schedule a chmod() fixup for directories. In particular, this fixes
sgid handling on systems where the sgid bit is inherited from the
parent directory (which means that the actual mode of the dir
does not match the mode used in the mkdir() system call.
It may be possible to tighten this condition a bit. In
working through this, I also found a few other places where
it looks like we can avoid a redundant syscall or two. I've
commented those here but not yet tried to address them.
by moving the positional argument handling code to a new file,
printf-pos.c, and moving common definitions to printflocal.h.
No functional change intended.
In particular, encapsulate the state of the type table in a struct,
and add inline functions to initialize, free, and manipulate that
state. This replaces some ugly macros that made proper error handling
impossible.
While here, remove an unneeded test for NULL and a variable that is
initialized (many times!) but never used. The compiler didn't catch
these because of rampant use of the same variable to mean different
things in different places.
This commit should not cause any changes in functionality.
1. Save and restore the control part of the MXCSR in addition to the
i387 control word to ensure that the two are consistent.
Note that standards don't require longjmp to restore either control
word, and none of Linux, MacOS X 10.3 and earlier, NetBSD, OpenBSD,
or Solaris do it. However, it is historical FreeBSD behavior, and
bde points out that it is needed to make longjmping out of a signal
handler work properly, given the way FreeBSD clobbers the FPU state
on signal handler entry.
2. Don't clobber the FPU exception flags in longjmp. C99 requires them
to remain unchanged.
- It is opt-out for now so as to give it maximum testing, but it may be
turned opt-in for stable branches depending on the consensus. You
can turn it off with WITHOUT_SSP.
- WITHOUT_SSP was previously used to disable the build of GNU libssp.
It is harmless to steal the knob as SSP symbols have been provided
by libc for a long time, GNU libssp should not have been much used.
- SSP is disabled in a few corners such as system bootstrap programs
(sys/boot), process bootstrap code (rtld, csu) and SSP symbols themselves.
- It should be safe to use -fstack-protector-all to build world, however
libc will be automatically downgraded to -fstack-protector because it
breaks rtld otherwise.
- This option is unavailable on ia64.
Enable GCC stack protection (aka Propolice) for kernel:
- It is opt-out for now so as to give it maximum testing.
- Do not compile your kernel with -fstack-protector-all, it won't work.
Submitted by: Jeremie Le Hen <jeremie@le-hen.org>
locked and unlocked completely in userland. by locking and unlocking mutex
in userland, it reduces the total time a mutex is locked by a thread,
in some application code, a mutex only protects a small piece of code, the
code's execution time is less than a simple system call, if a lock contention
happens, however in current implemenation, the lock holder has to extend its
locking time and enter kernel to unlock it, the change avoids this disadvantage,
it first sets mutex to free state and then enters kernel and wake one waiter
up. This improves performance dramatically in some sysbench mutex tests.
Tested by: kris
Sounds great: jeff
Adding exevpe() has caused some ports to break. Even though execvpe() is
a useful routine, it does not conform to any standards.
This patch is a little bit different from the patch sent to the mailing
list. I forgot to remove execvpe from the Symbol.map (which does not
seem to miscompile libc, though).
Reviewed by: davidxu
Approved by: philip
file into a separate file (instead of embedding it in the C code)
and use later timestamps (timestamps too close to the Epoch fail
predictably on systems that lack timegm(), whose mktime() doesn't
support dates before the Epoch and which are running in timezones
with negative offsets from GMT). The goal here is to test the ISO
extraction, not the local platform's time support.
operation) and not ARCHIVE_WARN, since we don't actually open the file.
Both bsdtar and bsdcpio will try to copy file contents after an ARCHIVE_WARN,
which will fail loudly.
The __use_pts() routine was once probably used by libutil to determine
if we are using BSD or UNIX98 style PTY device names. It doesn't seem to
be used outside grantpt.c, which means we can make it static and remove
it from the Symbol.map.
Reviewed by: cognet, kib
Approved by: philip (mentor)
can be used as replacements for exec/fork in a lot of cases. This
change also added execvpe() which allows environment variable
PATH to be used for searching executable file, it is used for
implementing posix_spawnp().
