys/resourcevar.h>
|
||||
#include <sys/sched.h>
|
||||
#include <sys/systm.h>
|
||||
#include <sys/tty.h>
|
||||
|
||||
#include <vm/vm.h>
|
||||
#include <vm/pmap.h>
|
||||
#include <vm/vm_map.h>
|
||||
|
||||
/*
|
||||
* Returns 1 if p2 is "better" than p1
|
||||
*
|
||||
* The algorithm for picking the "interesting" process is thus:
|
||||
*
|
||||
* 1) Only foreground processes are eligible - implied.
|
||||
* 2) Runnable processes are favored over anything else. The runner
|
||||
* with the highest cpu utilization is picked (p_estcpu). Ties are
|
||||
* broken by picking the highest pid.
|
||||
* 3) The sleeper with the shortest sleep time is next. With ties,
|
||||
* we pick out just "short-term" sleepers (P_SINTR == 0).
|
||||
* 4) Further ties are broken by picking the highest pid.
|
||||
*/
|
||||
|
||||
#define TESTAB(a, b) ((a)<<1 | (b))
|
||||
#define ONLYA 2
|
||||
#define ONLYB 1
|
||||
#define BOTH 3
|
||||
|
||||
static int
|
||||
proc_sum(struct proc *p, int *estcpup)
|
||||
{
|
||||
struct thread *td;
|
||||
int estcpu;
|
||||
int val;
|
||||
|
||||
val = 0;
|
||||
estcpu = 0;
|
||||
FOREACH_THREAD_IN_PROC(p, td) {
|
||||
thread_lock(td);
|
||||
if (TD_ON_RUNQ(td) ||
|
||||
TD_IS_RUNNING(td))
|
||||
val = 1;
|
||||
estcpu += sched_pctcpu(td);
|
||||
thread_unlock(td);
|
||||
}
|
||||
*estcpup = estcpu;
|
||||
|
||||
return (val);
|
||||
}
|
||||
|
||||
static int
|
||||
thread_compare(struct thread *td, struct thread *td2)
|
||||
{
|
||||
int runa, runb;
|
||||
int slpa, slpb;
|
||||
fixpt_t esta, estb;
|
||||
|
||||
if (td == NULL)
|
||||
return (1);
|
||||
|
||||
/*
|
||||
* Fetch running stats, pctcpu usage, and interruptable flag.
|
||||
*/
|
||||
thread_lock(td);
|
||||
runa = TD_IS_RUNNING(td) | TD_ON_RUNQ(td);
|
||||
slpa = td->td_flags & TDF_SINTR;
|
||||
esta = sched_pctcpu(td);
|
||||
thread_unlock(td);
|
||||
thread_lock(td2);
|
||||
runb = TD_IS_RUNNING(td2) | TD_ON_RUNQ(td2);
|
||||
estb = sched_pctcpu(td2);
|
||||
slpb = td2->td_flags & TDF_SINTR;
|
||||
thread_unlock(td2);
|
||||
/*
|
||||
* see if at least one of them is runnable
|
||||
*/
|
||||
switch (TESTAB(runa, runb)) {
|
||||
case ONLYA:
|
||||
return (0);
|
||||
case ONLYB:
|
||||
return (1);
|
||||
case BOTH:
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* favor one with highest recent cpu utilization
|
||||
*/
|
||||
if (estb > esta)
|
||||
return (1);
|
||||
if (esta > estb)
|
||||
return (0);
|
||||
/*
|
||||
* favor one sleeping in a non-interruptible sleep
|
||||
*/
|
||||
switch (TESTAB(slpa, slpb)) {
|
||||
case ONLYA:
|
||||
return (0);
|
||||
case ONLYB:
|
||||
return (1);
|
||||
case BOTH:
|
||||
break;
|
||||
}
|
||||
|
||||
return (td < td2);
|
||||
}
|
||||
|
||||
static int
|
||||
proc_compare(struct proc *p1, struct proc *p2)
|
||||
{
|
||||
|
||||
int runa, runb;
|
||||
fixpt_t esta, estb;
|
||||
|
||||
if (p1 == NULL)
|
||||
return (1);
|
||||
|
||||
/*
|
||||
* Fetch various stats about these processes. After we drop the
|
||||
* lock the information could be stale but the race is unimportant.
|
||||
*/
|
||||
PROC_LOCK(p1);
|
||||
runa = proc_sum(p1, &esta);
|
||||
PROC_UNLOCK(p1);
|
||||
PROC_LOCK(p2);
|
||||
runb = proc_sum(p2, &estb);
|
||||
PROC_UNLOCK(p2);
|
||||
|
||||
/*
|
||||
* see if at least one of them is runnable
|
||||
*/
|
||||
switch (TESTAB(runa, runb)) {
|
||||
case ONLYA:
|
||||
return (0);
|
||||
case ONLYB:
|
||||
return (1);
|
||||
case BOTH:
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* favor one with highest recent cpu utilization
|
||||
*/
|
||||
if (estb > esta)
|
||||
return (1);
|
||||
if (esta > estb)
|
||||
return (0);
|
||||
/*
|
||||
* weed out zombies
|
||||
*/
|
||||
switch (TESTAB(p1->p_state == PRS_ZOMBIE, p2->p_state == PRS_ZOMBIE)) {
|
||||
case ONLYA:
|
||||
return (1);
|
||||
case ONLYB:
|
||||
return (0);
|
||||
case BOTH:
|
||||
break;
|
||||
}
|
||||
|
||||
return (p2->p_pid > p1->p_pid); /* tie - return highest pid */
|
||||
}
|
||||
|
||||
/*
|
||||
* Report on state of foreground process group.
