- Add flags CVWAIT_ABSTIME and CVWAIT_CLOCKID for umtx kernel based
condition variable, this should eliminate an extra system call to get
current time.
- Add sub-function UMTX_OP_NWAKE_PRIVATE to wake up N channels in single
system call. Create userland sleep queue for condition variable, in most
cases, thread will wait in the queue, the pthread_cond_signal will defer
thread wakeup until the mutex is unlocked, it tries to avoid an extra
system call and a extra context switch in time window of pthread_cond_signal
and pthread_mutex_unlock.
The changes are part of process-shared mutex project.
a silly rwlock deadlock problem, the deadlock is caused by writer
waiters, if a thread has already locked a reader lock, and wants to
acquire another reader lock, it will be blocked by writer waiters,
but we had already fixed it years ago.
functions set or get pthread_rwlock type, current supported types are:
PTHREAD_RWLOCK_PREFER_READER_NP,
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP,
PTHREAD_RWLOCK_PREFER_WRITER_NP,
default is PTHREAD_RWLOCK_PREFER_WRITER_NONCECURSIVE_NP, this maintains
binary compatible with old code.
same null value, the code can not distinguish between them, to
fix the problem, now a destroyed object is assigned to a non-null
value, and it will be rejected by some pthread functions.
PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP is changed to number 1, so that
adaptive mutex can be statically initialized correctly.
it is incompatible with stack unwinding code, if they are invoked,
disable stack unwinding for current thread, and when thread is
exiting, print a warning message.
for them, two functions _pthread_cancel_enter and _pthread_cancel_leave
are added to let thread enter and leave a cancellation point, it also
makes it possible that other functions can be cancellation points in
libraries without having to be rewritten in libthr.
whether asynchronous mode is turned on or not, this always gives us a
chance to decide whether thread should be canceled or not in
cancellation points.
defer-mode cancellation works, asynchrnous mode does not work because
it lacks of libuwind's support. stack unwinding is not enabled unless
LIBTHR_UNWIND_STACK is defined in Makefile.
For all libthr contexts, use ${MACHINE_CPUARCH}
for all libc contexts, use ${MACHINE_ARCH} if it exists, otherwise use
${MACHINE_CPUARCH}
Move some common code up a layer (the .PATH statement was the same in
all the arch submakefiles).
# Hope she hasn't busted powerpc64 with this...
add a wrapper for it in libc and rework the code in libthr, the
system call still can return EINTR, we keep this feature.
Discussed on: thread
Reviewed by: jilles
module private type, when private type mutex is locked/unlocked, thread
critical region is entered or leaved. These changes makes fork()
async-signal safe which required by POSIX. Note that user's atfork handler
still needs to be async-signal safe, but it is not problem of libthr, it
is user's responsiblity.
some cases we want to improve:
1) if a thread signal got a signal while in cancellation point,
it is possible the TDP_WAKEUP may be eaten by signal handler
if the handler called some interruptibly system calls.
2) In signal handler, we want to disable cancellation.
3) When thread holding some low level locks, it is better to
disable signal, those code need not to worry reentrancy,
sigprocmask system call is avoided because it is a bit expensive.
The signal handler wrapper works in this way:
1) libthr installs its signal handler if user code invokes sigaction
to install its handler, the user handler is recorded in internal
array.
2) when a signal is delivered, libthr's signal handler is invoke,
libthr checks if thread holds some low level lock or is in critical
region, if it is true, the signal is buffered, and all signals are
masked, once the thread leaves critical region, correct signal
mask is restored and buffered signal is processed.
3) before user signal handler is invoked, cancellation is temporarily
disabled, after user signal handler is returned, cancellation state
is restored, and pending cancellation is rescheduled.