1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-15 10:17:20 +00:00

dts: Update the Device Tree Sources to Linux 4.13

This commit is contained in:
Emmanuel Vadot 2017-10-21 15:18:20 +00:00
parent f3f213a6f9
commit d5464ff117
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/vendor/device-tree/dist/; revision=324818
svn path=/vendor/device-tree/4.13/; revision=324819; tag=vendor/device-tree/4.13
885 changed files with 30770 additions and 7130 deletions

4
.gitignore vendored
View File

@ -1,4 +0,0 @@
.*
!.gitignore
*.dtb

39
Bindings/arm/actions.txt Normal file
View File

@ -0,0 +1,39 @@
Actions Semi platforms device tree bindings
-------------------------------------------
S500 SoC
========
Required root node properties:
- compatible : must contain "actions,s500"
Modules:
Root node property compatible must contain, depending on module:
- LeMaker Guitar: "lemaker,guitar"
Boards:
Root node property compatible must contain, depending on board:
- LeMaker Guitar Base Board rev. B: "lemaker,guitar-bb-rev-b", "lemaker,guitar"
S900 SoC
========
Required root node properties:
- compatible : must contain "actions,s900"
Boards:
Root node property compatible must contain, depending on board:
- uCRobotics Bubblegum-96: "ucrobotics,bubblegum-96"

View File

@ -29,26 +29,35 @@ Boards with the Amlogic Meson GXM S912 SoC shall have the following properties:
Required root node property:
compatible: "amlogic,s912", "amlogic,meson-gxm";
Board compatible values:
Board compatible values (alphabetically, grouped by SoC):
- "geniatech,atv1200" (Meson6)
- "minix,neo-x8" (Meson8)
- "tronfy,mxq" (Meson8b)
- "hardkernel,odroid-c1" (Meson8b)
- "tronfy,mxq" (Meson8b)
- "amlogic,p200" (Meson gxbb)
- "amlogic,p201" (Meson gxbb)
- "friendlyarm,nanopi-k2" (Meson gxbb)
- "hardkernel,odroid-c2" (Meson gxbb)
- "nexbox,a95x" (Meson gxbb or Meson gxl s905x)
- "tronsmart,vega-s95-pro", "tronsmart,vega-s95" (Meson gxbb)
- "tronsmart,vega-s95-meta", "tronsmart,vega-s95" (Meson gxbb)
- "tronsmart,vega-s95-telos", "tronsmart,vega-s95" (Meson gxbb)
- "hardkernel,odroid-c2" (Meson gxbb)
- "amlogic,p200" (Meson gxbb)
- "amlogic,p201" (Meson gxbb)
- "wetek,hub" (Meson gxbb)
- "wetek,play2" (Meson gxbb)
- "amlogic,p212" (Meson gxl s905x)
- "hwacom,amazetv" (Meson gxl s905x)
- "khadas,vim" (Meson gxl s905x)
- "libretech,cc" (Meson gxl s905x)
- "amlogic,p230" (Meson gxl s905d)
- "amlogic,p231" (Meson gxl s905d)
- "hwacom,amazetv" (Meson gxl s905x)
- "amlogic,q200" (Meson gxm s912)
- "amlogic,q201" (Meson gxm s912)
- "nexbox,a95x" (Meson gxbb or Meson gxl s905x)
- "kingnovel,r-box-pro" (Meson gxm S912)
- "nexbox,a1" (Meson gxm s912)

View File

@ -41,6 +41,36 @@ compatible: must be one of:
- "atmel,sama5d43"
- "atmel,sama5d44"
* "atmel,samv7" for MCUs using a Cortex-M7, shall be extended with the specific
SoC family:
o "atmel,sams70" shall be extended with the specific MCU compatible:
- "atmel,sams70j19"
- "atmel,sams70j20"
- "atmel,sams70j21"
- "atmel,sams70n19"
- "atmel,sams70n20"
- "atmel,sams70n21"
- "atmel,sams70q19"
- "atmel,sams70q20"
- "atmel,sams70q21"
o "atmel,samv70" shall be extended with the specific MCU compatible:
- "atmel,samv70j19"
- "atmel,samv70j20"
- "atmel,samv70n19"
- "atmel,samv70n20"
- "atmel,samv70q19"
- "atmel,samv70q20"
o "atmel,samv71" shall be extended with the specific MCU compatible:
- "atmel,samv71j19"
- "atmel,samv71j20"
- "atmel,samv71j21"
- "atmel,samv71n19"
- "atmel,samv71n20"
- "atmel,samv71n21"
- "atmel,samv71q19"
- "atmel,samv71q20"
- "atmel,samv71q21"
Chipid required properties:
- compatible: Should be "atmel,sama5d2-chipid"
- reg : Should contain registers location and length

View File

@ -0,0 +1,12 @@
Broadcom Stingray device tree bindings
------------------------------------------------
Boards with Stingray shall have the following properties:
Required root node property:
Stingray Combo SVK board
compatible = "brcm,bcm958742k", "brcm,stingray";
Stingray SST100 board
compatible = "brcm,bcm958742t", "brcm,stingray";

View File

@ -11,13 +11,6 @@ clusters, through memory mapped interface, with a global control register
space and multiple sets of interface control registers, one per slave
interface.
Bindings for the CCI node follow the ePAPR standard, available from:
www.power.org/documentation/epapr-version-1-1/
with the addition of the bindings described in this document which are
specific to ARM.
* CCI interconnect node
Description: Describes a CCI cache coherent Interconnect component
@ -50,10 +43,10 @@ specific to ARM.
as a tuple of cells, containing child address,
parent address and the size of the region in the
child address space.
Definition: A standard property. Follow rules in the ePAPR for
hierarchical bus addressing. CCI interfaces
addresses refer to the parent node addressing
scheme to declare their register bases.
Definition: A standard property. Follow rules in the Devicetree
Specification for hierarchical bus addressing. CCI
interfaces addresses refer to the parent node
addressing scheme to declare their register bases.
CCI interconnect node can define the following child nodes:

View File

@ -3,6 +3,7 @@
Required properties:
- compatible: (standard compatible string) should be one of:
"arm,ccn-502"
"arm,ccn-504"
"arm,ccn-508"

View File

@ -0,0 +1,49 @@
* CoreSight CPU Debug Component:
CoreSight CPU debug component are compliant with the ARMv8 architecture
reference manual (ARM DDI 0487A.k) Chapter 'Part H: External debug'. The
external debug module is mainly used for two modes: self-hosted debug and
external debug, and it can be accessed from mmio region from Coresight
and eventually the debug module connects with CPU for debugging. And the
debug module provides sample-based profiling extension, which can be used
to sample CPU program counter, secure state and exception level, etc;
usually every CPU has one dedicated debug module to be connected.
Required properties:
- compatible : should be "arm,coresight-cpu-debug"; supplemented with
"arm,primecell" since this driver is using the AMBA bus
interface.
- reg : physical base address and length of the register set.
- clocks : the clock associated to this component.
- clock-names : the name of the clock referenced by the code. Since we are
using the AMBA framework, the name of the clock providing
the interconnect should be "apb_pclk" and the clock is
mandatory. The interface between the debug logic and the
processor core is clocked by the internal CPU clock, so it
is enabled with CPU clock by default.
- cpu : the CPU phandle the debug module is affined to. When omitted
the module is considered to belong to CPU0.
Optional properties:
- power-domains: a phandle to the debug power domain. We use "power-domains"
binding to turn on the debug logic if it has own dedicated
power domain and if necessary to use "cpuidle.off=1" or
"nohlt" in the kernel command line or sysfs node to
constrain idle states to ensure registers in the CPU power
domain are accessible.
Example:
debug@f6590000 {
compatible = "arm,coresight-cpu-debug","arm,primecell";
reg = <0 0xf6590000 0 0x1000>;
clocks = <&sys_ctrl HI6220_DAPB_CLK>;
clock-names = "apb_pclk";
cpu = <&cpu0>;
};

View File

@ -6,9 +6,9 @@ The device tree allows to describe the layout of CPUs in a system through
the "cpus" node, which in turn contains a number of subnodes (ie "cpu")
defining properties for every cpu.
Bindings for CPU nodes follow the ePAPR v1.1 standard, available from:
Bindings for CPU nodes follow the Devicetree Specification, available from:
https://www.power.org/documentation/epapr-version-1-1/
https://www.devicetree.org/specifications/
with updates for 32-bit and 64-bit ARM systems provided in this document.
@ -16,8 +16,8 @@ with updates for 32-bit and 64-bit ARM systems provided in this document.
Convention used in this document
================================
This document follows the conventions described in the ePAPR v1.1, with
the addition:
This document follows the conventions described in the Devicetree
Specification, with the addition:
- square brackets define bitfields, eg reg[7:0] value of the bitfield in
the reg property contained in bits 7 down to 0
@ -26,8 +26,9 @@ the addition:
cpus and cpu node bindings definition
=====================================
The ARM architecture, in accordance with the ePAPR, requires the cpus and cpu
nodes to be present and contain the properties described below.
The ARM architecture, in accordance with the Devicetree Specification,
requires the cpus and cpu nodes to be present and contain the properties
described below.
- cpus node
@ -193,6 +194,7 @@ nodes to be present and contain the properties described below.
"spin-table"
# On ARM 32-bit systems this property is optional and
can be one of:
"actions,s500-smp"
"allwinner,sun6i-a31"
"allwinner,sun8i-a23"
"arm,realview-smp"
@ -249,7 +251,7 @@ nodes to be present and contain the properties described below.
Usage: Optional
Value type: <u32>
Definition:
# u32 value representing CPU capacity [3] in
# u32 value representing CPU capacity [4] in
DMIPS/MHz, relative to highest capacity-dmips-mhz
in the system.
@ -476,5 +478,5 @@ cpus {
[2] arm/msm/qcom,kpss-acc.txt
[3] ARM Linux kernel documentation - idle states bindings
Documentation/devicetree/bindings/arm/idle-states.txt
[3] ARM Linux kernel documentation - cpu capacity bindings
[4] ARM Linux kernel documentation - cpu capacity bindings
Documentation/devicetree/bindings/arm/cpu-capacity.txt

View File

@ -24,6 +24,19 @@ Required nodes:
global control registers, with the compatible string
"cortina,gemini-syscon", "syscon";
Required properties on the syscon:
- reg: syscon register location and size.
- #clock-cells: should be set to <1> - the system controller is also a
clock provider.
- #reset-cells: should be set to <1> - the system controller is also a
reset line provider.
The clock sources have shorthand defines in the include file:
<dt-bindings/clock/cortina,gemini-clock.h>
The reset lines have shorthand defines in the include file:
<dt-bindings/reset/cortina,gemini-reset.h>
- timer: the soc bus node must have a timer node pointing to the SoC timer
block, with the compatible string "cortina,gemini-timer"
See: clocksource/cortina,gemini-timer.txt
@ -56,12 +69,15 @@ Example:
syscon: syscon@40000000 {
compatible = "cortina,gemini-syscon", "syscon";
reg = <0x40000000 0x1000>;
#clock-cells = <1>;
#reset-cells = <1>;
};
uart0: serial@42000000 {
compatible = "ns16550a";
reg = <0x42000000 0x100>;
clock-frequency = <48000000>;
resets = <&syscon GEMINI_RESET_UART>;
clocks = <&syscon GEMINI_CLK_UART>;
interrupts = <18 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
};
@ -73,12 +89,18 @@ Example:
interrupts = <14 IRQ_TYPE_EDGE_FALLING>, /* Timer 1 */
<15 IRQ_TYPE_EDGE_FALLING>, /* Timer 2 */
<16 IRQ_TYPE_EDGE_FALLING>; /* Timer 3 */
resets = <&syscon GEMINI_RESET_TIMER>;
/* APB clock or RTC clock */
clocks = <&syscon GEMINI_CLK_APB>,
<&syscon GEMINI_CLK_RTC>;
clock-names = "PCLK", "EXTCLK";
syscon = <&syscon>;
};
intcon: interrupt-controller@48000000 {
compatible = "cortina,gemini-interrupt-controller";
reg = <0x48000000 0x1000>;
resets = <&syscon GEMINI_RESET_INTCON0>;
interrupt-controller;
#interrupt-cells = <2>;
};

View File

@ -4,6 +4,10 @@ Hi3660 SoC
Required root node properties:
- compatible = "hisilicon,hi3660";
HiKey960 Board
Required root node properties:
- compatible = "hisilicon,hi3660-hikey960", "hisilicon,hi3660";
Hi3798cv200 SoC
Required root node properties:
- compatible = "hisilicon,hi3798cv200";

View File

@ -695,5 +695,5 @@ cpus {
[4] ARM Architecture Reference Manuals
http://infocenter.arm.com/help/index.jsp
[5] ePAPR standard
https://www.power.org/documentation/epapr-version-1-1/
[5] Devicetree Specification
https://www.devicetree.org/specifications/

View File

@ -37,3 +37,6 @@ Boards:
- K2G EVM
compatible = "ti,k2g-evm", "ti,k2g", "ti-keystone"
- K2G Industrial Communication Engine EVM
compatible = "ti,k2g-ice", "ti,k2g", "ti-keystone"

View File

@ -4,8 +4,8 @@ ARM cores often have a separate L2C210/L2C220/L2C310 (also known as PL210/PL220/
PL310 and variants) based level 2 cache controller. All these various implementations
of the L2 cache controller have compatible programming models (Note 1).
Some of the properties that are just prefixed "cache-*" are taken from section
3.7.3 of the ePAPR v1.1 specification which can be found at:
https://www.power.org/wp-content/uploads/2012/06/Power_ePAPR_APPROVED_v1.1.pdf
3.7.3 of the Devicetree Specification which can be found at:
https://www.devicetree.org/specifications/
The ARM L2 cache representation in the device tree should be done as follows:

View File

@ -7,6 +7,14 @@ registers giving access to numerous features: clocks, pin-muxing and
many other SoC configuration items. This DT binding allows to describe
this system controller.
For the top level node:
- compatible: must be: "syscon", "simple-mfd";
- reg: register area of the AP806 system controller
Clocks:
-------
The Device Tree node representing the AP806 system controller provides
a number of clocks:
@ -17,19 +25,76 @@ a number of clocks:
Required properties:
- compatible: must be:
"marvell,ap806-system-controller", "syscon"
- reg: register area of the AP806 system controller
- compatible: must be: "marvell,ap806-clock"
- #clock-cells: must be set to 1
- clock-output-names: must be defined to:
"ap-cpu-cluster-0", "ap-cpu-cluster-1", "ap-fixed", "ap-mss"
Pinctrl:
--------
For common binding part and usage, refer to
Documentation/devicetree/bindings/pinctrl/marvell,mvebu-pinctrl.txt.
Required properties:
- compatible must be "marvell,ap806-pinctrl",
Available mpp pins/groups and functions:
Note: brackets (x) are not part of the mpp name for marvell,function and given
only for more detailed description in this document.
name pins functions
================================================================================
mpp0 0 gpio, sdio(clk), spi0(clk)
mpp1 1 gpio, sdio(cmd), spi0(miso)
mpp2 2 gpio, sdio(d0), spi0(mosi)
mpp3 3 gpio, sdio(d1), spi0(cs0n)
mpp4 4 gpio, sdio(d2), i2c0(sda)
mpp5 5 gpio, sdio(d3), i2c0(sdk)
mpp6 6 gpio, sdio(ds)
mpp7 7 gpio, sdio(d4), uart1(rxd)
mpp8 8 gpio, sdio(d5), uart1(txd)
mpp9 9 gpio, sdio(d6), spi0(cs1n)
mpp10 10 gpio, sdio(d7)
mpp11 11 gpio, uart0(txd)
mpp12 12 gpio, sdio(pw_off), sdio(hw_rst)
mpp13 13 gpio
mpp14 14 gpio
mpp15 15 gpio
mpp16 16 gpio
mpp17 17 gpio
mpp18 18 gpio
mpp19 19 gpio, uart0(rxd), sdio(pw_off)
GPIO:
-----
For common binding part and usage, refer to
Documentation/devicetree/bindings/gpio/gpio-mvebu.txt.
Required properties:
- compatible: "marvell,armada-8k-gpio"
- offset: offset address inside the syscon block
Example:
ap_syscon: system-controller@6f4000 {
compatible = "syscon", "simple-mfd";
reg = <0x6f4000 0x1000>;
syscon: system-controller@6f4000 {
compatible = "marvell,ap806-system-controller", "syscon";
ap_clk: clock {
compatible = "marvell,ap806-clock";
#clock-cells = <1>;
clock-output-names = "ap-cpu-cluster-0", "ap-cpu-cluster-1",
"ap-fixed", "ap-mss";
reg = <0x6f4000 0x1000>;
};
ap_pinctrl: pinctrl {
compatible = "marvell,ap806-pinctrl";
};
ap_gpio: gpio {
compatible = "marvell,armada-8k-gpio";
offset = <0x1040>;
ngpios = <19>;
gpio-controller;
#gpio-cells = <2>;
gpio-ranges = <&ap_pinctrl 0 0 19>;
};
};

