mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-25 16:13:17 +00:00
lib/msun: add more csqrt unit tests for precision and overflow
Reviewed by: bde Approved by: markj (mentor) Sponsored by: Dell EMC Isilon
This commit is contained in:
parent
cf551d94ef
commit
fca37d4727
Notes:
svn2git
2020-12-20 02:59:44 +00:00
svn path=/head/; revision=323004
@ -214,28 +214,94 @@ test_nans(void)
|
||||
|
||||
/*
|
||||
* Test whether csqrt(a + bi) works for inputs that are large enough to
|
||||
* cause overflow in hypot(a, b) + a. In this case we are using
|
||||
* csqrt(115 + 252*I) == 14 + 9*I
|
||||
* scaled up to near MAX_EXP.
|
||||
* cause overflow in hypot(a, b) + a. Each of the tests is scaled up to
|
||||
* near MAX_EXP.
|
||||
*/
|
||||
static void
|
||||
test_overflow(int maxexp)
|
||||
{
|
||||
long double a, b;
|
||||
long double complex result;
|
||||
int exp, i;
|
||||
|
||||
a = ldexpl(115 * 0x1p-8, maxexp);
|
||||
b = ldexpl(252 * 0x1p-8, maxexp);
|
||||
result = t_csqrt(CMPLXL(a, b));
|
||||
assert(creall(result) == ldexpl(14 * 0x1p-4, maxexp / 2));
|
||||
assert(cimagl(result) == ldexpl(9 * 0x1p-4, maxexp / 2));
|
||||
assert(maxexp > 0 && maxexp % 2 == 0);
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
exp = maxexp - 2 * i;
|
||||
|
||||
/* csqrt(115 + 252*I) == 14 + 9*I */
|
||||
a = ldexpl(115 * 0x1p-8, exp);
|
||||
b = ldexpl(252 * 0x1p-8, exp);
|
||||
result = t_csqrt(CMPLXL(a, b));
|
||||
assert(creall(result) == ldexpl(14 * 0x1p-4, exp / 2));
|
||||
assert(cimagl(result) == ldexpl(9 * 0x1p-4, exp / 2));
|
||||
|
||||
/* csqrt(-11 + 60*I) = 5 + 6*I */
|
||||
a = ldexpl(-11 * 0x1p-6, exp);
|
||||
b = ldexpl(60 * 0x1p-6, exp);
|
||||
result = t_csqrt(CMPLXL(a, b));
|
||||
assert(creall(result) == ldexpl(5 * 0x1p-3, exp / 2));
|
||||
assert(cimagl(result) == ldexpl(6 * 0x1p-3, exp / 2));
|
||||
|
||||
/* csqrt(225 + 0*I) == 15 + 0*I */
|
||||
a = ldexpl(225 * 0x1p-8, exp);
|
||||
b = 0;
|
||||
result = t_csqrt(CMPLXL(a, b));
|
||||
assert(creall(result) == ldexpl(15 * 0x1p-4, exp / 2));
|
||||
assert(cimagl(result) == 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Test that precision is maintained for some large squares. Set all or
|
||||
* some bits in the lower mantdig/2 bits, square the number, and try to
|
||||
* recover the sqrt. Note:
|
||||
* (x + xI)**2 = 2xxI
|
||||
*/
|
||||
static void
|
||||
test_precision(int maxexp, int mantdig)
|
||||
{
|
||||
long double b, x;
|
||||
long double complex result;
|
||||
uint64_t mantbits, sq_mantbits;
|
||||
int exp, i;
|
||||
|
||||
assert(maxexp > 0 && maxexp % 2 == 0);
|
||||
assert(mantdig <= 64);
|
||||
mantdig = rounddown(mantdig, 2);
|
||||
|
||||
for (exp = 0; exp <= maxexp; exp += 2) {
|
||||
mantbits = ((uint64_t)1 << (mantdig / 2 )) - 1;
|
||||
for (i = 0;
|
||||
i < 100 && mantbits > ((uint64_t)1 << (mantdig / 2 - 1));
|
||||
i++, mantbits--) {
|
||||
sq_mantbits = mantbits * mantbits;
|
||||
/*
|
||||
* sq_mantibts is a mantdig-bit number. Divide by
|
||||
* 2**mantdig to normalize it to [0.5, 1), where,
|
||||
* note, the binary power will be -1. Raise it by
|
||||
* 2**exp for the test. exp is even. Lower it by
|
||||
* one to reach a final binary power which is also
|
||||
* even. The result should be exactly
|
||||
* representable, given that mantdig is less than or
|
||||
* equal to the available precision.
|
||||
*/
|
||||
b = ldexpl((long double)sq_mantbits,
|
||||
exp - 1 - mantdig);
|
||||
x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
|
||||
assert(b == x * x * 2);
|
||||
result = t_csqrt(CMPLXL(0, b));
|
||||
assert(creall(result) == x);
|
||||
assert(cimagl(result) == x);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int
|
||||
main(void)
|
||||
{
|
||||
|
||||
printf("1..15\n");
|
||||
printf("1..18\n");
|
||||
|
||||
/* Test csqrt() */
|
||||
t_csqrt = _csqrt;
|
||||
@ -255,41 +321,56 @@ main(void)
|
||||
test_overflow(DBL_MAX_EXP);
|
||||
printf("ok 5 - csqrt\n");
|
||||
|
||||
test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
|
||||
printf("ok 6 - csqrt\n");
|
||||
|
||||
/* Now test csqrtf() */
|
||||
t_csqrt = _csqrtf;
|
||||
|
||||
test_finite();
|
||||
printf("ok 6 - csqrt\n");
|
||||
|
||||
test_zeros();
|
||||
printf("ok 7 - csqrt\n");
|
||||
|
||||
test_infinities();
|
||||
test_zeros();
|
||||
printf("ok 8 - csqrt\n");
|
||||
|
||||
test_nans();
|
||||
test_infinities();
|
||||
printf("ok 9 - csqrt\n");
|
||||
|
||||
test_overflow(FLT_MAX_EXP);
|
||||
test_nans();
|
||||
printf("ok 10 - csqrt\n");
|
||||
|
||||
test_overflow(FLT_MAX_EXP);
|
||||
printf("ok 11 - csqrt\n");
|
||||
|
||||
test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
|
||||
printf("ok 12 - csqrt\n");
|
||||
|
||||
/* Now test csqrtl() */
|
||||
t_csqrt = csqrtl;
|
||||
|
||||
test_finite();
|
||||
printf("ok 11 - csqrt\n");
|
||||
|
||||
test_zeros();
|
||||
printf("ok 12 - csqrt\n");
|
||||
|
||||
test_infinities();
|
||||
printf("ok 13 - csqrt\n");
|
||||
|
||||
test_nans();
|
||||
test_zeros();
|
||||
printf("ok 14 - csqrt\n");
|
||||
|
||||
test_overflow(LDBL_MAX_EXP);
|
||||
test_infinities();
|
||||
printf("ok 15 - csqrt\n");
|
||||
|
||||
test_nans();
|
||||
printf("ok 16 - csqrt\n");
|
||||
|
||||
test_overflow(LDBL_MAX_EXP);
|
||||
printf("ok 17 - csqrt\n");
|
||||
|
||||
test_precision(LDBL_MAX_EXP,
|
||||
#ifndef __i386__
|
||||
LDBL_MANT_DIG
|
||||
#else
|
||||
DBL_MANT_DIG
|
||||
#endif
|
||||
);
|
||||
printf("ok 18 - csqrt\n");
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user