1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-24 11:29:10 +00:00
Commit Graph

7 Commits

Author SHA1 Message Date
Robert Watson
a557af222b Introduce a MAC label reference in 'struct inpcb', which caches
the   MAC label referenced from 'struct socket' in the IPv4 and
IPv6-based protocols.  This permits MAC labels to be checked during
network delivery operations without dereferencing inp->inp_socket
to get to so->so_label, which will eventually avoid our having to
grab the socket lock during delivery at the network layer.

This change introduces 'struct inpcb' as a labeled object to the
MAC Framework, along with the normal circus of entry points:
initialization, creation from socket, destruction, as well as a
delivery access control check.

For most policies, the inpcb label will simply be a cache of the
socket label, so a new protocol switch method is introduced,
pr_sosetlabel() to notify protocols that the socket layer label
has been updated so that the cache can be updated while holding
appropriate locks.  Most protocols implement this using
pru_sosetlabel_null(), but IPv4/IPv6 protocols using inpcbs use
the the worker function in_pcbsosetlabel(), which calls into the
MAC Framework to perform a cache update.

Biba, LOMAC, and MLS implement these entry points, as do the stub
policy, and test policy.

Reviewed by:	sam, bms
Obtained from:	TrustedBSD Project
Sponsored by:	DARPA, Network Associates Laboratories
2003-11-18 00:39:07 +00:00
Sam Leffler
9ffa96777e MFp4: portability work, general cleanup, locking fixes
change 38496
o add ipsec_osdep.h that holds os-specific definitions for portability
o s/KASSERT/IPSEC_ASSERT/ for portability
o s/SPLASSERT/IPSEC_SPLASSERT/ for portability
o remove function names from ASSERT strings since line#+file pinpints
  the location
o use __func__ uniformly to reduce string storage
o convert some random #ifdef DIAGNOSTIC code to assertions
o remove some debuggging assertions no longer needed

change 38498
o replace numerous bogus panic's with equally bogus assertions
  that at least go away on a production system

change 38502 + 38530
o change explicit mtx operations to #defines to simplify
  future changes to a different lock type

change 38531
o hookup ipv4 ctlinput paths to a noop routine; we should be
  handling path mtu changes at least
o correct potential null pointer deref in ipsec4_common_input_cb

chnage 38685
o fix locking for bundled SA's and for when key exchange is required

change 38770
o eliminate recursion on the SAHTREE lock

change 38804
o cleanup some types: long -> time_t
o remove refrence to dead #define

change 38805
o correct some types: long -> time_t
o add scan generation # to secpolicy to deal with locking issues

change 38806
o use LIST_FOREACH_SAFE instead of handrolled code
o change key_flush_spd to drop the sptree lock before purging
  an entry to avoid lock recursion and to avoid holding the lock
  over a long-running operation
o misc cleanups of tangled and twisty code

There is still much to do here but for now things look to be
working again.

Supported by:	FreeBSD Foundation
2003-09-29 22:57:43 +00:00
Dag-Erling Smørgrav
fe58453891 Introduce an M_ASSERTPKTHDR() macro which performs the very common task
of asserting that an mbuf has a packet header.  Use it instead of hand-
rolled versions wherever applicable.

Submitted by:	Hiten Pandya <hiten@unixdaemons.com>
2003-04-08 14:25:47 +00:00
Warner Losh
a163d034fa Back out M_* changes, per decision of the TRB.
Approved by: trb
2003-02-19 05:47:46 +00:00
Alfred Perlstein
44956c9863 Remove M_TRYWAIT/M_WAITOK/M_WAIT. Callers should use 0.
Merge M_NOWAIT/M_DONTWAIT into a single flag M_NOWAIT.
2003-01-21 08:56:16 +00:00
Bosko Milekic
86fea6be59 o Untangle the confusion with the malloc flags {M_WAITOK, M_NOWAIT} and
the mbuf allocator flags {M_TRYWAIT, M_DONTWAIT}.
o Fix a bpf_compat issue where malloc() was defined to just call
  bpf_alloc() and pass the 'canwait' flag(s) along.  It's been changed
  to call bpf_alloc() but pass the corresponding M_TRYWAIT or M_DONTWAIT
  flag (and only one of those two).

Submitted by: Hiten Pandya <hiten@unixdaemons.com> (hiten->commit_count++)
2002-12-19 22:58:27 +00:00
Sam Leffler
88768458d2 "Fast IPsec": this is an experimental IPsec implementation that is derived
from the KAME IPsec implementation, but with heavy borrowing and influence
of openbsd.  A key feature of this implementation is that it uses the kernel
crypto framework to do all crypto work so when h/w crypto support is present
IPsec operation is automatically accelerated.  Otherwise the protocol
implementations are rather differet while the SADB and policy management
code is very similar to KAME (for the moment).

Note that this implementation is enabled with a FAST_IPSEC option.  With this
you get all protocols; i.e. there is no FAST_IPSEC_ESP option.

FAST_IPSEC and IPSEC are mutually exclusive; you cannot build both into a
single system.

This software is well tested with IPv4 but should be considered very
experimental (i.e. do not deploy in production environments).  This software
does NOT currently support IPv6.  In fact do not configure FAST_IPSEC and
INET6 in the same system.

Obtained from:	KAME + openbsd
Supported by:	Vernier Networks
2002-10-16 02:10:08 +00:00