View File

@ -7,6 +7,13 @@ Controller 0 and System Controller 1. This Device Tree binding allows
to describe the first system controller, which provides registers to
configure various aspects of the SoC.
For the top level node:
- compatible: must be: "syscon", "simple-mfd";
- reg: register area of the CP110 system controller 0
Clocks:
-------
The Device Tree node representing this System Controller 0 provides a
number of clocks:
@ -27,6 +34,7 @@ The following clocks are available:
- 0 2 EIP
- 0 3 Core
- 0 4 NAND core
- 0 5 SDIO core
- Gatable clocks
- 1 0 Audio
- 1 1 Comm Unit
@ -56,28 +64,126 @@ The following clocks are available:
Required properties:
- compatible: must be:
"marvell,cp110-system-controller0", "syscon";
- reg: register area of the CP110 system controller 0
"marvell,cp110-clock"
- #clock-cells: must be set to 2
- core-clock-output-names must be set to:
"cpm-apll", "cpm-ppv2-core", "cpm-eip", "cpm-core", "cpm-nand-core"
- gate-clock-output-names must be set to:
"cpm-audio", "cpm-communit", "cpm-nand", "cpm-ppv2", "cpm-sdio",
"cpm-mg-domain", "cpm-mg-core", "cpm-xor1", "cpm-xor0", "cpm-gop-dp", "none",
"cpm-pcie_x10", "cpm-pcie_x11", "cpm-pcie_x4", "cpm-pcie-xor", "cpm-sata",
"cpm-sata-usb", "cpm-main", "cpm-sd-mmc-gop", "none", "none", "cpm-slow-io",
"cpm-usb3h0", "cpm-usb3h1", "cpm-usb3dev", "cpm-eip150", "cpm-eip197";
Pinctrl:
--------
For common binding part and usage, refer to the file
Documentation/devicetree/bindings/pinctrl/marvell,mvebu-pinctrl.txt.
Required properties:
- compatible: "marvell,armada-7k-pinctrl",
"marvell,armada-8k-cpm-pinctrl" or "marvell,armada-8k-cps-pinctrl"
depending on the specific variant of the SoC being used.
Available mpp pins/groups and functions:
Note: brackets (x) are not part of the mpp name for marvell,function and given
only for more detailed description in this document.
name pins functions
================================================================================
mpp0 0 gpio, dev(ale1), au(i2smclk), ge0(rxd3), tdm(pclk), ptp(pulse), mss_i2c(sda), uart0(rxd), sata0(present_act), ge(mdio)
mpp1 1 gpio, dev(ale0), au(i2sdo_spdifo), ge0(rxd2), tdm(drx), ptp(clk), mss_i2c(sck), uart0(txd), sata1(present_act), ge(mdc)
mpp2 2 gpio, dev(ad15), au(i2sextclk), ge0(rxd1), tdm(dtx), mss_uart(rxd), ptp(pclk_out), i2c1(sck), uart1(rxd), sata0(present_act), xg(mdc)
mpp3 3 gpio, dev(ad14), au(i2slrclk), ge0(rxd0), tdm(fsync), mss_uart(txd), pcie(rstoutn), i2c1(sda), uart1(txd), sata1(present_act), xg(mdio)
mpp4 4 gpio, dev(ad13), au(i2sbclk), ge0(rxctl), tdm(rstn), mss_uart(rxd), uart1(cts), pcie0(clkreq), uart3(rxd), ge(mdc)
mpp5 5 gpio, dev(ad12), au(i2sdi), ge0(rxclk), tdm(intn), mss_uart(txd), uart1(rts), pcie1(clkreq), uart3(txd), ge(mdio)
mpp6 6 gpio, dev(ad11), ge0(txd3), spi0(csn2), au(i2sextclk), sata1(present_act), pcie2(clkreq), uart0(rxd), ptp(pulse)
mpp7 7 gpio, dev(ad10), ge0(txd2), spi0(csn1), spi1(csn1), sata0(present_act), led(data), uart0(txd), ptp(clk)
mpp8 8 gpio, dev(ad9), ge0(txd1), spi0(csn0), spi1(csn0), uart0(cts), led(stb), uart2(rxd), ptp(pclk_out), synce1(clk)
mpp9 9 gpio, dev(ad8), ge0(txd0), spi0(mosi), spi1(mosi), pcie(rstoutn), synce2(clk)
mpp10 10 gpio, dev(readyn), ge0(txctl), spi0(miso), spi1(miso), uart0(cts), sata1(present_act)
mpp11 11 gpio, dev(wen1), ge0(txclkout), spi0(clk), spi1(clk), uart0(rts), led(clk), uart2(txd), sata0(present_act)
mpp12 12 gpio, dev(clk_out), nf(rbn1), spi1(csn1), ge0(rxclk)
mpp13 13 gpio, dev(burstn), nf(rbn0), spi1(miso), ge0(rxctl), mss_spi(miso)
mpp14 14 gpio, dev(bootcsn), dev(csn0), spi1(csn0), spi0(csn3), au(i2sextclk), spi0(miso), sata0(present_act), mss_spi(csn)
mpp15 15 gpio, dev(ad7), spi1(mosi), spi0(mosi), mss_spi(mosi), ptp(pulse_cp2cp)
mpp16 16 gpio, dev(ad6), spi1(clk), mss_spi(clk)
mpp17 17 gpio, dev(ad5), ge0(txd3)
mpp18 18 gpio, dev(ad4), ge0(txd2), ptp(clk_cp2cp)
mpp19 19 gpio, dev(ad3), ge0(txd1), wakeup(out_cp2cp)
mpp20 20 gpio, dev(ad2), ge0(txd0)
mpp21 21 gpio, dev(ad1), ge0(txctl), sei(in_cp2cp)
mpp22 22 gpio, dev(ad0), ge0(txclkout), wakeup(in_cp2cp)
mpp23 23 gpio, dev(a1), au(i2smclk), link(rd_in_cp2cp)
mpp24 24 gpio, dev(a0), au(i2slrclk)
mpp25 25 gpio, dev(oen), au(i2sdo_spdifo)
mpp26 26 gpio, dev(wen0), au(i2sbclk)
mpp27 27 gpio, dev(csn0), spi1(miso), mss_gpio4, ge0(rxd3), spi0(csn4), ge(mdio), sata0(present_act), uart0(rts), rei(in_cp2cp)
mpp28 28 gpio, dev(csn1), spi1(csn0), mss_gpio5, ge0(rxd2), spi0(csn5), pcie2(clkreq), ptp(pulse), ge(mdc), sata1(present_act), uart0(cts), led(data)
mpp29 29 gpio, dev(csn2), spi1(mosi), mss_gpio6, ge0(rxd1), spi0(csn6), pcie1(clkreq), ptp(clk), mss_i2c(sda), sata0(present_act), uart0(rxd), led(stb)
mpp30 30 gpio, dev(csn3), spi1(clk), mss_gpio7, ge0(rxd0), spi0(csn7), pcie0(clkreq), ptp(pclk_out), mss_i2c(sck), sata1(present_act), uart0(txd), led(clk)
mpp31 31 gpio, dev(a2), mss_gpio4, pcie(rstoutn), ge(mdc)
mpp32 32 gpio, mii(col), mii(txerr), mss_spi(miso), tdm(drx), au(i2sextclk), au(i2sdi), ge(mdio), sdio(v18_en), pcie1(clkreq), mss_gpio0
mpp33 33 gpio, mii(txclk), sdio(pwr10), mss_spi(csn), tdm(fsync), au(i2smclk), sdio(bus_pwr), xg(mdio), pcie2(clkreq), mss_gpio1
mpp34 34 gpio, mii(rxerr), sdio(pwr11), mss_spi(mosi), tdm(dtx), au(i2slrclk), sdio(wr_protect), ge(mdc), pcie0(clkreq), mss_gpio2
mpp35 35 gpio, sata1(present_act), i2c1(sda), mss_spi(clk), tdm(pclk), au(i2sdo_spdifo), sdio(card_detect), xg(mdio), ge(mdio), pcie(rstoutn), mss_gpio3
mpp36 36 gpio, synce2(clk), i2c1(sck), ptp(clk), synce1(clk), au(i2sbclk), sata0(present_act), xg(mdc), ge(mdc), pcie2(clkreq), mss_gpio5
mpp37 37 gpio, uart2(rxd), i2c0(sck), ptp(pclk_out), tdm(intn), mss_i2c(sck), sata1(present_act), ge(mdc), xg(mdc), pcie1(clkreq), mss_gpio6, link(rd_out_cp2cp)
mpp38 38 gpio, uart2(txd), i2c0(sda), ptp(pulse), tdm(rstn), mss_i2c(sda), sata0(present_act), ge(mdio), xg(mdio), au(i2sextclk), mss_gpio7, ptp(pulse_cp2cp)
mpp39 39 gpio, sdio(wr_protect), au(i2sbclk), ptp(clk), spi0(csn1), sata1(present_act), mss_gpio0
mpp40 40 gpio, sdio(pwr11), synce1(clk), mss_i2c(sda), au(i2sdo_spdifo), ptp(pclk_out), spi0(clk), uart1(txd), ge(mdio), sata0(present_act), mss_gpio1
mpp41 41 gpio, sdio(pwr10), sdio(bus_pwr), mss_i2c(sck), au(i2slrclk), ptp(pulse), spi0(mosi), uart1(rxd), ge(mdc), sata1(present_act), mss_gpio2, rei(out_cp2cp)
mpp42 42 gpio, sdio(v18_en), sdio(wr_protect), synce2(clk), au(i2smclk), mss_uart(txd), spi0(miso), uart1(cts), xg(mdc), sata0(present_act), mss_gpio4
mpp43 43 gpio, sdio(card_detect), synce1(clk), au(i2sextclk), mss_uart(rxd), spi0(csn0), uart1(rts), xg(mdio), sata1(present_act), mss_gpio5, wakeup(out_cp2cp)
mpp44 44 gpio, ge1(txd2), uart0(rts), ptp(clk_cp2cp)
mpp45 45 gpio, ge1(txd3), uart0(txd), pcie(rstoutn)
mpp46 46 gpio, ge1(txd1), uart1(rts)
mpp47 47 gpio, ge1(txd0), spi1(clk), uart1(txd), ge(mdc)
mpp48 48 gpio, ge1(txctl_txen), spi1(mosi), xg(mdc), wakeup(in_cp2cp)
mpp49 49 gpio, ge1(txclkout), mii(crs), spi1(miso), uart1(rxd), ge(mdio), pcie0(clkreq), sdio(v18_en), sei(out_cp2cp)
mpp50 50 gpio, ge1(rxclk), mss_i2c(sda), spi1(csn0), uart2(txd), uart0(rxd), xg(mdio), sdio(pwr11)
mpp51 51 gpio, ge1(rxd0), mss_i2c(sck), spi1(csn1), uart2(rxd), uart0(cts), sdio(pwr10)
mpp52 52 gpio, ge1(rxd1), synce1(clk), synce2(clk), spi1(csn2), uart1(cts), led(clk), pcie(rstoutn), pcie0(clkreq)
mpp53 53 gpio, ge1(rxd2), ptp(clk), spi1(csn3), uart1(rxd), led(stb), sdio(led)
mpp54 54 gpio, ge1(rxd3), synce2(clk), ptp(pclk_out), synce1(clk), led(data), sdio(hw_rst), sdio(wr_protect)
mpp55 55 gpio, ge1(rxctl_rxdv), ptp(pulse), sdio(led), sdio(card_detect)
mpp56 56 gpio, tdm(drx), au(i2sdo_spdifo), spi0(clk), uart1(rxd), sata1(present_act), sdio(clk)
mpp57 57 gpio, mss_i2c(sda), ptp(pclk_out), tdm(intn), au(i2sbclk), spi0(mosi), uart1(txd), sata0(present_act), sdio(cmd)
mpp58 58 gpio, mss_i2c(sck), ptp(clk), tdm(rstn), au(i2sdi), spi0(miso), uart1(cts), led(clk), sdio(d0)
mpp59 59 gpio, mss_gpio7, synce2(clk), tdm(fsync), au(i2slrclk), spi0(csn0), uart0(cts), led(stb), uart1(txd), sdio(d1)
mpp60 60 gpio, mss_gpio6, ptp(pulse), tdm(dtx), au(i2smclk), spi0(csn1), uart0(rts), led(data), uart1(rxd), sdio(d2)
mpp61 61 gpio, mss_gpio5, ptp(clk), tdm(pclk), au(i2sextclk), spi0(csn2), uart0(txd), uart2(txd), sata1(present_act), ge(mdio), sdio(d3)
mpp62 62 gpio, mss_gpio4, synce1(clk), ptp(pclk_out), sata1(present_act), spi0(csn3), uart0(rxd), uart2(rxd), sata0(present_act), ge(mdc)
GPIO:
-----
For common binding part and usage, refer to
Documentation/devicetree/bindings/gpio/gpio-mvebu.txt.
Required properties:
- compatible: "marvell,armada-8k-gpio"
- offset: offset address inside the syscon block
Example:
cpm_syscon0: system-controller@440000 {
compatible = "marvell,cp110-system-controller0", "syscon";
reg = <0x440000 0x1000>;
cpm_syscon0: system-controller@440000 {
compatible = "syscon", "simple-mfd";
reg = <0x440000 0x1000>;
cpm_clk: clock {
compatible = "marvell,cp110-clock";
#clock-cells = <2>;
core-clock-output-names = "cpm-apll", "cpm-ppv2-core", "cpm-eip", "cpm-core", "cpm-nand-core";
gate-clock-output-names = "cpm-audio", "cpm-communit", "cpm-nand", "cpm-ppv2", "cpm-sdio",
"cpm-mg-domain", "cpm-mg-core", "cpm-xor1", "cpm-xor0", "cpm-gop-dp", "none",
"cpm-pcie_x10", "cpm-pcie_x11", "cpm-pcie_x4", "cpm-pcie-xor", "cpm-sata",
"cpm-sata-usb", "cpm-main", "cpm-sd-mmc-gop", "none", "none", "cpm-slow-io",
"cpm-usb3h0", "cpm-usb3h1", "cpm-usb3dev", "cpm-eip150", "cpm-eip197";
};
cpm_pinctrl: pinctrl {
compatible = "marvell,armada-8k-cpm-pinctrl";
};
cpm_gpio1: gpio@100 {
compatible = "marvell,armada-8k-gpio";
offset = <0x100>;
ngpios = <32>;
gpio-controller;
#gpio-cells = <2>;
gpio-ranges = <&cpm_pinctrl 0 0 32>;
status = "disabled";
};
};