PR: standards/122051
sgtty was the original interface to configure terminal attributes on my
UNIX-like operating systems. It has been deprecated by the POSIX termios
interface, which is implemented in almost any modern system.
An advantage of turning this into a binary compatibility interface, is
that we can now eventually remove the COMPAT_43TTY switch from kernel
configurations. This removes many ioctl()'s from the TTY layer.
While there, increase the __FreeBSD_version, which may be useful for the
people working on the Ports tree.
Reviewed by: kib
Approved by: philip (mentor)
SO_LISTENQLEN SO_LISTENINCQLEN to the manual page.
Till now those were only present in sys/socket.h file.
Reviewed by: rwatson, gnn, keramida (with mdoc hat)
feedback, but the 2.5 branch is shaping up nicely.)
In addition to many small bug fixes and code improvements:
* Another iteration of versioning; I think I've got it right now.
* Portability: A lot of progress on Windows support (though I'm
not committing all of the Windows support files to FreeBSD CVS)
* Explicit tracking of MBS, WCS, and UTF-8 versions of strings
in archive_entry; the archive_entry routines now correctly return
NULL only when something is unset, setting NULL properly clears
string values. Most charset conversions have been pushed down to
archive_string.
* Better handling of charset conversion failure when writing or
reading UTF-8 headers in pax archives
* archive_entry_linkify() provides multiple strategies for
hardlink matching to suit different format expectations
* More accurate bzip2 format detection
* Joerg Sonnenberger's extensive improvements to mtree support
* Rough support for self-extracting ZIP archives. Not an ideal
approach, but it works for the archives I've tried.
* New "sparsify" option in archive_write_disk converts blocks of nulls
into seeks.
* Better default behavior for the test harness; it now reports
all failures by default instead of coredumping at the first one.
similar to _WANT_UCRED and _WANT_PRISON and seems to be much nicer than
defining _KERNEL.
It is also needed for my sys/refcount.h change going in soon.
NET_NEEDS_GIANT. netatm has been disconnected from the build for ten
months in HEAD/RELENG_7. Specifics:
- netatm include files
- netatm command line management tools
- libatm
- ATM parts in rescue and sysinstall
- sample configuration files and documents
- kernel support as a module or in NOTES
- netgraph wrapper nodes for netatm
- ctags data for netatm.
- netatm-specific device drivers.
MFC after: 3 weeks
Reviewed by: bz
Discussed with: bms, bz, harti
While we're here, fix a long-standing bug in the handling of write(2)
errors: The API changed from "return # of bytes written" to "return
status code" almost 4 years ago, so instead of returning (-1) we need
to return ARCHIVE_FATAL.
Found by: Coverity Prevent [1]
declaring a variable which points to it. Aside from eliminating a
line of code and one level of unnecessary indirection, this eliminates
a false positive in Coverity.
These will be fleshed out as part of the DTrace userland tracing
development.
For now, the kernel tracing part of DTrace requires minimal functionality
for this library.
The API for this library is deliberately different from the libproc in
OpenSolaris due to licensing restrictions.
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
PR:
Reviewed by: several including rwatson, bz and mlair (parts each)
Approved by:
Obtained from: Ironport systems/Cisco
MFC after:
Security:
PR:
Submitted by:
Reviewed by:
Approved by:
Obtained from:
MFC after:
Security:
header is now in two parts: bsdxml.h and bsdxml_external.h, representing
the expat.h and expat_external.h headers. Updated the info on the man
page as well. Also, fixed a type-error in a printf in
sbin/ifconfig/regdomain.c that would cause a compiler warning.
Approved by: sam, phk
files after a seekdir().
The seekdir shall set the position for the next readdir operation.
When the _readdir_unlocked() encounters deleted entry, dd_loc is
already advanced. Continuing the loop leads to premature read of
the target entry.
Submitted by: Marc Balmer <mbalmer at openbsd org>
Obtained from: OpenBSD
MFC after: 2 weeks
accessor functions for its benefit now thaat FILE is opaque.
