- Advertise the word size for CloudABI ABIs via the SV_LP64 flag. All of
the other ABIs include either SV_ILP32 or SV_LP64.
- Fix kdump to not assume a 32-bit ABI if the ABI flags field is non-zero
but SV_LP64 isn't set. Instead, only assume a 32-bit ABI if SV_ILP32 is
set and fallback to the unknown value of "00" if neither SV_LP64 nor
SV_ILP32 is set.
Reviewed by: kib, ed
Differential Revision: https://reviews.freebsd.org/D5560
After calling the cap_init(3) function Casper will fork from it's original
process, using pdfork(2). Forking from a process has a lot of advantages:
1. We have the same cwd as the original process.
2. The same uid, gid and groups.
3. The same MAC labels.
4. The same descriptor table.
5. The same routing table.
6. The same umask.
7. The same cpuset(1).
From now services are also in form of libraries.
We also removed libcapsicum at all and converts existing program using Casper
to new architecture.
Discussed with: pjd, jonathan, ed, drysdale@google.com, emaste
Partially reviewed by: drysdale@google.com, bdrewery
Approved by: pjd (mentor)
Differential Revision: https://reviews.freebsd.org/D4277
This does not decode arguments to system calls but should properly
decode system call names and error return values.
Reviewed by: ed
Differential Revision: https://reviews.freebsd.org/D5412
Add two new functions, sysdecode_abi_to_freebsd_errno() and
sysdecode_freebsd_to_abi_errno(), which convert errno values between
the native FreeBSD ABI and other supported ABIs. Note that the
mappings are not necessarily perfect meaning in some cases multiple
errors in one ABI might map to a single error in another ABI. In that
case, the reverse mapping will return one of the errors that maps, but
which error is non-deterministic.
Change truss to always report the raw error value to the user but
use libsysdecode to map it to a native errno value that can be used
with strerror() to generate a description. Previously truss reported
the "converted" error value. Now the user will always see the exact
error value that the application sees.
Change kdump to report the truly raw error value to the user. Previously
kdump would report the absolute value of the raw error value (so for
Linux binaries it didn't output the FreeBSD error value, but the positive
value of the Linux error). Now it reports the real (i.e. negative) error
value for Linux binaries. Also, use libsysdecode to convert the native
FreeBSD error reported in the ktrace record to the raw error used by the
ABI. This means that the Linux ABI can now be handled directly in
ktrsysret() and removes the need for linux_ktrsysret().
Reviewed by: bdrewery, kib
Helpful notes: wblock (manpage)
Differential Revision: https://reviews.freebsd.org/D5314
A new sysdecode_syscallname() function accepts a system call code and
returns a string of the corresponding name (or NULL if the code is
unknown). To support different process ABIs, the new function accepts a
value from a new sysdecode_abi enum as its first argument to select the
ABI in use. Current ABIs supported include FREEBSD (native binaries),
FREEBSD32, LINUX, LINUX32, and CLOUDABI64. Note that not all ABIs are
supported by all platforms. In general, a given ABI is only supported
if a platform can execute binaries for that ABI.
To simplify the implementation, libsysdecode's build reuses the
existing pre-generated files from the kernel source tree rather than
duplicating new copies of said files during the build.
kdump(1) and truss(1) now use these functions to map system call
identifiers to names. For kdump(1), a new 'syscallname()' function
consolidates duplicated code from ktrsyscall() and ktrsyscallret().
The Linux ABI no longer requires custom handling for ktrsyscall() and
linux_ktrsyscall() has been removed as a result.
Reviewed by: bdrewery
Differential Revision: https://reviews.freebsd.org/D4823
sysdecode_ioctlname() function. This function matches the behavior
of the truss variant in that it returns a pointer to a string description
for known ioctls. The caller is responsible for displaying unknown
ioctl requests. For kdump this meant moving the logic to handle unknown
ioctl requests out of the generated function and into an ioctlname()
function in kdump.c instead.
Differential Revision: https://reviews.freebsd.org/D4610
system call information such as system call arguments. Initially this
will consist of pulling duplicated code out of truss and kdump though it
may prove useful for other utilities in the future.
This commit moves the shared utrace(2) record parser out of kdump into
the library and updates kdump and truss to use it. One difference from
the previous version is that the library version treats unknown events
that start with the "RTLD" signature as unknown events. This simplifies
the interface and allows the consumer to decide how to handle all
non-recognized events. Instead, this function only generates a string
description for known malloc() and RTLD records.
Reviewed by: bdrewery
Differential Revision: https://reviews.freebsd.org/D4537
This uses the kdump(1) utrace support code directly until a common library
is created.