View File

@ -12,6 +12,8 @@ compatible: Must contain one of
"mediatek,mt6592"
"mediatek,mt6755"
"mediatek,mt6795"
"mediatek,mt6797"
"mediatek,mt7622"
"mediatek,mt7623"
"mediatek,mt8127"
"mediatek,mt8135"
@ -38,6 +40,12 @@ Supported boards:
- Evaluation board for MT6795(Helio X10):
Required root node properties:
- compatible = "mediatek,mt6795-evb", "mediatek,mt6795";
- Evaluation board for MT6797(Helio X20):
Required root node properties:
- compatible = "mediatek,mt6797-evb", "mediatek,mt6797";
- Reference board variant 1 for MT7622:
Required root node properties:
- compatible = "mediatek,mt7622-rfb1", "mediatek,mt7622";
- Evaluation board for MT7623:
Required root node properties:
- compatible = "mediatek,mt7623-evb", "mediatek,mt7623";

20
Bindings/arm/realtek.txt Normal file
View File

@ -0,0 +1,20 @@
Realtek platforms device tree bindings
--------------------------------------
RTD1295 SoC
===========
Required root node properties:
- compatible : must contain "realtek,rtd1295"
Root node property compatible must contain, depending on board:
- Zidoo X9S: "zidoo,x9s"
Example:
compatible = "zidoo,x9s", "realtek,rtd1295";

View File

@ -42,6 +42,10 @@ Rockchip platforms device tree bindings
Required root node properties:
- compatible = "firefly,firefly-rk3288-reload", "rockchip,rk3288";
- Firefly Firefly-RK3399 board:
Required root node properties:
- compatible = "firefly,firefly-rk3399", "rockchip,rk3399";
- ChipSPARK PopMetal-RK3288 board:
Required root node properties:
- compatible = "chipspark,popmetal-rk3288", "rockchip,rk3288";
@ -138,9 +142,9 @@ Rockchip platforms device tree bindings
Required root node properties:
- compatible = "rockchip,px5-evb", "rockchip,px5", "rockchip,rk3368";
- Rockchip RK1108 Evaluation board
- Rockchip RV1108 Evaluation board
Required root node properties:
- compatible = "rockchip,rk1108-evb", "rockchip,rk1108";
- compatible = "rockchip,rv1108-evb", "rockchip,rv1108";
- Rockchip RK3368 evb:
Required root node properties:

View File

@ -55,12 +55,19 @@ Boards:
compatible = "renesas,bockw", "renesas,r8a7778"
- Genmai (RTK772100BC00000BR)
compatible = "renesas,genmai", "renesas,r7s72100"
- GR-Peach (X28A-M01-E/F)
compatible = "renesas,gr-peach", "renesas,r7s72100"
- Gose (RTP0RC7793SEB00010S)
compatible = "renesas,gose", "renesas,r8a7793"
- H3ULCB (R-Car Starter Kit Premier, RTP0RC7795SKB00010S)
- H3ULCB (R-Car Starter Kit Premier, RTP0RC7795SKBX0010SA00 (H3 ES1.1))
H3ULCB (R-Car Starter Kit Premier, RTP0RC77951SKBX010SA00 (H3 ES2.0))
compatible = "renesas,h3ulcb", "renesas,r8a7795";
- Henninger
compatible = "renesas,henninger", "renesas,r8a7791"
- iWave Systems RZ/G1M Qseven Development Platform (iW-RainboW-G20D-Qseven)
compatible = "iwave,g20d", "iwave,g20m", "renesas,r8a7743"
- iWave Systems RZ/G1M Qseven System On Module (iW-RainboW-G20M-Qseven)
compatible = "iwave,g20m", "renesas,r8a7743"
- Koelsch (RTP0RC7791SEB00010S)
compatible = "renesas,koelsch", "renesas,r8a7791"
- Kyoto Microcomputer Co. KZM-A9-Dual
@ -69,7 +76,7 @@ Boards:
compatible = "renesas,kzm9g", "renesas,sh73a0"
- Lager (RTP0RC7790SEB00010S)
compatible = "renesas,lager", "renesas,r8a7790"
- M3ULCB (R-Car Starter Kit Pro, RTP0RC7796SKB00010S)
- M3ULCB (R-Car Starter Kit Pro, RTP0RC7796SKBX0010SA09 (M3 ES1.0))
compatible = "renesas,m3ulcb", "renesas,r8a7796";
- Marzen (R0P7779A00010S)
compatible = "renesas,marzen", "renesas,r8a7779"
@ -81,6 +88,8 @@ Boards:
compatible = "renesas,salvator-x", "renesas,r8a7795";
- Salvator-X (RTP0RC7796SIPB0011S)
compatible = "renesas,salvator-x", "renesas,r8a7796";
- Salvator-XS (Salvator-X 2nd version, RTP0RC7795SIPB0012S)
compatible = "renesas,salvator-xs", "renesas,r8a7795";
- SILK (RTP0RC7794LCB00011S)
compatible = "renesas,silk", "renesas,r8a7794"
- SK-RZG1E (YR8A77450S000BE)

View File

@ -29,7 +29,6 @@ board-specific compatible values:
nvidia,harmony
nvidia,seaboard
nvidia,ventana
nvidia,whistler
toradex,apalis_t30
toradex,apalis_t30-eval
toradex,apalis-tk1

View File

@ -29,9 +29,9 @@ corresponding to the system hierarchy; syntactically they are defined as device
tree nodes.
The remainder of this document provides the topology bindings for ARM, based
on the ePAPR standard, available from:
on the Devicetree Specification, available from:
http://www.power.org/documentation/epapr-version-1-1/
https://www.devicetree.org/specifications/
If not stated otherwise, whenever a reference to a cpu node phandle is made its
value must point to a cpu node compliant with the cpu node bindings as

View File

@ -3,7 +3,7 @@ Binding for Freescale QorIQ AHCI SATA Controller
Required properties:
- reg: Physical base address and size of the controller's register area.
- compatible: Compatibility string. Must be 'fsl,<chip>-ahci', where
chip could be ls1021a, ls1043a, ls1046a, ls2080a etc.
chip could be ls1021a, ls1043a, ls1046a, ls1088a, ls2080a etc.
- clocks: Input clock specifier. Refer to common clock bindings.
- interrupts: Interrupt specifier. Refer to interrupt binding.

View File

@ -0,0 +1,55 @@
* Cortina Systems Gemini SATA Bridge
The Gemini SATA bridge in a SoC-internal PATA to SATA bridge that
takes two Faraday Technology FTIDE010 PATA controllers and bridges
them in different configurations to two SATA ports.
Required properties:
- compatible: should be
"cortina,gemini-sata-bridge"
- reg: registers and size for the block
- resets: phandles to the reset lines for both SATA bridges
- reset-names: must be "sata0", "sata1"
- clocks: phandles to the compulsory peripheral clocks
- clock-names: must be "SATA0_PCLK", "SATA1_PCLK"
- syscon: a phandle to the global Gemini system controller
- cortina,gemini-ata-muxmode: tell the desired multiplexing mode for
the ATA controller and SATA bridges. Values 0..3:
Mode 0: ata0 master <-> sata0
ata1 master <-> sata1
ata0 slave interface brought out on IDE pads
Mode 1: ata0 master <-> sata0
ata1 master <-> sata1
ata1 slave interface brought out on IDE pads
Mode 2: ata1 master <-> sata1
ata1 slave <-> sata0
ata0 master and slave interfaces brought out
on IDE pads
Mode 3: ata0 master <-> sata0
ata0 slave <-> sata1
ata1 master and slave interfaces brought out
on IDE pads
Optional boolean properties:
- cortina,gemini-enable-ide-pins: enables the PATA to IDE connection.
The muxmode setting decides whether ATA0 or ATA1 is brought out,
and whether master, slave or both interfaces get brought out.
- cortina,gemini-enable-sata-bridge: enables the PATA to SATA bridge
inside the Gemnini SoC. The Muxmode decides what PATA blocks will
be muxed out and how.
Example:
sata: sata@46000000 {
compatible = "cortina,gemini-sata-bridge";
reg = <0x46000000 0x100>;
resets = <&rcon 26>, <&rcon 27>;
reset-names = "sata0", "sata1";
clocks = <&gcc GEMINI_CLK_GATE_SATA0>,
<&gcc GEMINI_CLK_GATE_SATA1>;
clock-names = "SATA0_PCLK", "SATA1_PCLK";
syscon = <&syscon>;
cortina,gemini-ata-muxmode = <3>;
cortina,gemini-enable-ide-pins;
cortina,gemini-enable-sata-bridge;
};

View File

@ -0,0 +1,38 @@
* Faraday Technology FTIDE010 PATA controller
This controller is the first Faraday IDE interface block, used in the
StorLink SL2312 and SL3516, later known as the Cortina Systems Gemini
platform. The controller can do PIO modes 0 through 4, Multi-word DMA
(MWDM)modes 0 through 2 and Ultra DMA modes 0 through 6.
On the Gemini platform, this PATA block is accompanied by a PATA to
SATA bridge in order to support SATA. This is why a phandle to that
controller is compulsory on that platform.
The timing properties are unique per-SoC, not per-board.
Required properties:
- compatible: should be one of
"cortina,gemini-pata", "faraday,ftide010"
"faraday,ftide010"
- interrupts: interrupt for the block
- reg: registers and size for the block
Optional properties:
- clocks: a SoC clock running the peripheral.
- clock-names: should be set to "PCLK" for the peripheral clock.
Required properties for "cortina,gemini-pata" compatible:
- sata: a phande to the Gemini PATA to SATA bridge, see
cortina,gemini-sata-bridge.txt for details.
Example:
ata@63000000 {
compatible = "cortina,gemini-pata", "faraday,ftide010";
reg = <0x63000000 0x100>;
interrupts = <4 IRQ_TYPE_EDGE_RISING>;
clocks = <&gcc GEMINI_CLK_GATE_IDE>;
clock-names = "PCLK";
sata = <&sata>;
};

View File

@ -1,14 +1,22 @@
* Renesas R-Car SATA
Required properties:
- compatible : should contain one of the following:
- compatible : should contain one or more of the following:
- "renesas,sata-r8a7779" for R-Car H1
("renesas,rcar-sata" is deprecated)
- "renesas,sata-r8a7790-es1" for R-Car H2 ES1
- "renesas,sata-r8a7790" for R-Car H2 other than ES1
- "renesas,sata-r8a7791" for R-Car M2-W
- "renesas,sata-r8a7793" for R-Car M2-N
- "renesas,sata-r8a7795" for R-Car H3
- "renesas,rcar-gen2-sata" for a generic R-Car Gen2 compatible device
- "renesas,rcar-gen3-sata" for a generic R-Car Gen3 compatible device
- "renesas,rcar-sata" is deprecated
When compatible with the generic version nodes
must list the SoC-specific version corresponding
to the platform first followed by the generic
version.
- reg : address and length of the SATA registers;
- interrupts : must consist of one interrupt specifier.
- clocks : must contain a reference to the functional clock.
@ -16,7 +24,7 @@ Required properties:
Example:
sata0: sata@ee300000 {
compatible = "renesas,sata-r8a7791";
compatible = "renesas,sata-r8a7791", "renesas,rcar-gen2-sata";
reg = <0 0xee300000 0 0x2000>;
interrupt-parent = <&gic>;
interrupts = <0 105 IRQ_TYPE_LEVEL_HIGH>;

View File

@ -3,7 +3,8 @@ Broadcom GISB bus Arbiter controller
Required properties:
- compatible:
"brcm,gisb-arb" or "brcm,bcm7445-gisb-arb" for 28nm chips
"brcm,bcm7278-gisb-arb" for V7 28nm chips
"brcm,gisb-arb" or "brcm,bcm7445-gisb-arb" for other 28nm chips
"brcm,bcm7435-gisb-arb" for newer 40nm chips
"brcm,bcm7400-gisb-arb" for older 40nm chips and all 65nm chips
"brcm,bcm7038-gisb-arb" for 130nm chips

View File

@ -10,7 +10,7 @@ enabled for child devices connected to the bus (either on-SoC or externally)
to function.
While "simple-pm-bus" follows the "simple-bus" set of properties, as specified
in ePAPR, it is not an extension of "simple-bus".
in the Devicetree Specification, it is not an extension of "simple-bus".
Required properties:

View File

@ -10,7 +10,8 @@ stdout-path property
--------------------
Device trees may specify the device to be used for boot console output
with a stdout-path property under /chosen, as described in ePAPR, e.g.
with a stdout-path property under /chosen, as described in the Devicetree
Specification, e.g.
/ {
chosen {

View File

@ -1,11 +1,14 @@
* Amlogic Meson8b Clock and Reset Unit
* Amlogic Meson8, Meson8b and Meson8m2 Clock and Reset Unit
The Amlogic Meson8b clock controller generates and supplies clock to various
controllers within the SoC.
The Amlogic Meson8 / Meson8b / Meson8m2 clock controller generates and
supplies clock to various controllers within the SoC.
Required Properties:
- compatible: should be "amlogic,meson8b-clkc"
- compatible: must be one of:
- "amlogic,meson8-clkc" for Meson8 (S802) SoCs
- "amlogic,meson8b-clkc" for Meson8 (S805) SoCs
- "amlogic,meson8m2-clkc" for Meson8m2 (S812) SoCs
- reg: it must be composed by two tuples:
0) physical base address of the xtal register and length of memory
mapped region.

