This change has not been tested.
This change was triggered by a gcc(1) warning on ia64 at -O2. The
variable v was not used after being computed, which resulted in enough
dead code elimination (DCE) to confuse the compiler and emit a bogus
warning about the use of the variable i without prior definition. The
variable i is the loop variable.
Submitted by: des
Responsibility: marcel
to select a serial console and debug port (resp). On ia64 these replace
the use of hints completely and take precedence over hints on alpha,
amd64 and i386. On sparc64 these variables are not yet recognised.
The reasons for introducing these variables are:
1. Hints have side-effects. They reserve the unit number for use by
isa or acpi devices and therefore cannot be used to select a pci
device. Also, the use of a unit number to select a device prior
to bus enumeration is nonsense. The new variables have no side-
effects and are not based on unit numbers.
2. Hints don't have the expression power to allow the sysadmin to
select UARTs that are not legacy PC devices and need the support
of compile-time constants to give the sysadmin some level of
flexibility.
The hw.uart.console and hw.uart.dbgport variables specify a list of
attributes. An attribute is a tag-value pair, seperated by a colon.
Attributes are seperated by a comma. Where possible, tags are the
same as those in /etc/remote (only br and pa in practice). Details
can be found in the manpage (not part of this commit).
Not tested on: amd64, pc98
device, the device is probed multiple times (so each device is
detected N times after unloading/loading the module N-1 times).
The real fix is (quote Doug and Warner):
> : In an ideal world, there should be some kind of BUS_UNIDENTIFY method
> : which a driver could use to delete the devices it created in
> : BUS_IDENTIFY.
>
> Or the bus would have a driver deleted routine that got called and it
> would remove all instances of the devclass attached to it.
Reviewed by: Doug Rabson & Warner Losh
mappings required by mdstart_swap(). On i386, if the ephemeral mapping
is already in the sf_buf mapping cache, a swap-backed md performs
similarly to a malloc-backed md. Even if the ephemeral mapping is not
cached, this implementation is still faster. On 64-bit platforms, this
change has the effect of using the direct virtual-to-physical mapping,
avoiding ephemeral mapping overheads, such as TLB shootdowns on SMPs.
On a 2.4GHz, 400MHz FSB P4 Xeon configured with 64K sf_bufs and
"mdmfs -S -o async -s 128m md /mnt"
before:
dd if=/dev/md0 of=/dev/null bs=64k
134217728 bytes transferred in 0.430923 secs (311465697 bytes/sec)
after with cold sf_buf cache:
dd if=/dev/md0 of=/dev/null bs=64k
134217728 bytes transferred in 0.367948 secs (364773576 bytes/sec)
after with warm sf_buf cache:
dd if=/dev/md0 of=/dev/null bs=64k
134217728 bytes transferred in 0.252826 secs (530870010 bytes/sec)
malloc-backed md:
dd if=/dev/md0 of=/dev/null bs=64k
134217728 bytes transferred in 0.253126 secs (530240978 bytes/sec)
clip/destroy the dB value contained in the wi(4)'s receive frames,
it doesn't match with the flag set in the radiotap header
(unperturbed dB versus dBm).
mini-layer. I don't have time to bing it forward into the GEOM world, and
no one else has stepped forward to claim it. It'll be in the Attic for safe
keeping for now.
This adds support for cardbus ATA/SATA controllers. I get roughly the
same transfer speeds as on true PCI controllers. Nice to be able to add
a couble of "real" disks to a laptop :)
Only cy, bs and wd in the tree still use it. I have a replacement for
cy that I need to test on ISA and PCI cards. bs and wd are pc98 only
drivers that appear to no longer be necessary. I'll be removing them
when I hear back from the pc98 people.
attach/detach time.
Assigning the default behaviour to this particular device is
incorrect, corrupting the video BIOS aperture, and breaking
VESA support in the kernel and XFree86.
Reviewed By: dfr
MFC after: 1 week
PR: kern/62906
to build the kernel. It doesn't affect the operation if gcc.
Most of the changes are just adding __INTEL_COMPILER to #ifdef's, as
icc v8 may define __GNUC__ some parts may look strange but are
necessary.
