used for timecounting. The possible values are the names of the
physically present harware timecounters ("i8254" and "TSC" on i386's).
Fixed some nearby bitrot in comments in <sys/time.h>.
Reviewed by: phk
This code is backwards compatible with the older "microkernel" PLL, but
allows ntpd v4 to use nanosecond resolution. Many other improvements.
PPS_SYNC and hardpps() are NOT supported yet.
is the preparation step for moving pmap storage out of vmspace proper.
Reviewed by: Alan Cox <alc@cs.rice.edu>
Matthew Dillion <dillon@apollo.backplane.com>
can set if your hw/sw produces the "calcru negative..." message.
Setting the alternate method (sysctl -w kern.timecounter.method=1)
makes the the get{nano|micro}*() functions call the real thing at
resulting in a measurable but minor overhead.
I decided to NOT have the "calcru" change the method automatically
because you should be aware of this problem if you have it.
The problems currently seen, related to usleep and a few other corners
are fixed for both methods.
out interrupts for too long. If you still see the "calcru: negative
time..." message you can increase NTIMECOUNTER (see LINT).
Sideeffect is that a timecounter is required to not wrap around in
less than (1 + delta) seconds instead of the (1/hz + delta) required
until now.
Many thanks to: msmith, wpaul, wosch & bde
If you have problems with the "calcru" messages and processes being
killed for excessive cpu time, try to increase the NTIMECOUNTER
#define and report your findings.
Clean up (or if antipodic: down) some of the msgbuf stuff.
Use an inline function rather than a macro for timecounter delta.
Maintain process "on-cpu" time as 64 bits of microseconds to avoid
needless second rollover overhead.
Avoid calling microuptime the second time in mi_switch() if we do
not pass through _idle in cpu_switch()
This should reduce our context-switch overhead a bit, in particular
on pre-P5 and SMP systems.
WARNING: Programs which muck about with struct proc in userland
will have to be fixed.
Reviewed, but found imperfect by: bde
* Figure out UTC relative to boottime. Four new functions provide
time relative to boottime.
* move "runtime" into struct proc. This helps fix the calcru()
problem in SMP.
* kill mono_time.
* add timespec{add|sub|cmp} macros to time.h. (XXX: These may change!)
* nanosleep, select & poll takes long sleeps one day at a time
Reviewed by: bde
Tested by: ache and others
"time" wasn't a atomic variable, so splfoo() protection were needed
around any access to it, unless you just wanted the seconds part.
Most uses of time.tv_sec now uses the new variable time_second instead.
gettime() changed to getmicrotime(0.
Remove a couple of unneeded splfoo() protections, the new getmicrotime()
is atomic, (until Bruce sets a breakpoint in it).
A couple of places needed random data, so use read_random() instead
of mucking about with time which isn't random.
Add a new nfs_curusec() function.
Mark a couple of bogosities involving the now disappeard time variable.
Update ffs_update() to avoid the weird "== &time" checks, by fixing the
one remaining call that passwd &time as args.
Change profiling in ncr.c to use ticks instead of time. Resolution is
the same.
Add new function "tvtohz()" to avoid the bogus "splfoo(), add time, call
hzto() which subtracts time" sequences.
Reviewed by: bde
They are atomic, but return in essence what is in the "time" variable.
gettime() is now a macro front for getmicrotime().
Various patches to use the two new functions instead of the various
hacks used in their absence.
Some puntuation and grammer patches from Bruce.
A couple of XXX comments.
Highlights:
* Simple model for underlying hardware.
* Hardware basis for timekeeping can be changed on the fly.
* Only one hardware clock responsible for TOD keeping.
* Provides a real nanotime() function.
* Time granularity: .232E-18 seconds.
* Frequency granularity: .238E-12 s/s
* Frequency adjustment is continuous in time.
* Less overhead for frequency adjustment.
* Improves xntpd performance.
Reviewed by: bde, bde, bde
of time that the laptop was suspending. Thus, select() calls that might have
suspended rather than firing at 1hr + "time suspended" since the timer was
posted.
Adding:
options APM_FIXUP_CALLTODO
to the kernel config enables the patch.
[
This patch was slightly modified to use a consistant indent style and
I removed some unused local variables. After this has been tested a
few weeks we'll make the options the default, so for now I'm now
documenting it in LINT. Mike can later if he wants.
]
Reviewed by: Mike Smith <msmith@freebsd.org>
Submitted by: Ken Key <key@cs.utk.edu>
hash chain traversal isn't needed. This also allows untimeout to recompute
the hash to find the bucket that the entry to remove is stored in so
that each callout entry no longer needs to store that information.
Reviewed by: Nate Williams <nate@mt.sri.com>
Add support for "interrupt driven configuration hooks".
A component of the kernel can register a hook, most likely
during auto-configuration, and receive a callback once
interrupt services are available. This callback will occur before
the root and dump devices are configured, so the configuration
task can affect the selection of those two devices or complete
any tasks that need to be performed prior to launching init.
System boot is posponed so long as a hook is registered. The
hook owner is responsible for removing the hook once their task
is complete or the system boot can continue.
kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c:
Change the interface and implementation for the kernel callout
service. The new implemntaion is based on the work of
Adam M. Costello and George Varghese, published in a technical
report entitled "Redesigning the BSD Callout and Timer Facilities".
The interface used in FreeBSD is a little different than the one
outlined in the paper. The new function prototypes are:
struct callout_handle timeout(void (*func)(void *),
void *arg, int ticks);
void untimeout(void (*func)(void *), void *arg,
struct callout_handle handle);
If a client wishes to remove a timeout, it must store the
callout_handle returned by timeout and pass it to untimeout.