View File

@ -219,3 +219,79 @@ BCM63138
--------
PLL and leaf clock compatible strings for BCM63138 are:
"brcm,bcm63138-armpll"
Stingray
-----------
PLL and leaf clock compatible strings for Stingray are:
"brcm,sr-genpll0"
"brcm,sr-genpll1"
"brcm,sr-genpll2"
"brcm,sr-genpll3"
"brcm,sr-genpll4"
"brcm,sr-genpll5"
"brcm,sr-genpll6"
"brcm,sr-lcpll0"
"brcm,sr-lcpll1"
"brcm,sr-lcpll-pcie"
The following table defines the set of PLL/clock index and ID for Stingray.
These clock IDs are defined in:
"include/dt-bindings/clock/bcm-sr.h"
Clock Source Index ID
--- ----- ----- ---------
crystal N/A N/A N/A
crmu_ref25m crystal N/A N/A
genpll0 crystal 0 BCM_SR_GENPLL0
clk_125m genpll0 1 BCM_SR_GENPLL0_125M_CLK
clk_scr genpll0 2 BCM_SR_GENPLL0_SCR_CLK
clk_250 genpll0 3 BCM_SR_GENPLL0_250M_CLK
clk_pcie_axi genpll0 4 BCM_SR_GENPLL0_PCIE_AXI_CLK
clk_paxc_axi_x2 genpll0 5 BCM_SR_GENPLL0_PAXC_AXI_X2_CLK
clk_paxc_axi genpll0 6 BCM_SR_GENPLL0_PAXC_AXI_CLK
genpll1 crystal 0 BCM_SR_GENPLL1
clk_pcie_tl genpll1 1 BCM_SR_GENPLL1_PCIE_TL_CLK
clk_mhb_apb genpll1 2 BCM_SR_GENPLL1_MHB_APB_CLK
genpll2 crystal 0 BCM_SR_GENPLL2
clk_nic genpll2 1 BCM_SR_GENPLL2_NIC_CLK
clk_ts_500_ref genpll2 2 BCM_SR_GENPLL2_TS_500_REF_CLK
clk_125_nitro genpll2 3 BCM_SR_GENPLL2_125_NITRO_CLK
clk_chimp genpll2 4 BCM_SR_GENPLL2_CHIMP_CLK
clk_nic_flash genpll2 5 BCM_SR_GENPLL2_NIC_FLASH
genpll3 crystal 0 BCM_SR_GENPLL3
clk_hsls genpll3 1 BCM_SR_GENPLL3_HSLS_CLK
clk_sdio genpll3 2 BCM_SR_GENPLL3_SDIO_CLK
genpll4 crystal 0 BCM_SR_GENPLL4
ccn genpll4 1 BCM_SR_GENPLL4_CCN_CLK
clk_tpiu_pll genpll4 2 BCM_SR_GENPLL4_TPIU_PLL_CLK
noc_clk genpll4 3 BCM_SR_GENPLL4_NOC_CLK
clk_chclk_fs4 genpll4 4 BCM_SR_GENPLL4_CHCLK_FS4_CLK
clk_bridge_fscpu genpll4 5 BCM_SR_GENPLL4_BRIDGE_FSCPU_CLK
genpll5 crystal 0 BCM_SR_GENPLL5
fs4_hf_clk genpll5 1 BCM_SR_GENPLL5_FS4_HF_CLK
crypto_ae_clk genpll5 2 BCM_SR_GENPLL5_CRYPTO_AE_CLK
raid_ae_clk genpll5 3 BCM_SR_GENPLL5_RAID_AE_CLK
genpll6 crystal 0 BCM_SR_GENPLL6
48_usb genpll6 1 BCM_SR_GENPLL6_48_USB_CLK
lcpll0 crystal 0 BCM_SR_LCPLL0
clk_sata_refp lcpll0 1 BCM_SR_LCPLL0_SATA_REFP_CLK
clk_sata_refn lcpll0 2 BCM_SR_LCPLL0_SATA_REFN_CLK
clk_usb_ref lcpll0 3 BCM_SR_LCPLL0_USB_REF_CLK
sata_refpn lcpll0 3 BCM_SR_LCPLL0_SATA_REFPN_CLK
lcpll1 crystal 0 BCM_SR_LCPLL1
wan lcpll1 1 BCM_SR_LCPLL0_WAN_CLK
lcpll_pcie crystal 0 BCM_SR_LCPLL_PCIE
pcie_phy_ref lcpll1 1 BCM_SR_LCPLL_PCIE_PHY_REF_CLK

View File

@ -11,6 +11,7 @@ Required Properties:
- compatible: the compatible should be one of the following strings to
indicate the clock controller functionality.
- "hisilicon,hi6220-acpu-sctrl"
- "hisilicon,hi6220-aoctrl"
- "hisilicon,hi6220-sysctrl"
- "hisilicon,hi6220-mediactrl"

View File

@ -0,0 +1,31 @@
Binding for Imagination Technologies MIPS Boston clock sources.
This binding uses the common clock binding[1].
[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
The device node must be a child node of the syscon node corresponding to the
Boston system's platform registers.
Required properties:
- compatible : Should be "img,boston-clock".
- #clock-cells : Should be set to 1.
Values available for clock consumers can be found in the header file:
<dt-bindings/clock/boston-clock.h>
Example:
system-controller@17ffd000 {
compatible = "img,boston-platform-regs", "syscon";
reg = <0x17ffd000 0x1000>;
clk_boston: clock {
compatible = "img,boston-clock";
#clock-cells = <1>;
};
};
uart0: uart@17ffe000 {
/* ... */
clocks = <&clk_boston BOSTON_CLK_SYS>;
};

View File

@ -8,6 +8,7 @@ Required properties :
"qcom,gcc-apq8084"
"qcom,gcc-ipq8064"
"qcom,gcc-ipq4019"
"qcom,gcc-ipq8074"
"qcom,gcc-msm8660"
"qcom,gcc-msm8916"
"qcom,gcc-msm8960"

View File

@ -57,6 +57,11 @@ Optional properties:
- clocks: If clock-frequency is not specified, sysclk may be provided
as an input clock. Either clock-frequency or clocks must be
provided.
A second input clock, called "coreclk", may be provided if
core PLLs are based on a different input clock from the
platform PLL.
- clock-names: Required if a coreclk is present. Valid names are
"sysclk" and "coreclk".
2. Clock Provider
@ -73,6 +78,7 @@ second cell is the clock index for the specified type.
2 hwaccel index (n in CLKCGnHWACSR)
3 fman 0 for fm1, 1 for fm2
4 platform pll 0=pll, 1=pll/2, 2=pll/3, 3=pll/4
5 coreclk must be 0
3. Example

View File

@ -15,6 +15,11 @@ Required Properties:
- compatible: Must be one of:
- "renesas,r8a7743-cpg-mssr" for the r8a7743 SoC (RZ/G1M)
- "renesas,r8a7745-cpg-mssr" for the r8a7745 SoC (RZ/G1E)
- "renesas,r8a7790-cpg-mssr" for the r8a7790 SoC (R-Car H2)
- "renesas,r8a7791-cpg-mssr" for the r8a7791 SoC (R-Car M2-W)
- "renesas,r8a7792-cpg-mssr" for the r8a7792 SoC (R-Car V2H)
- "renesas,r8a7793-cpg-mssr" for the r8a7793 SoC (R-Car M2-N)
- "renesas,r8a7794-cpg-mssr" for the r8a7794 SoC (R-Car E2)
- "renesas,r8a7795-cpg-mssr" for the r8a7795 SoC (R-Car H3)
- "renesas,r8a7796-cpg-mssr" for the r8a7796 SoC (R-Car M3-W)
@ -24,9 +29,10 @@ Required Properties:
- clocks: References to external parent clocks, one entry for each entry in
clock-names
- clock-names: List of external parent clock names. Valid names are:
- "extal" (r8a7743, r8a7745, r8a7795, r8a7796)
- "extal" (r8a7743, r8a7745, r8a7790, r8a7791, r8a7792, r8a7793, r8a7794,
r8a7795, r8a7796)
- "extalr" (r8a7795, r8a7796)
- "usb_extal" (r8a7743, r8a7745)
- "usb_extal" (r8a7743, r8a7745, r8a7790, r8a7791, r8a7793, r8a7794)
- #clock-cells: Must be 2
- For CPG core clocks, the two clock specifier cells must be "CPG_CORE"

View File

@ -0,0 +1,56 @@
* Rockchip RK3128 Clock and Reset Unit
The RK3128 clock controller generates and supplies clock to various
controllers within the SoC and also implements a reset controller for SoC
peripherals.
Required Properties:
- compatible: should be "rockchip,rk3128-cru"
- reg: physical base address of the controller and length of memory mapped
region.
- #clock-cells: should be 1.
- #reset-cells: should be 1.
Optional Properties:
- rockchip,grf: phandle to the syscon managing the "general register files"
If missing pll rates are not changeable, due to the missing pll lock status.
Each clock is assigned an identifier and client nodes can use this identifier
to specify the clock which they consume. All available clocks are defined as
preprocessor macros in the dt-bindings/clock/rk3128-cru.h headers and can be
used in device tree sources. Similar macros exist for the reset sources in
these files.
External clocks:
There are several clocks that are generated outside the SoC. It is expected
that they are defined using standard clock bindings with following
clock-output-names:
- "xin24m" - crystal input - required,
- "ext_i2s" - external I2S clock - optional,
- "gmac_clkin" - external GMAC clock - optional
Example: Clock controller node:
cru: cru@20000000 {
compatible = "rockchip,rk3128-cru";
reg = <0x20000000 0x1000>;
rockchip,grf = <&grf>;
#clock-cells = <1>;
#reset-cells = <1>;
};
Example: UART controller node that consumes the clock generated by the clock
controller:
uart2: serial@20068000 {
compatible = "rockchip,serial";
reg = <0x20068000 0x100>;
interrupts = <GIC_SPI 22 IRQ_TYPE_LEVEL_HIGH>;
clock-frequency = <24000000>;
clocks = <&cru SCLK_UART2>, <&cru PCLK_UART2>;
clock-names = "sclk_uart", "pclk_uart";
};

View File

@ -0,0 +1,31 @@
Allwinner Display Engine 2.0 Clock Control Binding
--------------------------------------------------
Required properties :
- compatible: must contain one of the following compatibles:
- "allwinner,sun8i-a83t-de2-clk"
- "allwinner,sun8i-v3s-de2-clk"
- "allwinner,sun50i-h5-de2-clk"
- reg: Must contain the registers base address and length
- clocks: phandle to the clocks feeding the display engine subsystem.
Three are needed:
- "mod": the display engine module clock
- "bus": the bus clock for the whole display engine subsystem
- clock-names: Must contain the clock names described just above
- resets: phandle to the reset control for the display engine subsystem.
- #clock-cells : must contain 1
- #reset-cells : must contain 1
Example:
de2_clocks: clock@1000000 {
compatible = "allwinner,sun8i-a83t-de2-clk";
reg = <0x01000000 0x100000>;
clocks = <&ccu CLK_BUS_DE>,
<&ccu CLK_DE>;
clock-names = "bus",
"mod";
resets = <&ccu RST_BUS_DE>;
#clock-cells = <1>;
#reset-cells = <1>;
};

View File

@ -6,6 +6,8 @@ Required properties :
- "allwinner,sun6i-a31-ccu"
- "allwinner,sun8i-a23-ccu"
- "allwinner,sun8i-a33-ccu"
- "allwinner,sun8i-a83t-ccu"
- "allwinner,sun8i-a83t-r-ccu"
- "allwinner,sun8i-h3-ccu"
- "allwinner,sun8i-h3-r-ccu"
- "allwinner,sun8i-v3s-ccu"
@ -18,11 +20,12 @@ Required properties :
- clocks: phandle to the oscillators feeding the CCU. Two are needed:
- "hosc": the high frequency oscillator (usually at 24MHz)
- "losc": the low frequency oscillator (usually at 32kHz)
On the A83T, this is the internal 16MHz oscillator divided by 512
- clock-names: Must contain the clock names described just above
- #clock-cells : must contain 1
- #reset-cells : must contain 1
For the PRCM CCUs on H3/A64, two more clocks are needed:
For the PRCM CCUs on A83T/H3/A64, two more clocks are needed:
- "pll-periph": the SoC's peripheral PLL from the main CCU
- "iosc": the SoC's internal frequency oscillator

View File

@ -0,0 +1,37 @@
Texas Instruments TI-SCI Clocks
===============================
All clocks on Texas Instruments' SoCs that contain a System Controller,
are only controlled by this entity. Communication between a host processor
running an OS and the System Controller happens through a protocol known
as TI-SCI[1]. This clock implementation plugs into the common clock
framework and makes use of the TI-SCI protocol on clock API requests.
[1] Documentation/devicetree/bindings/arm/keystone/ti,sci.txt
Required properties:
-------------------
- compatible: Must be "ti,k2g-sci-clk"
- #clock-cells: Shall be 2.
In clock consumers, this cell represents the device ID and clock ID
exposed by the PM firmware. The assignments can be found in the header
files <dt-bindings/genpd/<soc>.h> (which covers the device IDs) and
<dt-bindings/clock/<soc>.h> (which covers the clock IDs), where <soc>
is the SoC involved, for example 'k2g'.
Examples:
--------
pmmc: pmmc {
compatible = "ti,k2g-sci";
k2g_clks: clocks {
compatible = "ti,k2g-sci-clk";
#clock-cells = <2>;
};
};
uart0: serial@2530c00 {
compatible = "ns16550a";
clocks = <&k2g_clks 0x2c 0>;
};

View File

@ -0,0 +1,56 @@
Texas Instruments clkctrl clock binding
Texas Instruments SoCs can have a clkctrl clock controller for each
interconnect target module. The clkctrl clock controller manages functional
and interface clocks for each module. Each clkctrl controller can also
gate one or more optional functional clocks for a module, and can have one
or more clock muxes. There is a clkctrl clock controller typically for each
interconnect target module on omap4 and later variants.
The clock consumers can specify the index of the clkctrl clock using
the hardware offset from the clkctrl instance register space. The optional
clocks can be specified by clkctrl hardware offset and the index of the
optional clock.
For more information, please see the Linux clock framework binding at
Documentation/devicetree/bindings/clock/clock-bindings.txt.
Required properties :
- compatible : shall be "ti,clkctrl"
- #clock-cells : shall contain 2 with the first entry being the instance
offset from the clock domain base and the second being the
clock index
Example: Clock controller node on omap 4430:
&cm2 {
l4per: cm@1400 {
cm_l4per@0 {
cm_l4per_clkctrl: clk@20 {
compatible = "ti,clkctrl";
reg = <0x20 0x1b0>;
#clock-cells = <2>;
};
};
};
};
Example: Preprocessor helper macros in dt-bindings/clock/ti-clkctrl.h
#define OMAP4_CLKCTRL_OFFSET 0x20
#define OMAP4_CLKCTRL_INDEX(offset) ((offset) - OMAP4_CLKCTRL_OFFSET)
#define MODULEMODE_HWCTRL 1
#define MODULEMODE_SWCTRL 2
#define OMAP4_GPTIMER10_CLKTRL OMAP4_CLKCTRL_INDEX(0x28)
#define OMAP4_GPTIMER11_CLKTRL OMAP4_CLKCTRL_INDEX(0x30)
#define OMAP4_GPTIMER2_CLKTRL OMAP4_CLKCTRL_INDEX(0x38)
...
#define OMAP4_GPIO2_CLKCTRL OMAP_CLKCTRL_INDEX(0x60)
Example: Clock consumer node for GPIO2:
&gpio2 {
clocks = <&cm_l4per_clkctrl OMAP4_GPIO2_CLKCTRL 0
&cm_l4per_clkctrl OMAP4_GPIO2_CLKCTRL 8>;
};

View File

@ -1,6 +1,6 @@
Common properties
The ePAPR specification does not define any properties related to hardware
The Devicetree Specification does not define any properties related to hardware
byteswapping, but endianness issues show up frequently in porting Linux to
different machine types. This document attempts to provide a consistent
way of handling byteswapping across drivers.