This allows malloc(3) tracing with MALLOC_CONF=utrace:true and rtld tracing
with LD_UTRACE=1. Unknown utrace(2) data is just printed as hex.
PR: 43819 [inspired by]
Reviewed by: jhb
MFC after: 2 weeks
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D3819
first entry reported by the relative mode (-R).
o Properly print negative offsets, which I guess may happen if
records get re-ordered somehow, possibly due to the locking. Right
now we report huge bogus diff (i.e. 2 seconds or so).
The core kernel part is patch file utimes.2008.4.diff from
pluknet@FreeBSD.org. I updated the code for API changes, added the manual
page and added compatibility code for old kernels. There is also audit and
Capsicum support.
A new UTIME_* constant might allow setting birthtimes in future.
Differential Revision: https://reviews.freebsd.org/D1426
Submitted by: pluknet (partially)
Reviewed by: delphij, pluknet, rwatson
Relnotes: yes
This is useful for debugging compat modules.
Sponsored by: EMC / Isilon Storage Division
Obtained from: Isilon OneFS (based on work by Jeff Hughes)
MFC after: 2 weeks
AppleTalk was a network transport protocol for Apple Macintosh devices
in 80s and then 90s. Starting with Mac OS X in 2000 the AppleTalk was
a legacy protocol and primary networking protocol is TCP/IP. The last
Mac OS X release to support AppleTalk happened in 2009. The same year
routing equipment vendors (namely Cisco) end their support.
Thus, AppleTalk won't be supported in FreeBSD 11.0-RELEASE.
IPX was a network transport protocol in Novell's NetWare network operating
system from late 80s and then 90s. The NetWare itself switched to TCP/IP
as default transport in 1998. Later, in this century the Novell Open
Enterprise Server became successor of Novell NetWare. The last release
that claimed to still support IPX was OES 2 in 2007. Routing equipment
vendors (e.g. Cisco) discontinued support for IPX in 2011.
Thus, IPX won't be supported in FreeBSD 11.0-RELEASE.
to casperd, but we cannot access the service we need we exit with an error.
This should not happen and just indicates some configuration error which
should be fixed, so we force the user to do it by failing.
Discussed with: emaste
is given to convert uids and gids to user names and group names even when
running in capability mode sandbox.
While here log on stderr when we successfully enter the sandbox.
Sponsored by: The FreeBSD Foundation
exhausted.
- Add a new protect(1) command that can be used to set or revoke protection
from arbitrary processes. Similar to ktrace it can apply a change to all
existing descendants of a process as well as future descendants.
- Add a new procctl(2) system call that provides a generic interface for
control operations on processes (as opposed to the debugger-specific
operations provided by ptrace(2)). procctl(2) uses a combination of
idtype_t and an id to identify the set of processes on which to operate
similar to wait6().
- Add a PROC_SPROTECT control operation to manage the protection status
of a set of processes. MADV_PROTECT still works for backwards
compatability.
- Add a p_flag2 to struct proc (and a corresponding ki_flag2 to kinfo_proc)
the first bit of which is used to track if P_PROTECT should be inherited
by new child processes.
Reviewed by: kib, jilles (earlier version)
Approved by: re (delphij)
MFC after: 1 month
- Don't treat an options argument of 0 to wait4() as an error in
kdump.
- Decode the wait options passed to wait4() and wait6() in truss
and decode the returned rusage and exit status.
Approved by: re (kib)
MFC after: 1 week
in the future in a backward compatible (API and ABI) way.
The cap_rights_t represents capability rights. We used to use one bit to
represent one right, but we are running out of spare bits. Currently the new
structure provides place for 114 rights (so 50 more than the previous
cap_rights_t), but it is possible to grow the structure to hold at least 285
rights, although we can make it even larger if 285 rights won't be enough.
The structure definition looks like this:
struct cap_rights {
uint64_t cr_rights[CAP_RIGHTS_VERSION + 2];
};
The initial CAP_RIGHTS_VERSION is 0.
The top two bits in the first element of the cr_rights[] array contain total
number of elements in the array - 2. This means if those two bits are equal to
0, we have 2 array elements.
The top two bits in all remaining array elements should be 0.
The next five bits in all array elements contain array index. Only one bit is
used and bit position in this five-bits range defines array index. This means
there can be at most five array elements in the future.
To define new right the CAPRIGHT() macro must be used. The macro takes two
arguments - an array index and a bit to set, eg.
