mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-23 11:18:54 +00:00
Update llvm to release_39 branch r279477.
This commit is contained in:
commit
fccc5558f5
Notes:
svn2git
2020-12-20 02:59:44 +00:00
svn path=/projects/clang390-import/; revision=304770
@ -65,7 +65,7 @@ class ReassociatePass : public PassInfoMixin<ReassociatePass> {
|
||||
PreservedAnalyses run(Function &F, FunctionAnalysisManager &);
|
||||
|
||||
private:
|
||||
void BuildRankMap(Function &F, ReversePostOrderTraversal<Function *> &RPOT);
|
||||
void BuildRankMap(Function &F);
|
||||
unsigned getRank(Value *V);
|
||||
void canonicalizeOperands(Instruction *I);
|
||||
void ReassociateExpression(BinaryOperator *I);
|
||||
|
@ -4822,6 +4822,10 @@ bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
|
||||
// from different loops, so that we know which loop to prove that I is
|
||||
// executed in.
|
||||
for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
|
||||
// I could be an extractvalue from a call to an overflow intrinsic.
|
||||
// TODO: We can do better here in some cases.
|
||||
if (!isSCEVable(I->getOperand(OpIndex)->getType()))
|
||||
return false;
|
||||
const SCEV *Op = getSCEV(I->getOperand(OpIndex));
|
||||
if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
|
||||
bool AllOtherOpsLoopInvariant = true;
|
||||
|
@ -1258,8 +1258,11 @@ AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
|
||||
if (MIIsUnscaled) {
|
||||
// If the unscaled offset isn't a multiple of the MemSize, we can't
|
||||
// pair the operations together: bail and keep looking.
|
||||
if (MIOffset % MemSize)
|
||||
if (MIOffset % MemSize) {
|
||||
trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
|
||||
MemInsns.push_back(&MI);
|
||||
continue;
|
||||
}
|
||||
MIOffset /= MemSize;
|
||||
} else {
|
||||
MIOffset *= MemSize;
|
||||
@ -1424,9 +1427,6 @@ bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
|
||||
default:
|
||||
break;
|
||||
case AArch64::SUBXri:
|
||||
// Negate the offset for a SUB instruction.
|
||||
Offset *= -1;
|
||||
// FALLTHROUGH
|
||||
case AArch64::ADDXri:
|
||||
// Make sure it's a vanilla immediate operand, not a relocation or
|
||||
// anything else we can't handle.
|
||||
@ -1444,6 +1444,9 @@ bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
|
||||
|
||||
bool IsPairedInsn = isPairedLdSt(MemMI);
|
||||
int UpdateOffset = MI.getOperand(2).getImm();
|
||||
if (MI.getOpcode() == AArch64::SUBXri)
|
||||
UpdateOffset = -UpdateOffset;
|
||||
|
||||
// For non-paired load/store instructions, the immediate must fit in a
|
||||
// signed 9-bit integer.
|
||||
if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256))
|
||||
@ -1458,13 +1461,13 @@ bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
|
||||
break;
|
||||
|
||||
int ScaledOffset = UpdateOffset / Scale;
|
||||
if (ScaledOffset > 64 || ScaledOffset < -64)
|
||||
if (ScaledOffset > 63 || ScaledOffset < -64)
|
||||
break;
|
||||
}
|
||||
|
||||
// If we have a non-zero Offset, we check that it matches the amount
|
||||
// we're adding to the register.
|
||||
if (!Offset || Offset == MI.getOperand(2).getImm())
|
||||
if (!Offset || Offset == UpdateOffset)
|
||||
return true;
|
||||
break;
|
||||
}
|
||||
|
@ -4033,11 +4033,18 @@ PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
|
||||
if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
|
||||
return false;
|
||||
|
||||
// Functions containing by val parameters are not supported.
|
||||
// Caller contains any byval parameter is not supported.
|
||||
if (std::any_of(Ins.begin(), Ins.end(),
|
||||
[](const ISD::InputArg& IA) { return IA.Flags.isByVal(); }))
|
||||
return false;
|
||||
|
||||
// Callee contains any byval parameter is not supported, too.
|
||||
// Note: This is a quick work around, because in some cases, e.g.
|
||||
// caller's stack size > callee's stack size, we are still able to apply
|
||||
// sibling call optimization. See: https://reviews.llvm.org/D23441#513574
|
||||
if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
|
||||
return false;
|
||||
|
||||
// No TCO/SCO on indirect call because Caller have to restore its TOC
|
||||
if (!isFunctionGlobalAddress(Callee) &&
|
||||
!isa<ExternalSymbolSDNode>(Callee))
|
||||
|
@ -145,8 +145,7 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void ReassociatePass::BuildRankMap(
|
||||
Function &F, ReversePostOrderTraversal<Function *> &RPOT) {
|
||||
void ReassociatePass::BuildRankMap(Function &F) {
|
||||
unsigned i = 2;
|
||||
|
||||
// Assign distinct ranks to function arguments.