Additional changes:
- in_cksum.[ch]:
* use a generic C version instead of the assembly version in the !gcc
case (ASM code breaks with the optimizations icc does)
-> no bad checksums with an icc compiled kernel
Help from: andre, grehan, das
Stolen from: alpha version via ppc version
The entire checksum code should IMHO be replaced with the DragonFly
version (because it isn't guaranteed future revisions of gcc will
include similar optimizations) as in:
---snip---
Revision Changes Path
1.12 +1 -0 src/sys/conf/files.i386
1.4 +142 -558 src/sys/i386/i386/in_cksum.c
1.5 +33 -69 src/sys/i386/include/in_cksum.h
1.5 +2 -0 src/sys/netinet/igmp.c
1.6 +0 -1 src/sys/netinet/in.h
1.6 +2 -0 src/sys/netinet/ip_icmp.c
1.4 +3 -4 src/contrib/ipfilter/ip_compat.h
1.3 +1 -2 src/sbin/natd/icmp.c
1.4 +0 -1 src/sbin/natd/natd.c
1.48 +1 -0 src/sys/conf/files
1.2 +0 -1 src/sys/conf/files.amd64
1.13 +0 -1 src/sys/conf/files.i386
1.5 +0 -1 src/sys/conf/files.pc98
1.7 +1 -1 src/sys/contrib/ipfilter/netinet/fil.c
1.10 +2 -3 src/sys/contrib/ipfilter/netinet/ip_compat.h
1.10 +1 -1 src/sys/contrib/ipfilter/netinet/ip_fil.c
1.7 +1 -1 src/sys/dev/netif/txp/if_txp.c
1.7 +1 -1 src/sys/net/ip_mroute/ip_mroute.c
1.7 +1 -2 src/sys/net/ipfw/ip_fw2.c
1.6 +1 -2 src/sys/netinet/igmp.c
1.4 +158 -116 src/sys/netinet/in_cksum.c
1.6 +1 -1 src/sys/netinet/ip_gre.c
1.7 +1 -2 src/sys/netinet/ip_icmp.c
1.10 +1 -1 src/sys/netinet/ip_input.c
1.10 +1 -2 src/sys/netinet/ip_output.c
1.13 +1 -2 src/sys/netinet/tcp_input.c
1.9 +1 -2 src/sys/netinet/tcp_output.c
1.10 +1 -1 src/sys/netinet/tcp_subr.c
1.10 +1 -1 src/sys/netinet/tcp_syncache.c
1.9 +1 -2 src/sys/netinet/udp_usrreq.c
1.5 +1 -2 src/sys/netinet6/ipsec.c
1.5 +1 -2 src/sys/netproto/ipsec/ipsec.c
1.5 +1 -1 src/sys/netproto/ipsec/ipsec_input.c
1.4 +1 -2 src/sys/netproto/ipsec/ipsec_output.c
and finally remove
sys/i386/i386 in_cksum.c
sys/i386/include in_cksum.h
---snip---
- endian.h:
* DTRT in C++ mode
- quad.h:
* we don't use gcc v1 anymore, remove support for it
Suggested by: bde (long ago)
- assym.h:
* avoid zero-length arrays (remove dependency on a gcc specific
feature)
This change changes the contents of the object file, but as it's
only used to generate some values for a header, and the generator
knows how to handle this, there's no impact in the gcc case.
Explained by: bde
Submitted by: Marius Strobl <marius@alchemy.franken.de>
- aicasm.c:
* minor change to teach it about the way icc spells "-nostdinc"
Not approved by: gibbs (no reply to my mail)
- bump __FreeBSD_version (lang/icc needs to know about the changes)
Incarnations of this patch survive gcc compiles since a loooong time,
I use it on my desktop. An icc compiled kernel works since Nov. 2003
(exceptions: snd_* if used as modules), it survives a build of the
entire ports collection with icc.
Parts of this commit contains suggestions or submissions from
Marius Strobl <marius@alchemy.franken.de>.
Reviewed by: -arch
Submitted by: netchild
Intel C/C++ compiler (lang/icc) to build the kernel.
The icc CPUTYPE CFLAGS use icc v7 syntax, icc v8 moans about them, but
doesn't abort. They also produce CPU specific code (new instructions
of the CPU, not only CPU specific scheduling), so if you get coredumps
with signal 4 (SIGILL, illegal instruction) you've used the wrong
CPUTYPE.
Incarnations of this patch survive gcc compiles and my make universe.
I use it on my desktop.
To use it update share/mk, add
/usr/local/intel/compiler70/ia32/bin (icc v7, works)
or
/usr/local/intel_cc_80/bin (icc v8, doesn't work)
to your PATH, make sure you have a new kernel compile directory
(e.g. MYKERNEL_icc) and run
CFLAGS="-O2 -ip" CC=icc make depend
CFLAGS="-O2 -ip" CC=icc make
in it.
Don't compile with -ipo, the build infrastructure uses ld directly to
link the kernel and the modules, but -ipo needs the link step to be
performed with Intel's linker.
Problems with icc v8:
- panic: npx0 cannot be emulated on an SMP system
- UP: first start of /bin/sh results in a FP exception
Parts of this commit contains suggestions or submissions from
Marius Strobl <marius@alchemy.franken.de>.
Reviewed by: silence on -arch
Submitted by: netchild
for Windows are deserialized miniports. Such drivers maintain their own
queues and do their own locking. This particular driver is not deserialized
though, and we need special support to handle it correctly.
Typically, in the ndis_rxeof() handler, we pass all incoming packets
directly to (*ifp->if_input)(). This in turn may cause another thread
to run and preempt us, and the packet may actually be processed and
then released before we even exit the ndis_rxeof() routine. The
problem with this is that releasing a packet calls the ndis_return_packet()
function, which hands the packet and its buffers back to the driver.
Calling ndis_return_packet() before ndis_rxeof() returns will screw
up the driver's internal queues since, not being deserialized,
it does no locking.
To avoid this problem, if we detect a serialized driver (by checking
the attribute flags passed to NdisSetAttributesEx(), we use an alternate
ndis_rxeof() handler, ndis_rxeof_serial(), which puts the call to
(*ifp->if_input)() on the NDIS SWI work queue. This guarantees the
packet won't be processed until after ndis_rxeof_serial() returns.
Note that another approach is to always copy the packet data into
another mbuf and just let the driver retain ownership of the ndis_packet
structure (ndis_return_packet() never needs to be called in this
case). I'm not sure which method is faster.
On vnode backed md(4) devices over a certain, currently undetermined
size relative to the buffer cache our "lemming-syncer" can provoke
a buffer starvation which puts the md thread to sleep on wdrain.
This generally tends to grind the entire system to a stop because the
event that is supposed to wake up the thread will not happen until a fair
bit of the piled up I/O requests in the system finish, and since a lot
of those are on a md(4) vnode backed device which is currently waiting
on wdrain until a fair amount of the piled up ... you get the picture.
The cure is to issue all VOP_WRITES on the vnode backing the device
with IO_SYNC.
In addition to more closely emulating a real disk device with a
non-lying write-cache, this makes the writes exempt from rate-limited
(there to avoid starving the buffer cache) and consequently prevents
the deadlock.
Unfortunately performance takes a hit.
Add "async" option to give people who know what they are doing the
old behaviour.