#define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL)
We still support aliases that combine few rights, but the rights have to belong
to the same array element, eg:
#define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL)
#define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL)
#define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP)
There is new API to manage the new cap_rights_t structure:
cap_rights_t *cap_rights_init(cap_rights_t *rights, ...);
void cap_rights_set(cap_rights_t *rights, ...);
void cap_rights_clear(cap_rights_t *rights, ...);
bool cap_rights_is_set(const cap_rights_t *rights, ...);
bool cap_rights_is_valid(const cap_rights_t *rights);
void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src);
void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src);
bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little);
Capability rights to the cap_rights_init(), cap_rights_set(),
cap_rights_clear() and cap_rights_is_set() functions are provided by
separating them with commas, eg:
cap_rights_t rights;
cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT);
There is no need to terminate the list of rights, as those functions are
actually macros that take care of the termination, eg:
#define cap_rights_set(rights, ...) \
__cap_rights_set((rights), __VA_ARGS__, 0ULL)
void __cap_rights_set(cap_rights_t *rights, ...);
Thanks to using one bit as an array index we can assert in those functions that
there are no two rights belonging to different array elements provided
together. For example this is illegal and will be detected, because CAP_LOOKUP
belongs to element 0 and CAP_PDKILL to element 1:
cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL);
Providing several rights that belongs to the same array's element this way is
correct, but is not advised. It should only be used for aliases definition.
This commit also breaks compatibility with some existing Capsicum system calls,
but I see no other way to do that. This should be fine as Capsicum is still
experimental and this change is not going to 9.x.
Sponsored by: The FreeBSD Foundation
- Reconnect with some minor modifications, in particular now selsocket()
internals are adapted to use sbintime units after recent'ish calloutng
switch.
sockaddr_in6 structures. getnameinfo(3) does the same thing, but it is
also able to represent a scope zone id as described in the RFC 4007.
MFC after: 2 weeks
The option tells kdump to convert numeric UIDs and GIDs into user and
group names plus to convert times and dates into locallized versions.
This all needs opening various files at various occasions.
Make use of Capsicum to protect kdump(1), as it might be used to parse data
from untrusted sources:
- Sandbox kdump(1) using capability mode.
- Limit stdin descriptor (where opened file is moved to) to only
CAP_READ and CAP_FSTAT rights.
- Limit stdout descriptor to only CAP_WRITE, CAP_FSTAT and CAP_IOCTL.
Plus limit allowed ioctls to TIOCGETA only, which is needed for
isatty() to work.
- Limit stderr descriptor to only CAP_WRITE and CAP_FSTAT. In addition
if the -s option is not given, grant CAP_IOCTL right, but allow for
TIOCGWINSZ ioctl only, as we need screen width to dump the data.
- Before entering capability mode call catopen("libc", NL_CAT_LOCALE),
which opens message catalogs and caches data, so that strerror(3)
and strsignal(3) can work in a sandbox.
Sponsored by: The FreeBSD Foundation
Discussed with: rwatson
Rearrange the code so we don't call ioctl(TIOCGWINSZ) if the -s option is given,
as the result won't be used then.
Sponsored by: The FreeBSD Foundation
- Capability is no longer separate descriptor type. Now every descriptor
has set of its own capability rights.
- The cap_new(2) system call is left, but it is no longer documented and
should not be used in new code.
- The new syscall cap_rights_limit(2) should be used instead of
cap_new(2), which limits capability rights of the given descriptor
without creating a new one.
- The cap_getrights(2) syscall is renamed to cap_rights_get(2).
- If CAP_IOCTL capability right is present we can further reduce allowed
ioctls list with the new cap_ioctls_limit(2) syscall. List of allowed
ioctls can be retrived with cap_ioctls_get(2) syscall.
- If CAP_FCNTL capability right is present we can further reduce fcntls
that can be used with the new cap_fcntls_limit(2) syscall and retrive
them with cap_fcntls_get(2).
- To support ioctl and fcntl white-listing the filedesc structure was
heavly modified.
- The audit subsystem, kdump and procstat tools were updated to
recognize new syscalls.
- Capability rights were revised and eventhough I tried hard to provide
backward API and ABI compatibility there are some incompatible changes
that are described in detail below:
CAP_CREATE old behaviour:
- Allow for openat(2)+O_CREAT.
- Allow for linkat(2).
- Allow for symlinkat(2).
CAP_CREATE new behaviour:
- Allow for openat(2)+O_CREAT.
Added CAP_LINKAT:
- Allow for linkat(2). ABI: Reuses CAP_RMDIR bit.
- Allow to be target for renameat(2).
Added CAP_SYMLINKAT:
- Allow for symlinkat(2).
Removed CAP_DELETE. Old behaviour:
- Allow for unlinkat(2) when removing non-directory object.
- Allow to be source for renameat(2).
Removed CAP_RMDIR. Old behaviour:
- Allow for unlinkat(2) when removing directory.
Added CAP_RENAMEAT:
- Required for source directory for the renameat(2) syscall.