|
||||
*/
|
||||
void
|
||||
ttyinfo(struct tty *tp)
|
||||
{
|
||||
struct timeval utime, stime;
|
||||
struct proc *p, *pick;
|
||||
struct thread *td, *picktd;
|
||||
const char *stateprefix, *state;
|
||||
long rss;
|
||||
int load, pctcpu;
|
||||
pid_t pid;
|
||||
char comm[MAXCOMLEN + 1];
|
||||
struct rusage ru;
|
||||
|
||||
if (ttycheckoutq(tp,0) == 0)
|
||||
return;
|
||||
|
||||
/* Print load average. */
|
||||
load = (averunnable.ldavg[0] * 100 + FSCALE / 2) >> FSHIFT;
|
||||
ttyprintf(tp, "load: %d.%02d ", load / 100, load % 100);
|
||||
|
||||
/*
|
||||
* On return following a ttyprintf(), we set tp->t_rocount to 0 so
|
||||
* that pending input will be retyped on BS.
|
||||
*/
|
||||
if (tp->t_session == NULL) {
|
||||
ttyprintf(tp, "not a controlling terminal\n");
|
||||
tp->t_rocount = 0;
|
||||
return;
|
||||
}
|
||||
if (tp->t_pgrp == NULL) {
|
||||
ttyprintf(tp, "no foreground process group\n");
|
||||
tp->t_rocount = 0;
|
||||
return;
|
||||
}
|
||||
PGRP_LOCK(tp->t_pgrp);
|
||||
if (LIST_EMPTY(&tp->t_pgrp->pg_members)) {
|
||||
PGRP_UNLOCK(tp->t_pgrp);
|
||||
ttyprintf(tp, "empty foreground process group\n");
|
||||
tp->t_rocount = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Pick the most interesting process and copy some of its
|
||||
* state for printing later. This operation could rely on stale
|
||||
* data as we can't hold the proc slock or thread locks over the
|
||||
* whole list. However, we're guaranteed not to reference an exited
|
||||
* thread or proc since we hold the tty locked.
|
||||
*/
|
||||
pick = NULL;
|
||||
LIST_FOREACH(p, &tp->t_pgrp->pg_members, p_pglist)
|
||||
if (proc_compare(pick, p))
|
||||
pick = p;
|
||||
|
||||
PROC_LOCK(pick);
|
||||
picktd = NULL;
|
||||
td = FIRST_THREAD_IN_PROC(pick);
|
||||
FOREACH_THREAD_IN_PROC(pick, td)
|
||||
if (thread_compare(picktd, td))
|
||||
picktd = td;
|
||||
td = picktd;
|
||||
stateprefix = "";
|
||||
thread_lock(td);
|
||||
if (TD_IS_RUNNING(td))
|
||||
state = "running";
|
||||
else if (TD_ON_RUNQ(td) || TD_CAN_RUN(td))
|
||||
state = "runnable";
|
||||
else if (TD_IS_SLEEPING(td)) {
|
||||
/* XXX: If we're sleeping, are we ever not in a queue? */
|
||||
if (TD_ON_SLEEPQ(td))
|
||||
state = td->td_wmesg;
|
||||
else
|
||||
state = "sleeping without queue";
|
||||
} else if (TD_ON_LOCK(td)) {
|
||||
state = td->td_lockname;
|
||||
stateprefix = "*";
|
||||
} else if (TD_IS_SUSPENDED(td))
|
||||
state = "suspended";
|
||||
else if (TD_AWAITING_INTR(td))
|
||||
state = "intrwait";
|
||||
else
|
||||
state = "unknown";
|
||||
pctcpu = (sched_pctcpu(td) * 10000 + FSCALE / 2) >> FSHIFT;
|
||||
thread_unlock(td);
|
||||
if (pick->p_state == PRS_NEW || pick->p_state == PRS_ZOMBIE)
|
||||
rss = 0;
|
||||
else
|
||||
rss = pgtok(vmspace_resident_count(pick->p_vmspace));
|
||||
PROC_UNLOCK(pick);
|
||||
PROC_LOCK(pick);
|
||||
PGRP_UNLOCK(tp->t_pgrp);
|
||||
rufetchcalc(pick, &ru, &utime, &stime);
|
||||
pid = pick->p_pid;
|
||||
bcopy(pick->p_comm, comm, sizeof(comm));
|
||||
PROC_UNLOCK(pick);
|
||||
|
||||
/* Print command, pid, state, utime, stime, %cpu, and rss. */
|
||||
ttyprintf(tp,
|
||||
" cmd: %s %d [%s%s] %ld.%02ldu %ld.%02lds %d%% %ldk\n",
|
||||
comm, pid, stateprefix, state,
|
||||
(long)utime.tv_sec, utime.tv_usec / 10000,
|
||||
(long)stime.tv_sec, stime.tv_usec / 10000,
|
||||
pctcpu / 100, rss);
|
||||
tp->t_rocount = 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user