The new implementation gives 0(1) insert and removal of callouts
making this interface scale well even for applications that
keep 100s of callouts outstanding.
See the updated timeout.9 man page for more details.
There are various options documented in i386/conf/LINT, there is more to
come over the next few days.
The kernel should run pretty much "as before" without the options to
activate SMP mode.
There are a handful of known "loose ends" that need to be fixed, but
have been put off since the SMP kernel is in a moderately good condition
at the moment.
This commit is the result of the tinkering and testing over the last 14
months by many people. A special thanks to Steve Passe for implementing
the APIC code!
form `tv = time'. Use a new function gettime(). The current version
just forces atomicicity without fixing precision or efficiency bugs.
Simplified some related valid accesses by using the central function.
changes, so don't expect to be able to run the kernel as-is (very well)
without the appropriate Lite/2 userland changes.
The system boots and can mount UFS filesystems.
Untested: ext2fs, msdosfs, NFS
Known problems: Incorrect Berkeley ID strings in some files.
Mount_std mounts will not work until the getfsent
library routine is changed.
Reviewed by: various people
Submitted by: Jeffery Hsu <hsu@freebsd.org>
This will make a number of things easier in the future, as well as (finally!)
avoiding the Id-smashing problem which has plagued developers for so long.
Boy, I'm glad we're not using sup anymore. This update would have been
insane otherwise.
I decided to do this for every hardclock() call instead of lazily
in microtime(). The lazy method is simpler but has more overhead
if microtime() is called a lot.
CPU_THISTICKLEN() is now a no-op and should probably go away.
Previously it did nothing directly but had the side effect of
setting i586_last_tick for CPU_CLOCKUPDATE() and i586_avg_tick for
debugging. CPU_CLOCKUPDATE() now uses a better method and
i586_avg_tick is too much trouble to maintain.
Reduced nesting of #includes in the usual case.
Increased nesting of #includes when CLOCK_HAIR is defined. This
is a kludge to get typedefs for inline functions only when the
inline functions are used. Normally only kern_clock.c defines
this. kern_clock.c can't include the i386 headers directly.
Removed unused LOCORE support.
Unstaticize a function in scsi/scsi_base that was used, with an undocumented
option.
My last count on the LINT kernel shows:
Total symbols: 3647
unref symbols: 463
undef symbols: 4
1 ref symbols: 1751
2 ref symbols: 485
Approaching the pain threshold now.
Move a lot of variables home to their own code (In good time before xmas :-)
Introduce the string descrition of format.
Add a couple more functions to poke into these marvels, while I try to
decide what the correct interface should look like.
Next is adding vars on the fly, and sysctl looking at them too.
Removed a tine bit of defunct and #ifdefed notused code in swapgeneric.
much as I'd like to, but the malloc stunt I tried for an interim for
sure does worse.
Now we can read and write from any kind of address-space, not only
user and kernel, using callbacks.
This may be over-generalization for now, but it's actually simpler.
Submitted by: terry (terry lambert)
This is a composite of 3 patch sets submitted by terry.
they are:
New low-level init code that supports loadbal modules better
some cleanups in the namei code to help terry in 16-bit character support
some changes to the mount-root code to make it a little more
modular..
NOTE: mounting root off cdrom or NFS MIGHT be broken as I haven't been able
to test those cases..
certainly mounting root of disk still works just fine..
mfs should work but is untested. (tomorrows task)
The low level init stuff includes a total rewrite of init_main.c
to make it possible for new modules to have an init phase by simply
adding an entry to a TEXT_SET (or is it DATA_SET) list. thus a new module can
be added to the kernel without editing any other files other than the
'files' file.
Improve hzto():
Round up instead of down and then add 1 tick. This fixes sleep(1)
sometimes sleeping for < 1 second and usleep(10000) sometimes sleeping
for as little as 1 usec + syscall time.
Don't do all the calculations at splhigh().
Don't depend on `tick' being a multiple of 1000.
Don't lose accuracy for `sec' between 0x7fffffff / 1000 - 1000 and
0x7fffffff / hz.
Don't assume that longs are 32 bits or that ints have the same size as
longs.
cycles. While waiting there I added a lot of the extra ()'s I have, (I have
never used LISP to any extent). So I compiled the kernel with -Wall and
shut up a lot of "suggest you add ()'s", removed a bunch of unused var's
and added a couple of declarations here and there. Having a lap-top is
highly recommended. My kernel still runs, yell at me if you kernel breaks.
This code is mostly taken from the 1.1 port (which was in turn taken from
Dave Mills's kern.tar.Z example). A few significant differences:
1) ntp_gettime() is now a MIB variable rather than a system call. A few
fiddles are done in libc to make it behave the same.
2) mono_time does not participate in the PLL adjustments.
3) A new interface has been defined (in <machine/clock.h>) for doing
possibly machine-dependent things around the time of the clock update.
This is used in Pentium kernels to disable interrupts, set `time', and
reset the CPU cycle counter as quickly as possible to avoid jitter in
microtime(). Measurements show an apparent resolution of a bit more than
8.14usec, which is reasonable given system-call overhead.
in your kernel config now).
2) Added ps ddb function from 1.1.5. Cleaned it up a bit and moved into its
own file.
3) Added \r handing in db_printf.
4) Added missing memory usage stats to statclock().
5) Added dummy function to pseudo_set so it will be emitted if there
are no other pseudo declarations.
- Delete redundant declarations.
- Add -Wredundant-declarations to Makefile.i386 so they don't come back.
- Delete sloppy COMMON-style declarations of uninitialized data in
header files.
- Add a few prototypes.
- Clean up warnings resulting from the above.
NB: ioconf.c will still generate a redundant-declaration warning, which
is unavoidable unless somebody volunteers to make `config' smarter.