I'm sure there's a better way. I leave that for people to work
on in a src tree that isn't broken.
Pointy hat: jhb
move the definition of the type backing FILE (struct __sFILE) into an
internal header.
- Remove macros to inline certain operations from stdio.h. Applications
will now always call the functions instead.
- Move the various foo_unlocked() functions from unlocked.c into foo.c.
This lets some of the inlining macros (e.g. __sfeof()) move into
foo.c.
- Update a few comments.
- struct __sFILE can now go back to using mbstate_t, pthread_t, and
pthread_mutex_t instead of knowing about their private, backing types.
MFC after: 1 month
Reviewed by: kan
This substantially improves worst case allocation performance, since
O(lg n) tree search can be used instead of O(n) tree iteration.
Use rb_wrap() instead of directly calling rb_*() macros.
macros.
Add rb_foreach_next() and rb_foreach_reverse_prev(), which make it
possible to re-synchronize tree iteration after the tree has been
modified.
Rename rb_tree_new() to rb_new().
color bit in the least significant bit of the right child pointer, in
order to reduce red-black tree linkage overhead by ~2X as compared to
sys/tree.h.
Use the new red-black tree implementation in malloc, which drops
memory usage by ~0.5 or ~1%, for 32- and 64-bit systems, respectively.
after similar calls related to struct pwd in libutil/pw_util.c:
- gr_equal()
Perform a deep comparison of two struct grp's. It does a thorough, yet
unoptimized comparison of all the members regardless of order.
- gr_make()
Create a string (see group(5)) from a struct grp.
- gr_dup()
Duplicate a struct grp. Returns a value that is a single contiguous
block of memory.
- gr_scan()
Create a struct grp from a string (as produced by gr_make()).
MFC after: 3 weeks
There were no checks for left and right precisions at all, and
a check for field width had integer overflow bug.
Reported by: Maksymilian Arciemowicz
Security: http://securityreason.com/achievement_securityalert/53
Submitted by: Maxim Dounin <mdounin@mdounin.ru>
MFC after: 3 days
__sFILE. This was supposed to be done in 6.0. Some notes:
- Where possible I restored the various lines to their pre-__sFILEX state.
- Retire INITEXTRA() and just initialize the wchar bits (orientation and
mbstate) explicitly instead. The various places that used INITEXTRA
didn't need the locking fields or _up initialized. (Some places needed
_up to exist and not be off the end of a NULL or garbage pointer, but
they didn't require it to be initialized to a specific value.)
- For now, stdio.h "knows" that pthread_t is a 'struct pthread *' to
avoid namespace pollution of including all the pthread types in stdio.h.
Once we remove all the inlines and make __sFILE private it can go back
to using pthread_t, etc.
- This does not remove any of the inlines currently and does not change
any of the public ABI of 'FILE'.
MFC after: 1 month
Reviewed by: peter
deals with the usual __opendir2() calls, and the rest part with an interface
translator to expose fdopendir(3) functionality. Manual page was obtained from
kib@'s work for *at(2) system calls.
counted in the width specification in scanf.
This is not a security problem, since this function is only used to
parse a user's configuration file.
Submitted by: Joerg Sonnenberger
Obtained from: dragonflybsd
MFC after: 1 week
1. Previously, printing the number 1.0 could produce 0x1p+0, 0x2p-1,
0x4p-2, or 0x8p-3, depending on what happened to be convenient. This
meant that printing a value as a double and printing the same value
as a long double could produce different (but equivalent) results.
The change is to always make the leading digit a 1, unless the
number is 0. This solves the aforementioned problem and has
several other advantages.
2. Use the FPU to do rounding. This is far simpler and more portable
than manipulating the bits, and it fixes an obsure round-to-even
bug. It also raises the exceptions now required by IEEE 754R.
The drawbacks are that it is usually slightly slower, and it makes
printf less effective as a debugging tool when the FPU is hosed
(e.g., due to a buggy softfloat implementation).