View File

@ -63,64 +63,64 @@ cpu0_opp_table: opp-table {
* because they can not be enabled simultaneously on a
* single SoC.
*/
opp50@300000000 {
opp50-300000000 {
opp-hz = /bits/ 64 <300000000>;
opp-microvolt = <950000 931000 969000>;
opp-supported-hw = <0x06 0x0010>;
opp-suspend;
};
opp100@275000000 {
opp100-275000000 {
opp-hz = /bits/ 64 <275000000>;
opp-microvolt = <1100000 1078000 1122000>;
opp-supported-hw = <0x01 0x00FF>;
opp-suspend;
};
opp100@300000000 {
opp100-300000000 {
opp-hz = /bits/ 64 <300000000>;
opp-microvolt = <1100000 1078000 1122000>;
opp-supported-hw = <0x06 0x0020>;
opp-suspend;
};
opp100@500000000 {
opp100-500000000 {
opp-hz = /bits/ 64 <500000000>;
opp-microvolt = <1100000 1078000 1122000>;
opp-supported-hw = <0x01 0xFFFF>;
};
opp100@600000000 {
opp100-600000000 {
opp-hz = /bits/ 64 <600000000>;
opp-microvolt = <1100000 1078000 1122000>;
opp-supported-hw = <0x06 0x0040>;
};
opp120@600000000 {
opp120-600000000 {
opp-hz = /bits/ 64 <600000000>;
opp-microvolt = <1200000 1176000 1224000>;
opp-supported-hw = <0x01 0xFFFF>;
};
opp120@720000000 {
opp120-720000000 {
opp-hz = /bits/ 64 <720000000>;
opp-microvolt = <1200000 1176000 1224000>;
opp-supported-hw = <0x06 0x0080>;
};
oppturbo@720000000 {
oppturbo-720000000 {
opp-hz = /bits/ 64 <720000000>;
opp-microvolt = <1260000 1234800 1285200>;
opp-supported-hw = <0x01 0xFFFF>;
};
oppturbo@800000000 {
oppturbo-800000000 {
opp-hz = /bits/ 64 <800000000>;
opp-microvolt = <1260000 1234800 1285200>;
opp-supported-hw = <0x06 0x0100>;
};
oppnitro@1000000000 {
oppnitro-1000000000 {
opp-hz = /bits/ 64 <1000000000>;
opp-microvolt = <1325000 1298500 1351500>;
opp-supported-hw = <0x04 0x0200>;

View File

@ -118,8 +118,8 @@ PROPERTIES
Definition: A list of clock name strings in the same order as the
clocks property.
Note: All other standard properties (see the ePAPR) are allowed
but are optional.
Note: All other standard properties (see the Devicetree Specification)
are allowed but are optional.
EXAMPLE

View File

@ -55,8 +55,8 @@ PROPERTIES
triplet that includes the child address, parent address, &
length.
Note: All other standard properties (see the ePAPR) are allowed
but are optional.
Note: All other standard properties (see the Devicetree Specification)
are allowed but are optional.
EXAMPLE
crypto@a0000 {

View File

@ -0,0 +1,27 @@
Inside Secure SafeXcel cryptographic engine
Required properties:
- compatible: Should be "inside-secure,safexcel-eip197".
- reg: Base physical address of the engine and length of memory mapped region.
- interrupts: Interrupt numbers for the rings and engine.
- interrupt-names: Should be "ring0", "ring1", "ring2", "ring3", "eip", "mem".
Optional properties:
- clocks: Reference to the crypto engine clock.
Example:
crypto: crypto@800000 {
compatible = "inside-secure,safexcel-eip197";
reg = <0x800000 0x200000>;
interrupts = <GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 54 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 56 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 57 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 58 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "mem", "ring0", "ring1", "ring2", "ring3",
"eip";
clocks = <&cpm_syscon0 1 26>;
status = "disabled";
};

View File

@ -6,8 +6,7 @@ Required properties:
- interrupts: Should contain the five crypto engines interrupts in numeric
order. These are global system and four descriptor rings.
- clocks: the clock used by the core
- clock-names: the names of the clock listed in the clocks property. These are
"ethif", "cryp"
- clock-names: Must contain "cryp".
- power-domains: Must contain a reference to the PM domain.
@ -20,8 +19,7 @@ Example:
<GIC_SPI 84 IRQ_TYPE_LEVEL_LOW>,
<GIC_SPI 91 IRQ_TYPE_LEVEL_LOW>,
<GIC_SPI 97 IRQ_TYPE_LEVEL_LOW>;
clocks = <&topckgen CLK_TOP_ETHIF_SEL>,
<&ethsys CLK_ETHSYS_CRYPTO>;
clock-names = "ethif","cryp";
clocks = <&ethsys CLK_ETHSYS_CRYPTO>;
clock-names = "cryp";
power-domains = <&scpsys MT2701_POWER_DOMAIN_ETH>;
};

View File

@ -5,7 +5,7 @@ with HDMI output and the HVS (Hardware Video Scaler) for compositing
display planes.
Required properties for VC4:
- compatible: Should be "brcm,bcm2835-vc4"
- compatible: Should be "brcm,bcm2835-vc4" or "brcm,cygnus-vc4"
Required properties for Pixel Valve:
- compatible: Should be one of "brcm,bcm2835-pixelvalve0",
@ -54,11 +54,14 @@ Required properties for VEC:
See bindings/interrupt-controller/brcm,bcm2835-armctrl-ic.txt
Required properties for V3D:
- compatible: Should be "brcm,bcm2835-v3d"
- compatible: Should be "brcm,bcm2835-v3d" or "brcm,cygnus-v3d"
- reg: Physical base address and length of the V3D's registers
- interrupts: The interrupt number
See bindings/interrupt-controller/brcm,bcm2835-armctrl-ic.txt
Optional properties for V3D:
- clocks: The clock the unit runs on
Required properties for DSI:
- compatible: Should be "brcm,bcm2835-dsi0" or "brcm,bcm2835-dsi1"
- reg: Physical base address and length of the DSI block's registers

View File

@ -78,6 +78,7 @@ graph bindings specified in Documentation/devicetree/bindings/graph.txt.
remote endpoint phandle should be a reference to a valid mipi_dsi_host device
node.
- Video port 1 for the HDMI output
- Audio port 2 for the HDMI audio input
Example
@ -112,5 +113,12 @@ Example
remote-endpoint = <&hdmi_connector_in>;
};
};
port@2 {
reg = <2>;
codec_endpoint: endpoint {
remote-endpoint = <&i2s0_cpu_endpoint>;
};
};
};
};

View File

@ -25,7 +25,8 @@ Required properties:
- clock-names: Shall contain "iahb" and "isfr" as defined in dw_hdmi.txt.
- ports: See dw_hdmi.txt. The DWC HDMI shall have one port numbered 0
corresponding to the video input of the controller and one port numbered 1
corresponding to its HDMI output. Each port shall have a single endpoint.
corresponding to its HDMI output, and one port numbered 2 corresponding to
sound input of the controller. Each port shall have a single endpoint.
Optional properties:
@ -59,6 +60,12 @@ Example:
remote-endpoint = <&hdmi0_con>;
};
};
port@2 {
reg = <2>;
rcar_dw_hdmi0_sound_in: endpoint {
remote-endpoint = <&hdmi_sound_out>;
};
};
};
};

View File

@ -8,12 +8,13 @@ Required properties:
- compatible: value should be one of:
"samsung,exynos5433-decon", "samsung,exynos5433-decon-tv";
- reg: physical base address and length of the DECON registers set.
- interrupts: should contain a list of all DECON IP block interrupts in the
order: VSYNC, LCD_SYSTEM. The interrupt specifier format
depends on the interrupt controller used.
- interrupt-names: should contain the interrupt names: "vsync", "lcd_sys"
in the same order as they were listed in the interrupts
property.
- interrupt-names: should contain the interrupt names depending on mode of work:
video mode: "vsync",
command mode: "lcd_sys",
command mode with software trigger: "lcd_sys", "te".
- interrupts or interrupts-extended: list of interrupt specifiers corresponding
to names privided in interrupt-names, as described in
interrupt-controller/interrupts.txt
- clocks: must include clock specifiers corresponding to entries in the
clock-names property.
- clock-names: list of clock names sorted in the same order as the clocks

View File

@ -0,0 +1,8 @@
AU Optronics Corporation 31.5" FHD (1920x1080) TFT LCD panel
Required properties:
- compatible: should be "auo,p320hvn03"
- power-supply: as specified in the base binding
This binding is compatible with the simple-panel binding, which is specified
in simple-panel.txt in this directory.

View File

@ -57,11 +57,11 @@ can be specified.
The parameters are defined as:
+----------+-------------------------------------+----------+-------+
| | | | |
| | ^ | | |
| | |vback_porch | | |
| | | | |
| | v | | |
+----------#######################################----------+-------+
| # # | |
| # ^ # | |
| # | # | |
| hback # | # hfront | hsync |
| porch # | hactive # porch | len |
@ -69,15 +69,15 @@ The parameters are defined as:
| # | # | |
| # |vactive # | |
| # | # | |
| # # | |
| # v # | |
+----------#######################################----------+-------+
| | | | |
| | ^ | | |
| | |vfront_porch | | |
| | | | |
| | v | | |
+----------+-------------------------------------+----------+-------+
| | | | |
| | ^ | | |
| | |vsync_len | | |
| | | | |
| | v | | |
+----------+-------------------------------------+----------+-------+
Example:

View File

@ -0,0 +1,23 @@
Innolux P079ZCA 7.85" 768x1024 TFT LCD panel
Required properties:
- compatible: should be "innolux,p079zca"
- reg: DSI virtual channel of the peripheral
- power-supply: phandle of the regulator that provides the supply voltage
- enable-gpios: panel enable gpio
Optional properties:
- backlight: phandle of the backlight device attached to the panel
Example:
&mipi_dsi {
panel {
compatible = "innolux,p079zca";
reg = <0>;
power-supply = <...>;
backlight = <&backlight>;
enable-gpios = <&gpio1 13 GPIO_ACTIVE_HIGH>;
status = "okay";
};
};

View File

@ -0,0 +1,8 @@
NEC LCD Technologies, Ltd. 12.1" WXGA (1280x800) LVDS TFT LCD panel
Required properties:
- compatible: should be "nec,nl12880bc20-05"
- power-supply: as specified in the base binding
This binding is compatible with the simple-panel binding, which is specified
in simple-panel.txt in this directory.

View File

@ -0,0 +1,8 @@
NLT Technologies, Ltd. 15.6" FHD (1920x1080) LVDS TFT LCD panel
Required properties:
- compatible: should be "nlt,nl192108ac18-02d"
- power-supply: as specified in the base binding
This binding is compatible with the simple-panel binding, which is specified
in simple-panel.txt in this directory.

View File

@ -1,7 +1,10 @@
Samsung S6E3HA2 5.7" 1440x2560 AMOLED panel
Samsung S6E3HF2 5.65" 1600x2560 AMOLED panel
Required properties:
- compatible: "samsung,s6e3ha2"
- compatible: should be one of:
"samsung,s6e3ha2",
"samsung,s6e3hf2".
- reg: the virtual channel number of a DSI peripheral
- vdd3-supply: I/O voltage supply
- vci-supply: voltage supply for analog circuits

View File

@ -0,0 +1,36 @@
* STMicroelectronics STM32 lcd-tft display controller
- ltdc: lcd-tft display controller host
must be a sub-node of st-display-subsystem
Required properties:
- compatible: "st,stm32-ltdc"
- reg: Physical base address of the IP registers and length of memory mapped region.
- clocks: A list of phandle + clock-specifier pairs, one for each
entry in 'clock-names'.
- clock-names: A list of clock names. For ltdc it should contain:
- "lcd" for the clock feeding the output pixel clock & IP clock.
- resets: reset to be used by the device (defined by use of RCC macro).
Required nodes:
- Video port for RGB output.
Example:
/ {
...
soc {
...
ltdc: display-controller@40016800 {
compatible = "st,stm32-ltdc";
reg = <0x40016800 0x200>;
interrupts = <88>, <89>;
resets = <&rcc STM32F4_APB2_RESET(LTDC)>;
clocks = <&rcc 1 CLK_LCD>;
clock-names = "lcd";
port {
ltdc_out_rgb: endpoint {
};
};
};
};
};

View File

@ -4,6 +4,44 @@ Allwinner A10 Display Pipeline
The Allwinner A10 Display pipeline is composed of several components
that are going to be documented below:
For the input port of all components up to the TCON in the display
pipeline, if there are multiple components, the local endpoint IDs
must correspond to the index of the upstream block. For example, if
the remote endpoint is Frontend 1, then the local endpoint ID must
be 1.
Conversely, for the output ports of the same group, the remote endpoint
ID must be the index of the local hardware block. If the local backend
is backend 1, then the remote endpoint ID must be 1.
HDMI Encoder
------------
The HDMI Encoder supports the HDMI video and audio outputs, and does
CEC. It is one end of the pipeline.
Required properties:
- compatible: value must be one of:
* allwinner,sun5i-a10s-hdmi
- reg: base address and size of memory-mapped region
- interrupts: interrupt associated to this IP
- clocks: phandles to the clocks feeding the HDMI encoder
* ahb: the HDMI interface clock
* mod: the HDMI module clock
* pll-0: the first video PLL
* pll-1: the second video PLL
- clock-names: the clock names mentioned above
- dmas: phandles to the DMA channels used by the HDMI encoder
* ddc-tx: The channel for DDC transmission
* ddc-rx: The channel for DDC reception
* audio-tx: The channel used for audio transmission
- dma-names: the channel names mentioned above
- ports: A ports node with endpoint definitions as defined in
Documentation/devicetree/bindings/media/video-interfaces.txt. The
first port should be the input endpoint. The second should be the
output, usually to an HDMI connector.
TV Encoder
----------
@ -31,6 +69,7 @@ Required properties:
* allwinner,sun6i-a31-tcon
* allwinner,sun6i-a31s-tcon
* allwinner,sun8i-a33-tcon
* allwinner,sun8i-v3s-tcon
- reg: base address and size of memory-mapped region
- interrupts: interrupt associated to this IP
- clocks: phandles to the clocks feeding the TCON. Three are needed:
@ -47,12 +86,15 @@ Required properties:
Documentation/devicetree/bindings/media/video-interfaces.txt. The
first port should be the input endpoint, the second one the output
The output should have two endpoints. The first is the block
connected to the TCON channel 0 (usually a panel or a bridge), the
second the block connected to the TCON channel 1 (usually the TV
encoder)
The output may have multiple endpoints. The TCON has two channels,
usually with the first channel being used for the panels interfaces
(RGB, LVDS, etc.), and the second being used for the outputs that
require another controller (TV Encoder, HDMI, etc.). The endpoints
will take an extra property, allwinner,tcon-channel, to specify the
channel the endpoint is associated to. If that property is not
present, the endpoint number will be used as the channel number.
On SoCs other than the A33, there is one more clock required:
On SoCs other than the A33 and V3s, there is one more clock required:
- 'tcon-ch1': The clock driving the TCON channel 1
DRC
@ -138,6 +180,26 @@ Required properties:
Documentation/devicetree/bindings/media/video-interfaces.txt. The
first port should be the input endpoints, the second one the outputs
Display Engine 2.0 Mixer
------------------------
The DE2 mixer have many functionalities, currently only layer blending is
supported.
Required properties:
- compatible: value must be one of:
* allwinner,sun8i-v3s-de2-mixer
- reg: base address and size of the memory-mapped region.
- clocks: phandles to the clocks feeding the mixer
* bus: the mixer interface clock
* mod: the mixer module clock
- clock-names: the clock names mentioned above
- resets: phandles to the reset controllers driving the mixer
- ports: A ports node with endpoint definitions as defined in
Documentation/devicetree/bindings/media/video-interfaces.txt. The
first port should be the input endpoints, the second one the output
Display Engine Pipeline
-----------------------
@ -148,13 +210,15 @@ extra node.
Required properties:
- compatible: value must be one of:
* allwinner,sun5i-a10s-display-engine
* allwinner,sun5i-a13-display-engine
* allwinner,sun6i-a31-display-engine
* allwinner,sun6i-a31s-display-engine
* allwinner,sun8i-a33-display-engine
* allwinner,sun8i-v3s-display-engine
- allwinner,pipelines: list of phandle to the display engine
frontends available.
frontends (DE 1.0) or mixers (DE 2.0) available.
Example:
@ -173,6 +237,57 @@ panel: panel {
};
};
connector {
compatible = "hdmi-connector";
type = "a";
port {
hdmi_con_in: endpoint {
remote-endpoint = <&hdmi_out_con>;
};
};
};
hdmi: hdmi@01c16000 {
compatible = "allwinner,sun5i-a10s-hdmi";
reg = <0x01c16000 0x1000>;
interrupts = <58>;
clocks = <&ccu CLK_AHB_HDMI>, <&ccu CLK_HDMI>,
<&ccu CLK_PLL_VIDEO0_2X>,
<&ccu CLK_PLL_VIDEO1_2X>;
clock-names = "ahb", "mod", "pll-0", "pll-1";
dmas = <&dma SUN4I_DMA_NORMAL 16>,
<&dma SUN4I_DMA_NORMAL 16>,
<&dma SUN4I_DMA_DEDICATED 24>;
dma-names = "ddc-tx", "ddc-rx", "audio-tx";
status = "disabled";
ports {
#address-cells = <1>;
#size-cells = <0>;
port@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0>;
hdmi_in_tcon0: endpoint {
remote-endpoint = <&tcon0_out_hdmi>;
};
};
port@1 {
#address-cells = <1>;
#size-cells = <0>;
reg = <1>;
hdmi_out_con: endpoint {
remote-endpoint = <&hdmi_con_in>;
};
};
};
};
tve0: tv-encoder@01c0a000 {
compatible = "allwinner,sun4i-a10-tv-encoder";
reg = <0x01c0a000 0x1000>;