|
||||
@ -155,6 +154,7 @@ void ReassociatePass::BuildRankMap(
|
||||
DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
|
||||
}
|
||||
|
||||
ReversePostOrderTraversal<Function *> RPOT(&F);
|
||||
for (BasicBlock *BB : RPOT) {
|
||||
unsigned BBRank = RankMap[BB] = ++i << 16;
|
||||
|
||||
@ -2172,28 +2172,13 @@ void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
|
||||
}
|
||||
|
||||
PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
|
||||
// Reassociate needs for each instruction to have its operands already
|
||||
// processed, so we first perform a RPOT of the basic blocks so that
|
||||
// when we process a basic block, all its dominators have been processed
|
||||
// before.
|
||||
ReversePostOrderTraversal<Function *> RPOT(&F);
|
||||
BuildRankMap(F, RPOT);
|
||||
// Calculate the rank map for F.
|
||||
BuildRankMap(F);
|
||||
|
||||
MadeChange = false;
|
||||
for (BasicBlock *BI : RPOT) {
|
||||
// Use a worklist to keep track of which instructions have been processed
|
||||
// (and which insts won't be optimized again) so when redoing insts,
|
||||
// optimize insts rightaway which won't be processed later.
|
||||
SmallSet<Instruction *, 8> Worklist;
|
||||
|
||||
// Insert all instructions in the BB
|
||||
for (Instruction &I : *BI)
|
||||
Worklist.insert(&I);
|
||||
|
||||
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
|
||||
// Optimize every instruction in the basic block.
|
||||
for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) {
|
||||
// This instruction has been processed.
|
||||
Worklist.erase(&*II);
|
||||
for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
|
||||
if (isInstructionTriviallyDead(&*II)) {
|
||||
EraseInst(&*II++);
|
||||
} else {
|
||||
@ -2202,22 +2187,27 @@ PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
|
||||
++II;
|
||||
}
|
||||
|
||||
// If the above optimizations produced new instructions to optimize or
|
||||
// made modifications which need to be redone, do them now if they won't
|
||||
// be handled later.
|
||||
while (!RedoInsts.empty()) {
|
||||
Instruction *I = RedoInsts.pop_back_val();
|
||||
// Process instructions that won't be processed later, either
|
||||
// inside the block itself or in another basic block (based on rank),
|
||||
// since these will be processed later.
|
||||
if ((I->getParent() != BI || !Worklist.count(I)) &&
|
||||
RankMap[I->getParent()] <= RankMap[BI]) {
|
||||
if (isInstructionTriviallyDead(I))
|
||||
EraseInst(I);
|
||||
else
|
||||
OptimizeInst(I);
|
||||
}
|
||||
}
|
||||
// Make a copy of all the instructions to be redone so we can remove dead
|
||||
// instructions.
|
||||
SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
|
||||
// Iterate over all instructions to be reevaluated and remove trivially dead
|
||||
// instructions. If any operand of the trivially dead instruction becomes
|
||||
// dead mark it for deletion as well. Continue this process until all
|
||||
// trivially dead instructions have been removed.
|
||||
while (!ToRedo.empty()) {
|
||||
Instruction *I = ToRedo.pop_back_val();
|
||||
if (isInstructionTriviallyDead(I))
|
||||
RecursivelyEraseDeadInsts(I, ToRedo);
|
||||
}
|
||||
|
||||
// Now that we have removed dead instructions, we can reoptimize the
|
||||
// remaining instructions.
|
||||
while (!RedoInsts.empty()) {
|
||||
Instruction *I = RedoInsts.pop_back_val();
|
||||
if (isInstructionTriviallyDead(I))
|
||||
EraseInst(I);
|
||||
else
|
||||
OptimizeInst(I);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -566,6 +566,12 @@ void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
|
||||
if (!I)
|
||||
continue;
|
||||
|
||||
// Skip over non-intrinsic callsites, we don't want to remove any nodes from
|
||||
// the CGSCC.
|
||||
CallSite CS = CallSite(I);
|
||||
if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
|
||||
continue;
|
||||
|
||||
// See if this instruction simplifies.
|
||||
Value *SimpleV = SimplifyInstruction(I, DL);
|
||||
if (!SimpleV)
|
||||
|
@ -82,8 +82,13 @@ static cl::opt<int> MinVectorRegSizeOption(
|
||||
"slp-min-reg-size", cl::init(128), cl::Hidden,
|
||||
cl::desc("Attempt to vectorize for this register size in bits"));
|
||||
|
||||
// FIXME: Set this via cl::opt to allow overriding.
|
||||
static const unsigned RecursionMaxDepth = 12;
|
||||
static cl::opt<unsigned> RecursionMaxDepth(
|
||||
"slp-recursion-max-depth", cl::init(12), cl::Hidden,
|
||||
cl::desc("Limit the recursion depth when building a vectorizable tree"));
|
||||
|
||||
static cl::opt<unsigned> MinTreeSize(
|
||||
"slp-min-tree-size", cl::init(3), cl::Hidden,
|
||||
cl::desc("Only vectorize small trees if they are fully vectorizable"));
|
||||
|
||||
// Limit the number of alias checks. The limit is chosen so that
|
||||
// it has no negative effect on the llvm benchmarks.