3. On i386, twiddle the rounding precision so that (2) works properly
for long doubles.
4. Make several simplifications that are now possible due to (2).
5. Split __hldtoa() into a separate file.
Thanks to remko for access to a sparc64 box for testing.
flags appropriately. The next step is to make it raise a SIGFPE if
any exceptions are unmasked.
Thanks to remko for access to a sparc64 box for testing.
- fma(x, y, z) returns z, not NaN, if z is infinite, x and y are finite,
x*y overflows, and x*y and z have opposite signs.
- fma(x, y, z) doesn't generate an overflow, underflow, or inexact exception
if z is NaN or infinite, as per IEEE 754R.
- If the rounding mode is set to FE_DOWNWARD, fma(1.0, 0.0, -0.0) is -0.0,
not +0.0.
returns errno, because errno can be mucked by user's signal handler and
most of pthread api heavily depends on errno to be correct, this change
should improve stability of the thread library.
This makes little difference in float precision, but in double
precision gives a speedup of about 30% on amd64 (A64 CPU) and i386
(A64). This depends on fabs[f]() being inline and efficient. The
bit fiddling (or any use of SET_HIGH_WORD(), which libm does too
much because it was best on old 32-bit machines) always causes
packing overheads and sometimes causes stalls in the packing, since
it operates on only part of a variable in the double precision case.
It apparently did cause stalls in a critical path here.
fabs(x+0.0)+fabs(y+0.0) when mixing NaNs. This improves
consistency of the result by making it harder for the compiler to reorder
the operands. (FP addition is not necessarily commutative because the
order of operands makes a difference on some machines iff the operands are
both NaNs.)
__xdrrec_getrec has returned TRUE, then we have a complete request in
the buffer - calling xdrrec_skiprecord is not necessary. In particular,
if there is another record already buffered on the stream,
xdrrec_skiprecord will discard both this request and the next
one, causing the call to xdr_callmsg to fail and the stream to be
closed.
Sponsored by: Isilon Systems
live in libm, while modf() lives in libc due to historical
mistakes. I'm claiming in the manpage that they all live in libm,
since programmers should not rely on the mistake.
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.
Highlights include:
* Thread-safe kernel RPC client - many threads can use the same RPC
client handle safely with replies being de-multiplexed at the socket
upcall (typically driven directly by the NIC interrupt) and handed
off to whichever thread matches the reply. For UDP sockets, many RPC
clients can share the same socket. This allows the use of a single
privileged UDP port number to talk to an arbitrary number of remote
hosts.
* Single-threaded kernel RPC server. Adding support for multi-threaded
server would be relatively straightforward and would follow
approximately the Solaris KPI. A single thread should be sufficient
for the NLM since it should rarely block in normal operation.
* Kernel mode NLM server supporting cancel requests and granted
callbacks. I've tested the NLM server reasonably extensively - it
passes both my own tests and the NFS Connectathon locking tests
running on Solaris, Mac OS X and Ubuntu Linux.
* Userland NLM client supported. While the NLM server doesn't have
support for the local NFS client's locking needs, it does have to
field async replies and granted callbacks from remote NLMs that the
local client has contacted. We relay these replies to the userland
rpc.lockd over a local domain RPC socket.
* Robust deadlock detection for the local lock manager. In particular
it will detect deadlocks caused by a lock request that covers more
than one blocking request. As required by the NLM protocol, all
deadlock detection happens synchronously - a user is guaranteed that
if a lock request isn't rejected immediately, the lock will
eventually be granted. The old system allowed for a 'deferred
deadlock' condition where a blocked lock request could wake up and
find that some other deadlock-causing lock owner had beaten them to
the lock.
* Since both local and remote locks are managed by the same kernel
locking code, local and remote processes can safely use file locks
for mutual exclusion. Local processes have no fairness advantage
compared to remote processes when contending to lock a region that
has just been unlocked - the local lock manager enforces a strict
first-come first-served model for both local and remote lockers.
Sponsored by: Isilon Systems
PR: 95247 107555 115524 116679
MFC after: 2 weeks