View File

@ -58,6 +58,18 @@ Required properties:
integer cells. The first cell is the offset of SYSCTRL register used
to control TV Encoder DAC power, and the second cell is the bit mask.
* VGA output device
Required properties:
- compatible: should be "zte,zx296718-vga"
- reg: Physical base address and length of the VGA device IO region
- interrupts : VGA interrupt number to CPU
- clocks: Phandle with clock-specifier pointing to VGA I2C clock.
- clock-names: Must be "i2c_wclk".
- zte,vga-power-control: the phandle to SYSCTRL block followed by two
integer cells. The first cell is the offset of SYSCTRL register used
to control VGA DAC power, and the second cell is the bit mask.
Example:
vou: vou@1440000 {
@ -81,6 +93,15 @@ vou: vou@1440000 {
"main_wclk", "aux_wclk";
};
vga: vga@8000 {
compatible = "zte,zx296718-vga";
reg = <0x8000 0x1000>;
interrupts = <GIC_SPI 86 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&topcrm VGA_I2C_WCLK>;
clock-names = "i2c_wclk";
zte,vga-power-control = <&sysctrl 0x170 0xe0>;
};
hdmi: hdmi@c000 {
compatible = "zte,zx296718-hdmi";
reg = <0xc000 0x4000>;

View File

@ -3,6 +3,11 @@
Required properties:
- compatible: "arm,pl080", "arm,primecell";
"arm,pl081", "arm,primecell";
"faraday,ftdmac020", "arm,primecell"
- arm,primecell-periphid: on the FTDMAC020 the primecell ID is not hard-coded
in the hardware and must be specified here as <0x0003b080>. This number
follows the PrimeCell standard numbering using the JEP106 vendor code 0x38
for Faraday Technology.
- reg: Address range of the PL08x registers
- interrupt: The PL08x interrupt number
- clocks: The clock running the IP core clock
@ -20,8 +25,8 @@ Optional properties:
- dma-requests: contains the total number of DMA requests supported by the DMAC
- memcpy-burst-size: the size of the bursts for memcpy: 1, 4, 8, 16, 32
64, 128 or 256 bytes are legal values
- memcpy-bus-width: the bus width used for memcpy: 8, 16 or 32 are legal
values
- memcpy-bus-width: the bus width used for memcpy in bits: 8, 16 or 32 are legal
values, the Faraday FTDMAC020 can also accept 64 bits
Clients
Required properties:

View File

@ -0,0 +1,29 @@
* Broadcom SBA RAID engine
Required properties:
- compatible: Should be one of the following
"brcm,iproc-sba"
"brcm,iproc-sba-v2"
The "brcm,iproc-sba" has support for only 6 PQ coefficients
The "brcm,iproc-sba-v2" has support for only 30 PQ coefficients
- mboxes: List of phandle and mailbox channel specifiers
Example:
raid_mbox: mbox@67400000 {
...
#mbox-cells = <3>;
...
};
raid0 {
compatible = "brcm,iproc-sba-v2";
mboxes = <&raid_mbox 0 0x1 0xffff>,
<&raid_mbox 1 0x1 0xffff>,
<&raid_mbox 2 0x1 0xffff>,
<&raid_mbox 3 0x1 0xffff>,
<&raid_mbox 4 0x1 0xffff>,
<&raid_mbox 5 0x1 0xffff>,
<&raid_mbox 6 0x1 0xffff>,
<&raid_mbox 7 0x1 0xffff>;
};

View File

@ -30,8 +30,9 @@ Required Properties:
- interrupts: interrupt specifiers for the DMAC, one for each entry in
interrupt-names.
- interrupt-names: one entry per channel, named "ch%u", where %u is the
channel number ranging from zero to the number of channels minus one.
- interrupt-names: one entry for the error interrupt, named "error", plus one
entry per channel, named "ch%u", where %u is the channel number ranging from
zero to the number of channels minus one.
- clock-names: "fck" for the functional clock
- clocks: a list of phandle + clock-specifier pairs, one for each entry

View File

@ -1,6 +1,6 @@
* SHDMA Device Tree bindings
Sh-/r-mobile and r-car systems often have multiple identical DMA controller
Sh-/r-mobile and R-Car systems often have multiple identical DMA controller
instances, capable of serving any of a common set of DMA slave devices, using
the same configuration. To describe this topology we require all compatible
SHDMA DT nodes to be placed under a DMA multiplexer node. All such compatible

View File

@ -0,0 +1,24 @@
Device-tree bindings for gpio-based FSI master driver
-----------------------------------------------------
Required properties:
- compatible = "fsi-master-gpio";
- clock-gpios = <gpio-descriptor>; : GPIO for FSI clock
- data-gpios = <gpio-descriptor>; : GPIO for FSI data signal
Optional properties:
- enable-gpios = <gpio-descriptor>; : GPIO for enable signal
- trans-gpios = <gpio-descriptor>; : GPIO for voltage translator enable
- mux-gpios = <gpio-descriptor>; : GPIO for pin multiplexing with other
functions (eg, external FSI masters)
Examples:
fsi-master {
compatible = "fsi-master-gpio", "fsi-master";
clock-gpios = <&gpio 0>;
data-gpios = <&gpio 1>;
enable-gpios = <&gpio 2>;
trans-gpios = <&gpio 3>;
mux-gpios = <&gpio 4>;
}

View File

@ -0,0 +1,5 @@
Exportable MPIO interface of Exar UART chips
Required properties of the device:
- exar,first-pin: first exportable pins (0..15)
- ngpios: number of exportable pins (1..16)

View File

@ -2,17 +2,27 @@
Required properties:
- compatible : Should be "marvell,orion-gpio", "marvell,mv78200-gpio"
or "marvell,armadaxp-gpio". "marvell,orion-gpio" should be used for
Orion, Kirkwood, Dove, Discovery (except MV78200) and Armada
370. "marvell,mv78200-gpio" should be used for the Discovery
MV78200. "marvel,armadaxp-gpio" should be used for all Armada XP
SoCs (MV78230, MV78260, MV78460).
- compatible : Should be "marvell,orion-gpio", "marvell,mv78200-gpio",
"marvell,armadaxp-gpio" or "marvell,armada-8k-gpio".
"marvell,orion-gpio" should be used for Orion, Kirkwood, Dove,
Discovery (except MV78200) and Armada 370. "marvell,mv78200-gpio"
should be used for the Discovery MV78200.
"marvel,armadaxp-gpio" should be used for all Armada XP SoCs
(MV78230, MV78260, MV78460).
"marvell,armada-8k-gpio" should be used for the Armada 7K and 8K
SoCs (either from AP or CP), see
Documentation/devicetree/bindings/arm/marvell/cp110-system-controller0.txt
and
Documentation/devicetree/bindings/arm/marvell/ap806-system-controller.txt
for specific details about the offset property.
- reg: Address and length of the register set for the device. Only one
entry is expected, except for the "marvell,armadaxp-gpio" variant
for which two entries are expected: one for the general registers,
one for the per-cpu registers.
one for the per-cpu registers. Not used for marvell,armada-8k-gpio.
- interrupts: The list of interrupts that are used for all the pins
managed by this GPIO bank. There can be more than one interrupt

View File

@ -74,11 +74,14 @@ GPIO pin number, and GPIO flags as accepted by the "qe_pio_e" gpio-controller.
Optional standard bitfield specifiers for the last cell:
- Bit 0: 0 means active high, 1 means active low
- Bit 1: 1 means single-ended wiring, see:
- Bit 1: 0 mean push-pull wiring, see:
https://en.wikipedia.org/wiki/Push-pull_output
1 means single-ended wiring, see:
https://en.wikipedia.org/wiki/Single-ended_triode
When used with active-low, this means open drain/collector, see:
- Bit 2: 0 means open-source, 1 means open drain, see:
https://en.wikipedia.org/wiki/Open_collector
When used with active-high, this means open source/emitter
- Bit 3: 0 means the output should be maintained during sleep/low-power mode
1 means the output state can be lost during sleep/low-power mode
1.1) GPIO specifier best practices
----------------------------------
@ -282,8 +285,8 @@ Example 1:
};
Here, a single GPIO controller has GPIOs 0..9 routed to pin controller
pinctrl1's pins 20..29, and GPIOs 10..19 routed to pin controller pinctrl2's
pins 50..59.
pinctrl1's pins 20..29, and GPIOs 10..29 routed to pin controller pinctrl2's
pins 50..69.
Example 2:

View File

@ -5,9 +5,13 @@ Required properties:
- reg: Should contain GPIO controller registers location and length
- interrupts: Should be the port interrupt shared by all the pins.
- #gpio-cells: Should be two. The first cell is the pin number and
the second cell is used to specify optional parameters (currently
unused).
the second cell is used to specify optional parameters to declare if the GPIO
is active high or low. See gpio.txt.
- gpio-controller: Marks the device node as a GPIO controller.
- interrupt-controller: Marks the device node as an interrupt controller.
- #interrupt-cells: Should be two. The first cell is the pin number and the
second cell is used to specify irq type flags, see the two cell description
in interrupt-controller/interrupts.txt for details.
optional properties:
- #gpio-lines: Number of gpio if absent 32.
@ -21,5 +25,7 @@ Example:
#gpio-cells = <2>;
gpio-controller;
#gpio-lines = <19>;
interrupt-controller;
#interrupt-cells = <2>;
};

View File

@ -0,0 +1,46 @@
Ingenic jz47xx GPIO controller
That the Ingenic GPIO driver node must be a sub-node of the Ingenic pinctrl
driver node.
Required properties:
--------------------
- compatible: Must contain one of:
- "ingenic,jz4740-gpio"
- "ingenic,jz4770-gpio"
- "ingenic,jz4780-gpio"
- reg: The GPIO bank number.
- interrupt-controller: Marks the device node as an interrupt controller.
- interrupts: Interrupt specifier for the controllers interrupt.
- #interrupt-cells: Should be 2. Refer to
../interrupt-controller/interrupts.txt for more details.
- gpio-controller: Marks the device node as a GPIO controller.
- #gpio-cells: Should be 2. The first cell is the GPIO number and the second
cell specifies GPIO flags, as defined in <dt-bindings/gpio/gpio.h>. Only the
GPIO_ACTIVE_HIGH and GPIO_ACTIVE_LOW flags are supported.
- gpio-ranges: Range of pins managed by the GPIO controller. Refer to
'gpio.txt' in this directory for more details.
Example:
--------
&pinctrl {
#address-cells = <1>;
#size-cells = <0>;
gpa: gpio@0 {
compatible = "ingenic,jz4740-gpio";
reg = <0>;
gpio-controller;
gpio-ranges = <&pinctrl 0 0 32>;
#gpio-cells = <2>;
interrupt-controller;
#interrupt-cells = <2>;
interrupt-parent = <&intc>;
interrupts = <28>;
};
};

View File

@ -3,6 +3,7 @@
Required Properties:
- compatible: should contain one of the following.
- "renesas,gpio-r8a7743": for R8A7743 (RZ/G1M) compatible GPIO controller.
- "renesas,gpio-r8a7778": for R8A7778 (R-Mobile M1) compatible GPIO controller.
- "renesas,gpio-r8a7779": for R8A7779 (R-Car H1) compatible GPIO controller.
- "renesas,gpio-r8a7790": for R8A7790 (R-Car H2) compatible GPIO controller.

View File

@ -0,0 +1,86 @@
ARM Mali Midgard GPU
====================
Required properties:
- compatible :
* Must contain one of the following:
+ "arm,mali-t604"
+ "arm,mali-t624"
+ "arm,mali-t628"
+ "arm,mali-t720"
+ "arm,mali-t760"
+ "arm,mali-t820"
+ "arm,mali-t830"
+ "arm,mali-t860"
+ "arm,mali-t880"
* which must be preceded by one of the following vendor specifics:
+ "amlogic,meson-gxm-mali"
+ "rockchip,rk3288-mali"
- reg : Physical base address of the device and length of the register area.
- interrupts : Contains the three IRQ lines required by Mali Midgard devices.
- interrupt-names : Contains the names of IRQ resources in the order they were
provided in the interrupts property. Must contain: "job", "mmu", "gpu".
Optional properties:
- clocks : Phandle to clock for the Mali Midgard device.
- mali-supply : Phandle to regulator for the Mali device. Refer to
Documentation/devicetree/bindings/regulator/regulator.txt for details.
- operating-points-v2 : Refer to Documentation/devicetree/bindings/power/opp.txt
for details.
Example for a Mali-T760:
gpu@ffa30000 {
compatible = "rockchip,rk3288-mali", "arm,mali-t760";
reg = <0xffa30000 0x10000>;
interrupts = <GIC_SPI 6 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "job", "mmu", "gpu";
clocks = <&cru ACLK_GPU>;
mali-supply = <&vdd_gpu>;
operating-points-v2 = <&gpu_opp_table>;
power-domains = <&power RK3288_PD_GPU>;
};
gpu_opp_table: opp_table0 {
compatible = "operating-points-v2";
opp@533000000 {
opp-hz = /bits/ 64 <533000000>;
opp-microvolt = <1250000>;
};
opp@450000000 {
opp-hz = /bits/ 64 <450000000>;
opp-microvolt = <1150000>;
};
opp@400000000 {
opp-hz = /bits/ 64 <400000000>;
opp-microvolt = <1125000>;
};
opp@350000000 {
opp-hz = /bits/ 64 <350000000>;
opp-microvolt = <1075000>;
};
opp@266000000 {
opp-hz = /bits/ 64 <266000000>;
opp-microvolt = <1025000>;
};
opp@160000000 {
opp-hz = /bits/ 64 <160000000>;
opp-microvolt = <925000>;
};
opp@100000000 {
opp-hz = /bits/ 64 <100000000>;
opp-microvolt = <912500>;
};
};

View File

@ -34,7 +34,7 @@ remote device, an 'endpoint' child node must be provided for each link.
If more than one port is present in a device node or there is more than one
endpoint at a port, or a port node needs to be associated with a selected
hardware interface, a common scheme using '#address-cells', '#size-cells'
and 'reg' properties is used number the nodes.
and 'reg' properties is used to number the nodes.
device {
...
@ -89,9 +89,9 @@ Links between endpoints
Each endpoint should contain a 'remote-endpoint' phandle property that points
to the corresponding endpoint in the port of the remote device. In turn, the
remote endpoint should contain a 'remote-endpoint' property. If it has one,
it must not point to another than the local endpoint. Two endpoints with their
'remote-endpoint' phandles pointing at each other form a link between the
remote endpoint should contain a 'remote-endpoint' property. If it has one, it
must not point to anything other than the local endpoint. Two endpoints with
their 'remote-endpoint' phandles pointing at each other form a link between the
containing ports.
device-1 {
@ -110,13 +110,12 @@ device-2 {
};
};
Required properties
-------------------
If there is more than one 'port' or more than one 'endpoint' node or 'reg'
property is present in port and/or endpoint nodes the following properties
are required in a relevant parent node:
property present in the port and/or endpoint nodes then the following
properties are required in a relevant parent node:
- #address-cells : number of cells required to define port/endpoint
identifier, should be 1.