|
||||
@ -1842,7 +1847,7 @@ int BoUpSLP::getTreeCost() {
|
||||
VectorizableTree.size() << ".\n");
|
||||
|
||||
// We only vectorize tiny trees if it is fully vectorizable.
|
||||
if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
|
||||
if (VectorizableTree.size() < MinTreeSize && !isFullyVectorizableTinyTree()) {
|
||||
if (VectorizableTree.empty()) {
|
||||
assert(!ExternalUses.size() && "We should not have any external users");
|
||||
}
|
||||
@ -2124,11 +2129,61 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
|
||||
}
|
||||
|
||||
void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
|
||||
Instruction *VL0 = cast<Instruction>(VL[0]);
|
||||
BasicBlock::iterator NextInst(VL0);
|
||||
++NextInst;
|
||||
Builder.SetInsertPoint(VL0->getParent(), NextInst);
|
||||
Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
|
||||
|
||||
// Get the basic block this bundle is in. All instructions in the bundle
|
||||
// should be in this block.
|
||||
auto *Front = cast<Instruction>(VL.front());
|
||||
auto *BB = Front->getParent();
|
||||
assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool {
|
||||
return cast<Instruction>(V)->getParent() == BB;
|
||||
}));
|
||||
|
||||
// The last instruction in the bundle in program order.
|
||||
Instruction *LastInst = nullptr;
|
||||
|
||||
// Find the last instruction. The common case should be that BB has been
|
||||
// scheduled, and the last instruction is VL.back(). So we start with
|
||||
// VL.back() and iterate over schedule data until we reach the end of the
|
||||
// bundle. The end of the bundle is marked by null ScheduleData.
|
||||
if (BlocksSchedules.count(BB)) {
|
||||
auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back());
|
||||
if (Bundle && Bundle->isPartOfBundle())
|
||||
for (; Bundle; Bundle = Bundle->NextInBundle)
|
||||
LastInst = Bundle->Inst;
|
||||
}
|
||||
|
||||
// LastInst can still be null at this point if there's either not an entry
|
||||
// for BB in BlocksSchedules or there's no ScheduleData available for
|
||||
// VL.back(). This can be the case if buildTree_rec aborts for various
|
||||
// reasons (e.g., the maximum recursion depth is reached, the maximum region
|
||||
// size is reached, etc.). ScheduleData is initialized in the scheduling
|
||||
// "dry-run".
|
||||
//
|
||||
// If this happens, we can still find the last instruction by brute force. We
|
||||
// iterate forwards from Front (inclusive) until we either see all
|
||||
// instructions in the bundle or reach the end of the block. If Front is the
|
||||
// last instruction in program order, LastInst will be set to Front, and we
|
||||
// will visit all the remaining instructions in the block.
|
||||
//
|
||||
// One of the reasons we exit early from buildTree_rec is to place an upper
|
||||
// bound on compile-time. Thus, taking an additional compile-time hit here is
|
||||
// not ideal. However, this should be exceedingly rare since it requires that
|
||||
// we both exit early from buildTree_rec and that the bundle be out-of-order
|
||||
// (causing us to iterate all the way to the end of the block).
|
||||
if (!LastInst) {
|
||||
SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
|
||||
for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
|
||||
if (Bundle.erase(&I))
|
||||
LastInst = &I;
|
||||
if (Bundle.empty())
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the insertion point after the last instruction in the bundle. Set the
|
||||
// debug location to Front.
|
||||
Builder.SetInsertPoint(BB, next(BasicBlock::iterator(LastInst)));
|
||||
Builder.SetCurrentDebugLocation(Front->getDebugLoc());
|
||||
}
|
||||
|
||||
Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
|
||||
@ -2206,7 +2261,9 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
|
||||
|
||||
if (E->NeedToGather) {
|
||||
setInsertPointAfterBundle(E->Scalars);
|
||||
return Gather(E->Scalars, VecTy);
|
||||
auto *V = Gather(E->Scalars, VecTy);
|
||||
E->VectorizedValue = V;
|
||||
return V;
|
||||
}
|
||||
|
||||
unsigned Opcode = getSameOpcode(E->Scalars);
|
||||
@ -2253,7 +2310,10 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
|
||||
E->VectorizedValue = V;
|
||||
return V;
|
||||
}
|
||||
return Gather(E->Scalars, VecTy);
|
||||
setInsertPointAfterBundle(E->Scalars);
|
||||
auto *V = Gather(E->Scalars, VecTy);
|
||||
E->VectorizedValue = V;
|
||||
return V;
|
||||
}
|
||||
case Instruction::ExtractValue: {
|
||||
if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) {
|
||||
@ -2265,7 +2325,10 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
|
||||
E->VectorizedValue = V;
|
||||
return propagateMetadata(V, E->Scalars);
|
||||
}
|
||||
return Gather(E->Scalars, VecTy);
|
||||
setInsertPointAfterBundle(E->Scalars);
|
||||
auto *V = Gather(E->Scalars, VecTy);
|
||||
E->VectorizedValue = V;
|
||||
return V;
|
||||
}
|
||||
case Instruction::ZExt:
|
||||
case Instruction::SExt:
|
||||
|
Loading…
Reference in New Issue
Block a user