Added CAP_UNLINKAT (effectively it replaces CAP_DELETE and CAP_RMDIR):
- Allow for unlinkat(2) on any object.
- Required if target of renameat(2) exists and will be removed by this
call.
Removed CAP_MAPEXEC.
CAP_MMAP old behaviour:
- Allow for mmap(2) with any combination of PROT_NONE, PROT_READ and
PROT_WRITE.
CAP_MMAP new behaviour:
- Allow for mmap(2)+PROT_NONE.
Added CAP_MMAP_R:
- Allow for mmap(PROT_READ).
Added CAP_MMAP_W:
- Allow for mmap(PROT_WRITE).
Added CAP_MMAP_X:
- Allow for mmap(PROT_EXEC).
Added CAP_MMAP_RW:
- Allow for mmap(PROT_READ | PROT_WRITE).
Added CAP_MMAP_RX:
- Allow for mmap(PROT_READ | PROT_EXEC).
Added CAP_MMAP_WX:
- Allow for mmap(PROT_WRITE | PROT_EXEC).
Added CAP_MMAP_RWX:
- Allow for mmap(PROT_READ | PROT_WRITE | PROT_EXEC).
Renamed CAP_MKDIR to CAP_MKDIRAT.
Renamed CAP_MKFIFO to CAP_MKFIFOAT.
Renamed CAP_MKNODE to CAP_MKNODEAT.
CAP_READ old behaviour:
- Allow pread(2).
- Disallow read(2), readv(2) (if there is no CAP_SEEK).
CAP_READ new behaviour:
- Allow read(2), readv(2).
- Disallow pread(2) (CAP_SEEK was also required).
CAP_WRITE old behaviour:
- Allow pwrite(2).
- Disallow write(2), writev(2) (if there is no CAP_SEEK).
CAP_WRITE new behaviour:
- Allow write(2), writev(2).
- Disallow pwrite(2) (CAP_SEEK was also required).
Added convinient defines:
#define CAP_PREAD (CAP_SEEK | CAP_READ)
#define CAP_PWRITE (CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_R (CAP_MMAP | CAP_SEEK | CAP_READ)
#define CAP_MMAP_W (CAP_MMAP | CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_X (CAP_MMAP | CAP_SEEK | 0x0000000000000008ULL)
#define CAP_MMAP_RW (CAP_MMAP_R | CAP_MMAP_W)
#define CAP_MMAP_RX (CAP_MMAP_R | CAP_MMAP_X)
#define CAP_MMAP_WX (CAP_MMAP_W | CAP_MMAP_X)
#define CAP_MMAP_RWX (CAP_MMAP_R | CAP_MMAP_W | CAP_MMAP_X)
#define CAP_RECV CAP_READ
#define CAP_SEND CAP_WRITE
#define CAP_SOCK_CLIENT \
(CAP_CONNECT | CAP_GETPEERNAME | CAP_GETSOCKNAME | CAP_GETSOCKOPT | \
CAP_PEELOFF | CAP_RECV | CAP_SEND | CAP_SETSOCKOPT | CAP_SHUTDOWN)
#define CAP_SOCK_SERVER \
(CAP_ACCEPT | CAP_BIND | CAP_GETPEERNAME | CAP_GETSOCKNAME | \
CAP_GETSOCKOPT | CAP_LISTEN | CAP_PEELOFF | CAP_RECV | CAP_SEND | \
CAP_SETSOCKOPT | CAP_SHUTDOWN)
Added defines for backward API compatibility:
#define CAP_MAPEXEC CAP_MMAP_X
#define CAP_DELETE CAP_UNLINKAT
#define CAP_MKDIR CAP_MKDIRAT
#define CAP_RMDIR CAP_UNLINKAT
#define CAP_MKFIFO CAP_MKFIFOAT
#define CAP_MKNOD CAP_MKNODAT
#define CAP_SOCK_ALL (CAP_SOCK_CLIENT | CAP_SOCK_SERVER)
Sponsored by: The FreeBSD Foundation
Reviewed by: Christoph Mallon <christoph.mallon@gmx.de>
Many aspects discussed with: rwatson, benl, jonathan
ABI compatibility discussed with: kib
GIANT from VFS. In addition, disconnect also netsmb, which is a base
requirement for SMBFS.
In the while SMBFS regular users can use FUSE interface and smbnetfs
port to work with their SMBFS partitions.
Also, there are ongoing efforts by vendor to support in-kernel smbfs,
so there are good chances that it will get relinked once properly locked.
This is not targeted for MFC.
a pair of records similar to syscall entry and return that a user can
use to determine how long page faults take. The new ktrace records are
enabled via the 'p' trace type, and are enabled in the default set of
trace points.
Reviewed by: kib
MFC after: 2 weeks