View File

@ -0,0 +1,23 @@
SPRD Hardware Spinlock Device Binding
-------------------------------------
Required properties :
- compatible : should be "sprd,hwspinlock-r3p0".
- reg : the register address of hwspinlock.
- #hwlock-cells : hwlock users only use the hwlock id to represent a specific
hwlock, so the number of cells should be <1> here.
- clock-names : Must contain "enable".
- clocks : Must contain a phandle entry for the clock in clock-names, see the
common clock bindings.
Please look at the generic hwlock binding for usage information for consumers,
"Documentation/devicetree/bindings/hwlock/hwlock.txt"
Example of hwlock provider:
hwspinlock@40500000 {
compatible = "sprd,hwspinlock-r3p0";
reg = <0 0x40500000 0 0x1000>;
#hwlock-cells = <1>;
clock-names = "enable";
clocks = <&clk_aon_apb_gates0 22>;
};

View File

@ -0,0 +1,48 @@
Device tree configuration for the I2C busses on the AST24XX and AST25XX SoCs.
Required Properties:
- #address-cells : should be 1
- #size-cells : should be 0
- reg : address offset and range of bus
- compatible : should be "aspeed,ast2400-i2c-bus"
or "aspeed,ast2500-i2c-bus"
- clocks : root clock of bus, should reference the APB
clock
- interrupts : interrupt number
- interrupt-parent : interrupt controller for bus, should reference a
aspeed,ast2400-i2c-ic or aspeed,ast2500-i2c-ic
interrupt controller
Optional Properties:
- bus-frequency : frequency of the bus clock in Hz defaults to 100 kHz when not
specified
- multi-master : states that there is another master active on this bus.
Example:
i2c {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x1e78a000 0x1000>;
i2c_ic: interrupt-controller@0 {
#interrupt-cells = <1>;
compatible = "aspeed,ast2400-i2c-ic";
reg = <0x0 0x40>;
interrupts = <12>;
interrupt-controller;
};
i2c0: i2c-bus@40 {
#address-cells = <1>;
#size-cells = <0>;
#interrupt-cells = <1>;
reg = <0x40 0x40>;
compatible = "aspeed,ast2400-i2c-bus";
clocks = <&clk_apb>;
bus-frequency = <100000>;
interrupts = <0>;
interrupt-parent = <&i2c_ic>;
};
};

View File

@ -20,7 +20,7 @@ Optional properties :
- i2c-sda-falling-time-ns : should contain the SDA falling time in nanoseconds.
This value which is by default 300ns is used to compute the tHIGH period.
Example :
Examples :
i2c@f0000 {
#address-cells = <1>;
@ -43,3 +43,17 @@ Example :
i2c-sda-falling-time-ns = <300>;
i2c-scl-falling-time-ns = <300>;
};
i2c@1120000 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0x2000 0x100>;
clock-frequency = <400000>;
clocks = <&i2cclk>;
interrupts = <0>;
eeprom@64 {
compatible = "linux,slave-24c02";
reg = <0x40000064>;
};
};

View File

@ -4,11 +4,11 @@ The Mediatek's I2C controller is used to interface with I2C devices.
Required properties:
- compatible: value should be either of the following.
(a) "mediatek,mt6577-i2c", for i2c compatible with mt6577 i2c.
(b) "mediatek,mt6589-i2c", for i2c compatible with mt6589 i2c.
(c) "mediatek,mt8127-i2c", for i2c compatible with mt8127 i2c.
(d) "mediatek,mt8135-i2c", for i2c compatible with mt8135 i2c.
(e) "mediatek,mt8173-i2c", for i2c compatible with mt8173 i2c.
"mediatek,mt2701-i2c", "mediatek,mt6577-i2c": for Mediatek mt2701
"mediatek,mt6577-i2c": for i2c compatible with mt6577.
"mediatek,mt6589-i2c": for i2c compatible with mt6589.
"mediatek,mt7623-i2c", "mediatek,mt6577-i2c": for i2c compatible with mt7623.
"mediatek,mt8173-i2c": for i2c compatible with mt8173.
- reg: physical base address of the controller and dma base, length of memory
mapped region.
- interrupts: interrupt number to the cpu.

View File

@ -0,0 +1,99 @@
General Purpose I2C Bus Mux
This binding describes an I2C bus multiplexer that uses a mux controller
from the mux subsystem to route the I2C signals.
.-----. .-----.
| dev | | dev |
.------------. '-----' '-----'
| SoC | | |
| | .--------+--------'
| .------. | .------+ child bus A, on MUX value set to 0
| | I2C |-|--| Mux |
| '------' | '--+---+ child bus B, on MUX value set to 1
| .------. | | '----------+--------+--------.
| | MUX- | | | | | |
| | Ctrl |-|-----+ .-----. .-----. .-----.
| '------' | | dev | | dev | | dev |
'------------' '-----' '-----' '-----'
Required properties:
- compatible: i2c-mux
- i2c-parent: The phandle of the I2C bus that this multiplexer's master-side
port is connected to.
- mux-controls: The phandle of the mux controller to use for operating the
mux.
* Standard I2C mux properties. See i2c-mux.txt in this directory.
* I2C child bus nodes. See i2c-mux.txt in this directory. The sub-bus number
is also the mux-controller state described in ../mux/mux-controller.txt
Optional properties:
- mux-locked: If present, explicitly allow unrelated I2C transactions on the
parent I2C adapter at these times:
+ during setup of the multiplexer
+ between setup of the multiplexer and the child bus I2C transaction
+ between the child bus I2C transaction and releasing of the multiplexer
+ during releasing of the multiplexer
However, I2C transactions to devices behind all I2C multiplexers connected
to the same parent adapter that this multiplexer is connected to are blocked
for the full duration of the complete multiplexed I2C transaction (i.e.
including the times covered by the above list).
If mux-locked is not present, the multiplexer is assumed to be parent-locked.
This means that no unrelated I2C transactions are allowed on the parent I2C
adapter for the complete multiplexed I2C transaction.
The properties of mux-locked and parent-locked multiplexers are discussed
in more detail in Documentation/i2c/i2c-topology.
For each i2c child node, an I2C child bus will be created. They will
be numbered based on their order in the device tree.
Whenever an access is made to a device on a child bus, the value set
in the relevant node's reg property will be set as the state in the
mux controller.
Example:
mux: mux-controller {
compatible = "gpio-mux";
#mux-control-cells = <0>;
mux-gpios = <&pioA 0 GPIO_ACTIVE_HIGH>,
<&pioA 1 GPIO_ACTIVE_HIGH>;
};
i2c-mux {
compatible = "i2c-mux";
mux-locked;
i2c-parent = <&i2c1>;
mux-controls = <&mux>;
#address-cells = <1>;
#size-cells = <0>;
i2c@1 {
reg = <1>;
#address-cells = <1>;
#size-cells = <0>;
ssd1307: oled@3c {
compatible = "solomon,ssd1307fb-i2c";
reg = <0x3c>;
pwms = <&pwm 4 3000>;
reset-gpios = <&gpio2 7 1>;
reset-active-low;
};
};
i2c@3 {
reg = <3>;
#address-cells = <1>;
#size-cells = <0>;
pca9555: pca9555@20 {
compatible = "nxp,pca9555";
gpio-controller;
#gpio-cells = <2>;
reg = <0x20>;
};
};
};

View File

@ -0,0 +1,29 @@
* NXP PCA PCA9564/PCA9665 I2C controller
The PCA9564/PCA9665 serves as an interface between most standard
parallel-bus microcontrollers/microprocessors and the serial I2C-bus
and allows the parallel bus system to communicate bi-directionally
with the I2C-bus.
Required properties :
- reg : Offset and length of the register set for the device
- compatible : one of "nxp,pca9564" or "nxp,pca9665"
Optional properties
- interrupts : the interrupt number
- interrupt-parent : the phandle for the interrupt controller.
If an interrupt is not specified polling will be used.
- reset-gpios : gpio specifier for gpio connected to RESET_N pin. As the line
is active low, it should be marked GPIO_ACTIVE_LOW.
- clock-frequency : I2C bus frequency.
Example:
i2c0: i2c@80000 {
compatible = "nxp,pca9564";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x80000 0x4>;
reset-gpios = <&gpio1 0 GPIO_ACTIVE_LOW>;
clock-frequency = <100000>;
};

View File

@ -0,0 +1,22 @@
ZTE zx2967 I2C controller
Required properties:
- compatible: must be "zte,zx296718-i2c"
- reg: physical address and length of the device registers
- interrupts: a single interrupt specifier
- clocks: clock for the device
- #address-cells: should be <1>
- #size-cells: should be <0>
- clock-frequency: the desired I2C bus clock frequency.
Examples:
i2c@112000 {
compatible = "zte,zx296718-i2c";
reg = <0x00112000 0x1000>;
interrupts = <GIC_SPI 112 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&osc24m>;
#address-cells = <1>
#size-cells = <0>;
clock-frequency = <1600000>;
};

View File

@ -2,6 +2,8 @@
Required properties:
- compatible: depending on the SoC this should be one of:
- "amlogic,meson8-saradc" for Meson8
- "amlogic,meson8b-saradc" for Meson8b
- "amlogic,meson-gxbb-saradc" for GXBB
- "amlogic,meson-gxl-saradc" for GXL
- "amlogic,meson-gxm-saradc" for GXM

View File

@ -1,4 +1,4 @@
* Renesas RCar GyroADC device driver
* Renesas R-Car GyroADC device driver
The GyroADC block is a reduced SPI block with up to 8 chipselect lines,
which supports the SPI protocol of a selected few SPI ADCs. The SPI ADCs
@ -16,8 +16,7 @@ Required properties:
- clocks: References to all the clocks specified in the clock-names
property as specified in
Documentation/devicetree/bindings/clock/clock-bindings.txt.
- clock-names: Shall contain "fck" and "if". The "fck" is the GyroADC block
clock, the "if" is the interface clock.
- clock-names: Shall contain "fck". The "fck" is the GyroADC block clock.
- power-domains: Must contain a reference to the PM domain, if available.
- #address-cells: Should be <1> (setting for the subnodes) for all ADCs
except for "fujitsu,mb88101a". Should be <0> (setting for
@ -75,8 +74,8 @@ Example:
adc@e6e54000 {
compatible = "renesas,r8a7791-gyroadc", "renesas,rcar-gyroadc";
reg = <0 0xe6e54000 0 64>;
clocks = <&mstp9_clks R8A7791_CLK_GYROADC>, <&clk_65m>;
clock-names = "fck", "if";
clocks = <&mstp9_clks R8A7791_CLK_GYROADC>;
clock-names = "fck";
power-domains = <&sysc R8A7791_PD_ALWAYS_ON>;
pinctrl-0 = <&adc_pins>;

View File

@ -21,11 +21,19 @@ own configurable sequence and trigger:
Contents of a stm32 adc root node:
-----------------------------------
Required properties:
- compatible: Should be "st,stm32f4-adc-core".
- compatible: Should be one of:
"st,stm32f4-adc-core"
"st,stm32h7-adc-core"
- reg: Offset and length of the ADC block register set.
- interrupts: Must contain the interrupt for ADC block.
- clocks: Clock for the analog circuitry (common to all ADCs).
- clock-names: Must be "adc".
- clocks: Core can use up to two clocks, depending on part used:
- "adc" clock: for the analog circuitry, common to all ADCs.
It's required on stm32f4.
It's optional on stm32h7.
- "bus" clock: for registers access, common to all ADCs.
It's not present on stm32f4.
It's required on stm32h7.
- clock-names: Must be "adc" and/or "bus" depending on part used.
- interrupt-controller: Identifies the controller node as interrupt-parent
- vref-supply: Phandle to the vref input analog reference voltage.
- #interrupt-cells = <1>;
@ -42,14 +50,18 @@ An ADC block node should contain at least one subnode, representing an
ADC instance available on the machine.
Required properties:
- compatible: Should be "st,stm32f4-adc".
- compatible: Should be one of:
"st,stm32f4-adc"
"st,stm32h7-adc"
- reg: Offset of ADC instance in ADC block (e.g. may be 0x0, 0x100, 0x200).
- clocks: Input clock private to this ADC instance.
- clocks: Input clock private to this ADC instance. It's required only on
stm32f4, that has per instance clock input for registers access.
- interrupt-parent: Phandle to the parent interrupt controller.
- interrupts: IRQ Line for the ADC (e.g. may be 0 for adc@0, 1 for adc@100 or
2 for adc@200).
- st,adc-channels: List of single-ended channels muxed for this ADC.
It can have up to 16 channels, numbered from 0 to 15 (resp. for in0..in15).
It can have up to 16 channels on stm32f4 or 20 channels on stm32h7, numbered
from 0 to 15 or 19 (resp. for in0..in15 or in0..in19).
- #io-channel-cells = <1>: See the IIO bindings section "IIO consumers" in
Documentation/devicetree/bindings/iio/iio-bindings.txt
@ -58,7 +70,9 @@ Optional properties:
See ../../dma/dma.txt for details.
- dma-names: Must be "rx" when dmas property is being used.
- assigned-resolution-bits: Resolution (bits) to use for conversions. Must
match device available resolutions (e.g. can be 6, 8, 10 or 12 on stm32f4).
match device available resolutions:
* can be 6, 8, 10 or 12 on stm32f4
* can be 8, 10, 12, 14 or 16 on stm32h7
Default is maximum resolution if unset.
Example:

View File

@ -0,0 +1,19 @@
* Texas Instruments' ADC084S021
Required properties:
- compatible : Must be "ti,adc084s021"
- reg : SPI chip select number for the device
- vref-supply : The regulator supply for ADC reference voltage
- spi-cpol : Per spi-bus bindings
- spi-cpha : Per spi-bus bindings
- spi-max-frequency : Per spi-bus bindings
Example:
adc@0 {
compatible = "ti,adc084s021";
reg = <0>;
vref-supply = <&adc_vref>;
spi-cpol;
spi-cpha;
spi-max-frequency = <16000000>;
};

View File

@ -0,0 +1,18 @@
* Texas Instruments' ADC108S102 and ADC128S102 ADC chip
Required properties:
- compatible: Should be "ti,adc108s102"
- reg: spi chip select number for the device
- vref-supply: The regulator supply for ADC reference voltage
Recommended properties:
- spi-max-frequency: Definition as per
Documentation/devicetree/bindings/spi/spi-bus.txt
Example:
adc@0 {
compatible = "ti,adc108s102";
reg = <0>;
vref-supply = <&vdd_supply>;
spi-max-frequency = <1000000>;
};

View File

@ -13,7 +13,8 @@ Optional properties:
"data ready" (valid values: 1 or 2).
- interrupt-parent: should be the phandle for the interrupt controller
- interrupts: interrupt mapping for IRQ. It should be configured with
flags IRQ_TYPE_LEVEL_HIGH or IRQ_TYPE_EDGE_RISING.
flags IRQ_TYPE_LEVEL_HIGH, IRQ_TYPE_EDGE_RISING, IRQ_TYPE_LEVEL_LOW or
IRQ_TYPE_EDGE_FALLING.
Refer to interrupt-controller/interrupts.txt for generic interrupt
client node bindings.

