signal handling mode, there is no chance to handle the signal, something
must be wrong in the library, just call kse_thr_interrupt to dump its core.
I have the code for a long time, but forgot to commit it.
Catch up with renaming of "Japanese" to "ja_JP.eucJP". Comment out the
statement that EUC is provided for compatibility with UNIX-based systems;
this is not a very good opening paragraph.
- fixed a length of the sadb extension in the case of pfkey_send_x5().
- used getprotobynumber() for printing a upper layer protocol name.
- modified the output format against the change of the setkey syntax
about a icmp6 type/code.
- don't enumerate reserved fields. use memset.
Obtained from: KAME
Aside from the POSIX requirements for pthread_atfork(), when
fork()ing, take the malloc lock to keep malloc state consistent
in the child.
Reviewed by: davidxu
it around an application's fork() call. Our new thread libraries
(libthr, libpthread) can now have threads running while another
thread calls fork(). In this case, it is possible for malloc
to be left in an inconsistent state in the child. Our thread
libraries, libpthread in particular, need to use malloc internally
after a fork (in the child).
Reviewed by: davidxu
mbstate_t object that they ignore. The zeroing is fairly expensive, and it
will never be necessary in these functions; when we support state-dependent
encodings, we will pass in a pointer to the file's mbstate_t object, and
only zero it at the time the file gets opened.
tcpdump -y ieee802_11 will work in the basic senses, including the
code compilation for filters (where you may specify "link[]" to refer
to parts of the 802.11 header, as well as treat it like a normal
Ethernet header). Previously, it was just too far off to do anything
useful for us.
* While I'm here, fix some compile problems that will result from lex
and yacc namespace polution when linking with -lpcap. The namespace
is now "pcapyy*" instead of "yy*", and it tests fine with world and
some external applications that may or may not use "yy*".
index referencing it. We need to know the original type and name
so that we know what to put in the table when we reconstruct it.
o Clear the table entries before we rebuild it to avoid that we
end up with stale data.
o Sequentially populate the table entries from the chunks. For the
chunks that have an index (now referencing the saved copy) we
use the saved type and name. This way we can handle unknown types
better. In all cases we update the start and end LBAs.
rather than generating an error. This is consistent with other tools
printing user and group names, and means you can read the ACL using
our tools rather than being up a creek.
PR: 56991
Submitted by: Michael Bretterklieber <mbretter@a-quadrat.at>
filling in the GPT entry. Both are already in sector numbers (LBA)
and exactly what we need for the entry. We now write a structurally
correct GPT partitioning.
part of the disk. The first appears to be a typo and instead of
dividing the media size with the sector size, we multiplied. The
second is an off-by-1 error that's the result of mixing up count
and index. The code in question is only applicable for virgin disks
and is used to create the "whole" chunk, which covers only the GPT
usable portion of the disk.
mbrtowc() and wcrtomb() directly. GB18030, GBK and UTF2 are left
unconverted; GB18030 will be done eventually, but GBK and UTF2 may just
be removed, as they are subsets of GB18030 and UTF-8 respectively.
platforms except ia64 and use Int_Open_Disk() in open_ia64_disk.c
on ia64. We need to know more than GEOM can provide us so we're
forced to read from the disk. Move uuid_type() to open_ia64_disk.c
and remove all references on non-ia64.
o Pass the GEOM conftxt to Int_Open_Disk() so that only Open_Disk()
needs to know about GEOM and libdisk can more easily be used with
media not handled by GEOM.
o Create an ia64 specific definiton of struct disk on ia64, because
we don't need/have most of the fields other platforms need and
other fields not applicable on platforms other than ia64.
o Do not compile change.c on ia64. It's too PC specific.
o In Fixup_Names() in create_chunk.c, try all partition numbers
that are valid for the GPT disk. We have the total number of
partitions that can be allocated in the disk structure on ia64.
Also, use the GPT partition naming if we're creating one under
a chunk of type "whole". It's a GPT partition in that case.
o In Create_Chunk(), compile-out the PC specific code on ia64 that
checks BIOS geometry restrictions.
o In Debug_Disk() in disk.c, dump the ia64 specific fields.
o Save the partition index in the chunk on ia64 so that we can
preserve it when we write the data back to disk. This avoids that
partitions get moved around or swapped after installing FreeBSD,
which may render a disk unusable.
Cyl_Aligned(), Prev_Cyl_Aligned() and Next_Cyl_Aligned() into
tautologies on ia64. GPT removes all notion of tracks, heads and
sectors per track, so there are no alignment considerations.
doesn't have any meaning and only results in lines longer than 80
characters.
o In Delete_Chunk2(), also look for chunks of type "part" under
chunks of type "whole" on ia64. They're not only under chunks of
type "freebsd" there.