Use this in all the places where sleeping with the lock held is not
an issue.
The distinction will become significant once we finalize the exact
lock-type to use for this kind of case.
The tunable vfs.devfs.fops controls this feature and defaults to off.
When enabled (vfs.devfs.fops=1 in loader), device vnodes opened
through a filedescriptor gets a special fops vector which instead
of the detour through the vnode layer goes directly to DEVFS.
Amongst other things this allows us to run Giant free read/write to
device drivers which have been weaned off D_NEEDGIANT.
Currently this means /dev/null, /dev/zero, disks, (and maybe the
random stuff ?)
On a 700MHz K7 machine this doubles the speed of
dd if=/dev/zero of=/dev/null bs=1 count=1000000
This roughly translates to shaving 2usec of each read/write syscall.
The poll/kqfilter paths need more work before they are giant free,
this work is ongoing in p4::phk_bufwork
Please test this and report any problems, LORs etc.
buf->b-dev.
Put a bio between the buf passed to dev_strategy() and the device driver
strategy routine in order to not clobber fields in the buf.
Assert copyright on vfs_bio.c and update copyright message to canonical
text. There is no legal difference between John Dysons two-clause
abbreviated BSD license and the canonical text.
We keep si_bsize_phys around for now as that is the simplest way to pull
the number out of disk device drivers in devfs_open(). The correct solution
would be to do an ioctl(DIOCGSECTORSIZE), but the point is probably mooth
when filesystems sit on GEOM, so don't bother for now.
jest, of most excellent fancy: he hath taught me lessons a thousand
times; and now, how abhorred in my imagination it is! my gorge rises
at it. Here were those hacks that I have curs'd I know not how
oft. Where be your kludges now? your workarounds? your layering
violations, that were wont to set the table on a roar?
Move the skeleton of specfs into devfs where it now belongs and
bury the rest.
the raw values including for child process statistics and only compute the
system and user timevals on demand.
- Fix the various kern_wait() syscall wrappers to only pass in a rusage
pointer if they are going to use the result.
- Add a kern_getrusage() function for the ABI syscalls to use so that they
don't have to play stackgap games to call getrusage().
- Fix the svr4_sys_times() syscall to just call calcru() to calculate the
times it needs rather than calling getrusage() twice with associated
stackgap, etc.
- Add a new rusage_ext structure to store raw time stats such as tick counts
for user, system, and interrupt time as well as a bintime of the total
runtime. A new p_rux field in struct proc replaces the same inline fields
from struct proc (i.e. p_[isu]ticks, p_[isu]u, and p_runtime). A new p_crux
field in struct proc contains the "raw" child time usage statistics.
ruadd() has been changed to handle adding the associated rusage_ext
structures as well as the values in rusage. Effectively, the values in
rusage_ext replace the ru_utime and ru_stime values in struct rusage. These
two fields in struct rusage are no longer used in the kernel.
- calcru() has been split into a static worker function calcru1() that
calculates appropriate timevals for user and system time as well as updating
the rux_[isu]u fields of a passed in rusage_ext structure. calcru() uses a
copy of the process' p_rux structure to compute the timevals after updating
the runtime appropriately if any of the threads in that process are
currently executing. It also now only locks sched_lock internally while
doing the rux_runtime fixup. calcru() now only requires the caller to
hold the proc lock and calcru1() only requires the proc lock internally.
calcru() also no longer allows callers to ask for an interrupt timeval
since none of them actually did.
- calcru() now correctly handles threads executing on other CPUs.
- A new calccru() function computes the child system and user timevals by
calling calcru1() on p_crux. Note that this means that any code that wants
child times must now call this function rather than reading from p_cru
directly. This function also requires the proc lock.
- This finishes the locking for rusage and friends so some of the Giant locks
in exit1() and kern_wait() are now gone.
- The locking in ttyinfo() has been tweaked so that a shared lock of the
proctree lock is used to protect the process group rather than the process
group lock. By holding this lock until the end of the function we now
ensure that the process/thread that we pick to dump info about will no
longer vanish while we are trying to output its info to the console.
Submitted by: bde (mostly)
MFC after: 1 month
with different file systems. This may cause ill things
with my previous fix. Now it translate fsid of direct child of
mount point directory only.
Pointed out by: Uwe Doering
frobbing the cdevsw.
In both cases we examine only the cdevsw and it is a good question if we
weren't better off copying those properties into the cdev in the first
place. This question will be revisited.
of the number of threads which are inside whatever is behind the
cdevsw for this particular cdev.
Make the device mutex visible through dev_lock() and dev_unlock().
We may want finer granularity later.
Replace spechash_mtx use with dev_lock()/dev_unlock().
too much kernel copying, but it is not the right way to do it, and it is
in the way for straightening out the buffer cache.
The right way is to pass the VM page array down through the struct
bio to the disk device driver and DMA directly in to/out off the
physical memory. Once the VM/buf thing is sorted out it is next on
the list.
Retire most of vnode method. ffs_getpages(). It is not clear if what is
left shouldn't be in the default implementation which we now fall back to.
Retire specfs_getpages() as well, as it has no users now.
preparation for integration of p4::phk_bufwork. In the future,
local filesystems will talk to GEOM directly and they will consequently
be able to issue BIO_DELETE directly. Since the removal of the fla
driver, BIO_DELETE has effectively been a no-op anyway.
(disabled) defid_gen members from u_long to u_int32_t so that alignment
requirements don't cause the structure to become larger than struct fid
on LP64 platforms. This fixes NFS exports of msdos filesystems on at
least amd64.
PR: 71173
Fix a problem in previous: we can't blindly assume that we have
wincnt entries available at the offset the file has been found. If the dos
directory entry is not preceded by appropriate number of long name
entries (happens e.g. when the filesystem is corrupted, or when
the filename complies to DOS rules and doesn't use any long name entry),
we would overwrite random directory entries.
There are still some problems, the whole thing has to be revisited and solved
right.
Submitted by: Xin LI
Fix a panic that occurred when trying to traverse a corrupt msdosfs
filesystem. With this particular corruption, the code in pcbmap()
would compute an offset into an array that was way out of bounds,
so check the bounds before trying to access and return an error if
the offset would be out of bounds.
Submitted by: Xin LI
field.
Replace three instances of longhaired initialization va_filerev fields.
Added XXX comment wondering why we don't use random bits instead of
uptime of the system for this purpose.
cd9660_readdir() to return the address of the file's first data block as
the inode number instead of the address of the directory entry, but
neglected to update cd9660_vget_internal() for the new inode numbering
scheme.
Since the NFS server calls VFS_VGET (cd9660_vget()) with inode numbers
returned through VOP_READDIR (cd9660_readdir()) when servicing a READDIRPLUS
request, these two interfaces must agree on the numbering scheme; failure to
do so caused panics and/or bogus information about the entries to be returned
to clients using READDIRPLUS (Solaris, FreeBSD w/ mount -o rdirplus).
PR: 63446
returning incompletely initialized processes. This problem was
eliminated by kern_proc.c:1.215, which causes pfind() not to
return processes in the PRS_NEW state.