View File

@ -0,0 +1,39 @@
I/O channel multiplexer bindings
If a multiplexer is used to select which hardware signal is fed to
e.g. an ADC channel, these bindings describe that situation.
Required properties:
- compatible : "io-channel-mux"
- io-channels : Channel node of the parent channel that has multiplexed
input.
- io-channel-names : Should be "parent".
- #address-cells = <1>;
- #size-cells = <0>;
- mux-controls : Mux controller node to use for operating the mux
- channels : List of strings, labeling the mux controller states.
For each non-empty string in the channels property, an io-channel will
be created. The number of this io-channel is the same as the index into
the list of strings in the channels property, and also matches the mux
controller state. The mux controller state is described in
../mux/mux-controller.txt
Example:
mux: mux-controller {
compatible = "mux-gpio";
#mux-control-cells = <0>;
mux-gpios = <&pioA 0 GPIO_ACTIVE_HIGH>,
<&pioA 1 GPIO_ACTIVE_HIGH>;
};
adc-mux {
compatible = "io-channel-mux";
io-channels = <&adc 0>;
io-channel-names = "parent";
mux-controls = <&mux>;
channels = "sync", "in", "system-regulator";
};

View File

@ -3,6 +3,7 @@ Austrian Microsystems AS3935 Franklin lightning sensor device driver
Required properties:
- compatible: must be "ams,as3935"
- reg: SPI chip select number for the device
- spi-max-frequency: specifies maximum SPI clock frequency
- spi-cpha: SPI Mode 1. Refer to spi/spi-bus.txt for generic SPI
slave node bindings.
- interrupt-parent : should be the phandle for the interrupt controller
@ -21,6 +22,7 @@ Example:
as3935@0 {
compatible = "ams,as3935";
reg = <0>;
spi-max-frequency = <400000>;
spi-cpha;
interrupt-parent = <&gpio1>;
interrupts = <16 1>;

View File

@ -0,0 +1,21 @@
* D-Link DIR-685 Touchkeys
This is a I2C one-off touchkey controller based on the Cypress Semiconductor
CY8C214 MCU with some firmware in its internal 8KB flash. The circuit
board inside the router is named E119921.
The touchkey device node should be placed inside an I2C bus node.
Required properties:
- compatible: must be "dlink,dir685-touchkeys"
- reg: the I2C address of the touchkeys
- interrupts: reference to the interrupt number
Example:
touchkeys@26 {
compatible = "dlink,dir685-touchkeys";
reg = <0x26>;
interrupt-parent = <&gpio0>;
interrupts = <17 IRQ_TYPE_EDGE_FALLING>;
};

View File

@ -0,0 +1,43 @@
* ST-Microelectronics FingerTip touchscreen controller
The ST-Microelectronics FingerTip device provides a basic touchscreen
functionality. Along with it the user can enable the touchkey which can work as
a basic HOME and BACK key for phones.
The driver supports also hovering as an absolute single touch event with x, y, z
coordinates.
Required properties:
- compatible : must be "st,stmfts"
- reg : I2C slave address, (e.g. 0x49)
- interrupt-parent : the phandle to the interrupt controller which provides
the interrupt
- interrupts : interrupt specification
- avdd-supply : analogic power supply
- vdd-supply : power supply
- touchscreen-size-x : see touchscreen.txt
- touchscreen-size-y : see touchscreen.txt
Optional properties:
- touch-key-connected : specifies whether the touchkey feature is connected
- ledvdd-supply : power supply to the touch key leds
Example:
i2c@00000000 {
/* ... */
touchscreen@49 {
compatible = "st,stmfts";
reg = <0x49>;
interrupt-parent = <&gpa1>;
interrupts = <1 IRQ_TYPE_NONE>;
touchscreen-size-x = <1599>;
touchscreen-size-y = <2559>;
touch-key-connected;
avdd-supply = <&ldo30_reg>;
vdd-supply = <&ldo31_reg>;
ledvdd-supply = <&ldo33_reg>;
};
};

View File

@ -3,8 +3,11 @@ Allwinner Sunxi NMI Controller
Required properties:
- compatible : should be "allwinner,sun7i-a20-sc-nmi" or
"allwinner,sun6i-a31-sc-nmi" or "allwinner,sun9i-a80-nmi"
- compatible : should be one of the following:
- "allwinner,sun7i-a20-sc-nmi"
- "allwinner,sun6i-a31-sc-nmi" (deprecated)
- "allwinner,sun6i-a31-r-intc"
- "allwinner,sun9i-a80-nmi"
- reg : Specifies base physical address and size of the registers.
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an

View File

@ -0,0 +1,25 @@
Device tree configuration for the I2C Interrupt Controller on the AST24XX and
AST25XX SoCs.
Required Properties:
- #address-cells : should be 1
- #size-cells : should be 1
- #interrupt-cells : should be 1
- compatible : should be "aspeed,ast2400-i2c-ic"
or "aspeed,ast2500-i2c-ic"
- reg : address start and range of controller
- interrupts : interrupt number
- interrupt-controller : denotes that the controller receives and fires
new interrupts for child busses
Example:
i2c_ic: interrupt-controller@0 {
#address-cells = <1>;
#size-cells = <1>;
#interrupt-cells = <1>;
compatible = "aspeed,ast2400-i2c-ic";
reg = <0x0 0x40>;
interrupts = <12>;
interrupt-controller;
};

View File

@ -1,12 +1,13 @@
Aspeed Vectored Interrupt Controller
These bindings are for the Aspeed AST2400 interrupt controller register layout.
The SoC has an legacy register layout, but this driver does not support that
mode of operation.
These bindings are for the Aspeed interrupt controller. The AST2400 and
AST2500 SoC families include a legacy register layout before a re-designed
layout, but the bindings do not prescribe the use of one or the other.
Required properties:
- compatible : should be "aspeed,ast2400-vic".
- compatible : "aspeed,ast2400-vic"
"aspeed,ast2500-vic"
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an

View File

@ -0,0 +1,27 @@
Marvell GICP Controller
-----------------------
GICP is a Marvell extension of the GIC that allows to trigger GIC SPI
interrupts by doing a memory transaction. It is used by the ICU
located in the Marvell CP110 to turn wired interrupts inside the CP
into GIC SPI interrupts.
Required properties:
- compatible: Must be "marvell,ap806-gicp"
- reg: Must be the address and size of the GICP SPI registers
- marvell,spi-ranges: tuples of GIC SPI interrupts ranges available
for this GICP
- msi-controller: indicates that this is an MSI controller
Example:
gicp_spi: gicp-spi@3f0040 {
compatible = "marvell,ap806-gicp";
reg = <0x3f0040 0x10>;
marvell,spi-ranges = <64 64>, <288 64>;
msi-controller;
};

View File

@ -0,0 +1,51 @@
Marvell ICU Interrupt Controller
--------------------------------
The Marvell ICU (Interrupt Consolidation Unit) controller is
responsible for collecting all wired-interrupt sources in the CP and
communicating them to the GIC in the AP, the unit translates interrupt
requests on input wires to MSG memory mapped transactions to the GIC.
Required properties:
- compatible: Should be "marvell,cp110-icu"
- reg: Should contain ICU registers location and length.
- #interrupt-cells: Specifies the number of cells needed to encode an
interrupt source. The value shall be 3.
The 1st cell is the group type of the ICU interrupt. Possible group
types are:
ICU_GRP_NSR (0x0) : Shared peripheral interrupt, non-secure
ICU_GRP_SR (0x1) : Shared peripheral interrupt, secure
ICU_GRP_SEI (0x4) : System error interrupt
ICU_GRP_REI (0x5) : RAM error interrupt
The 2nd cell is the index of the interrupt in the ICU unit.
The 3rd cell is the type of the interrupt. See arm,gic.txt for
details.
- interrupt-controller: Identifies the node as an interrupt
controller.
- msi-parent: Should point to the GICP controller, the GIC extension
that allows to trigger interrupts using MSG memory mapped
transactions.
Example:
icu: interrupt-controller@1e0000 {
compatible = "marvell,cp110-icu";
reg = <0x1e0000 0x10>;
#interrupt-cells = <3>;
interrupt-controller;
msi-parent = <&gicp>;
};
usb3h0: usb3@500000 {
interrupt-parent = <&icu>;
interrupts = <ICU_GRP_NSR 106 IRQ_TYPE_LEVEL_HIGH>;
};

View File

@ -1,21 +1,23 @@
+Mediatek 65xx/67xx/81xx sysirq
+Mediatek MT65xx/MT67xx/MT81xx sysirq
Mediatek SOCs sysirq support controllable irq inverter for each GIC SPI
interrupt.
Required properties:
- compatible: should be one of:
"mediatek,mt8173-sysirq"
"mediatek,mt8135-sysirq"
"mediatek,mt8127-sysirq"
"mediatek,mt6795-sysirq"
"mediatek,mt6755-sysirq"
"mediatek,mt6592-sysirq"
"mediatek,mt6589-sysirq"
"mediatek,mt6582-sysirq"
"mediatek,mt6580-sysirq"
"mediatek,mt6577-sysirq"
"mediatek,mt2701-sysirq"
- compatible: should be
"mediatek,mt8173-sysirq", "mediatek,mt6577-sysirq": for MT8173
"mediatek,mt8135-sysirq", "mediatek,mt6577-sysirq": for MT8135
"mediatek,mt8127-sysirq", "mediatek,mt6577-sysirq": for MT8127
"mediatek,mt7622-sysirq", "mediatek,mt6577-sysirq": for MT7622
"mediatek,mt6795-sysirq", "mediatek,mt6577-sysirq": for MT6795
"mediatek,mt6797-sysirq", "mediatek,mt6577-sysirq": for MT6797
"mediatek,mt6755-sysirq", "mediatek,mt6577-sysirq": for MT6755
"mediatek,mt6592-sysirq", "mediatek,mt6577-sysirq": for MT6592
"mediatek,mt6589-sysirq", "mediatek,mt6577-sysirq": for MT6589
"mediatek,mt6582-sysirq", "mediatek,mt6577-sysirq": for MT6582
"mediatek,mt6580-sysirq", "mediatek,mt6577-sysirq": for MT6580
"mediatek,mt6577-sysirq": for MT6577
"mediatek,mt2701-sysirq", "mediatek,mt6577-sysirq": for MT2701
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Use the same format as specified by GIC in arm,gic.txt.
- interrupt-parent: phandle of irq parent for sysirq. The parent must

View File

@ -92,7 +92,6 @@ Example 2:
* References
[1] Power.org (TM) Standard for Embedded Power Architecture (TM) Platform
Requirements (ePAPR), Version 1.0, July 2008.
(http://www.power.org/resources/downloads/Power_ePAPR_APPROVED_v1.0.pdf)
[1] Devicetree Specification
(https://www.devicetree.org/specifications/)

View File

@ -26,6 +26,12 @@ the PCIe specification.
* "priq" - PRI Queue not empty
* "cmdq-sync" - CMD_SYNC complete
* "gerror" - Global Error activated
* "combined" - The combined interrupt is optional,
and should only be provided if the
hardware supports just a single,
combined interrupt line.
If provided, then the combined interrupt
will be used in preference to any others.
- #iommu-cells : See the generic IOMMU binding described in
devicetree/bindings/pci/pci-iommu.txt
@ -49,6 +55,12 @@ the PCIe specification.
- hisilicon,broken-prefetch-cmd
: Avoid sending CMD_PREFETCH_* commands to the SMMU.
- cavium,cn9900-broken-page1-regspace
: Replaces all page 1 offsets used for EVTQ_PROD/CONS,
PRIQ_PROD/CONS register access with page 0 offsets.
Set for Cavium ThunderX2 silicon that doesn't support
SMMU page1 register space.
** Example
smmu@2b400000 {

View File

@ -1,4 +1,4 @@
Common leds properties.
* Common leds properties.
LED and flash LED devices provide the same basic functionality as current
regulators, but extended with LED and flash LED specific features like
@ -49,6 +49,22 @@ Optional properties for child nodes:
- panic-indicator : This property specifies that the LED should be used,
if at all possible, as a panic indicator.
- trigger-sources : List of devices which should be used as a source triggering
this LED activity. Some LEDs can be related to a specific
device and should somehow indicate its state. E.g. USB 2.0
LED may react to device(s) in a USB 2.0 port(s).
Another common example is switch or router with multiple
Ethernet ports each of them having its own LED assigned
(assuming they are not hardwired). In such cases this
property should contain phandle(s) of related source
device(s).
In many cases LED can be related to more than one device
(e.g. one USB LED vs. multiple USB ports). Each source
should be represented by a node in the device tree and be
referenced by a phandle and a set of phandle arguments. A
length of arguments should be specified by the
#trigger-source-cells property in the source node.
Required properties for flash LED child nodes:
- flash-max-microamp : Maximum flash LED supply current in microamperes.
- flash-max-timeout-us : Maximum timeout in microseconds after which the flash
@ -59,7 +75,17 @@ property can be omitted.
For controllers that have no configurable timeout the flash-max-timeout-us
property can be omitted.
Examples:
* Trigger source providers
Each trigger source should be represented by a device tree node. It may be e.g.
a USB port or an Ethernet device.
Required properties for trigger source:
- #trigger-source-cells : Number of cells in a source trigger. Typically 0 for
nodes of simple trigger sources (e.g. a specific USB
port).
* Examples
gpio-leds {
compatible = "gpio-leds";
@ -69,6 +95,11 @@ gpio-leds {
linux,default-trigger = "heartbeat";
gpios = <&gpio0 0 GPIO_ACTIVE_HIGH>;
};
usb {
gpios = <&gpio0 1 GPIO_ACTIVE_HIGH>;
trigger-sources = <&ohci_port1>, <&ehci_port1>;
};
};
max77693-led {

View File

@ -10,6 +10,7 @@ Optional properties:
- nxp,period-scale : In some configurations, the chip blinks faster than expected.
This parameter provides a scaling ratio (fixed point, decimal divided
by 1000) to compensate, e.g. 1300=1.3x and 750=0.75x.
- nxp,inverted-out: invert the polarity of the generated PWM
Each led is represented as a sub-node of the nxp,pca963x device.

Some files were not shown because too many files have changed in this diff Show More