than the other implementations; we have complete control over the tlb, so we
only demap specific pages. We take advantage of the ranged tlb flush api
to send one ipi for a range of pages, and due to the pm_active optimization
we rarely send ipis for demaps from user pmaps.
Remove now unused routines to load the tlb; this is only done once outside
of the tlb fault handlers.
Minor cleanups to the smp startup code.
This boots multi user with both cpus active on a dual ultra 60 and on a
dual ultra 2.
Due to allocating tlb contexts on the fly, we only ever need to demap the
primary context, non-primary contexts have already been implicitly flushed
by context switching. All we really need to tell is if its a kernel demap
or not, and its easier just to compare against the kernel_pmap which is a
constant.
the context is not actually stolen, as it would be for i386. Instead of
deactivating a user vmspace immediately when switching out, and recycling
its tlb context, wait until the next context switch to a different user
vmspace. In this way we can switch from a user process to any number of
kernel threads and back to the same user process again, without losing any
of its mappings in the tlb that would not already be knocked by the automatic
replacement algorithm. This is not expected to have a measurable performance
improvement on the machines we currently run on, but it sounds cool and makes
the sparc64 port SMPng buzz word compliant.
to exhaust all kmaps. The only reward for setting maxproc
to a value which will cause kmap exhaustion is a panic
during a forkbomb attack.
MFC after: 3 days
by removing parentheses. The main bug is in gcc: on machines with
64-bit longs and 64-bit long longs,
(unsigned long long)rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE))
has type plain unsigned long instead of the correctly promoted type
unsigned long long, so it can not be printfed using %llu format. Even
1ULL / 1L is mispromoted. Anyway, casting the correct operand
automatically avoids the problem. We do not want to to pessimize the
division; we just want to convert to a common maximal type for printing.
moderately improves msync's and VM object flushing for objects containing
randomly dirtied pages (fsync(), msync(), filesystem update daemon),
and improves cpu use for small-ranged sequential msync()s in the face of
very large mmap()ings from O(N) to O(1) as might be performed by a database.
A sysctl, vm.msync_flush_flag, has been added and defaults to 3 (the two
committed optimizations are turned on by default). 0 will turn off both
optimizations.
This code has already been tested under stable and is one in a series of
memq / vp->v_dirtyblkhd / fsync optimizations to remove O(N^2) restart
conditions that will be coming down the pipe.
MFC after: 3 days
- Move jail checks and some other checks involving constants and stack
variables out from under Giant. This isn't perfectly safe atm because
jail_sysvipc_allowed is read w/o a lock meaning that its value could be
stale. This global variable will soon become a per-jail flag, however,
at which time it will either not need a lock or will use the prison lock.
individual filesystems to determine whether they should operate in
"file system as a single object" mode, or "file system as a set of objects
with individual labels" mode. Note: in the trustedbsd_mac branch,
this is refered to as "MNT_MULTILEVEL", but the two mean the same thing.
MNT_MULTILABEL is more suggestive of a flexible policy system than one
providing purely hierarchal policies. The need for a reserved flag will
go away once nmount() is done.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
and for individual MAC policies. The framework event initializes the
access control subsystem; the policy event allows policies to register
themselves. The gap in between is for all the things we'll think of
later.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
pseudo-devices when an interface goes away. Otherwise, an open /dev/net/foo0
when the interface is removed can cause a crash.
Not objected to by: jlemon
Some buggy firmware workarounds. Fix some endian bugs.
These reduce the diffs from NetBSD, but NetBSD does have more changes since
my last manual merge.
people working on the MAC tree from getting toasted whenever system call
numbers are allocated in the main tree (for example, for KSE :-).
Calls allocated: __mac_{get,set}_proc, __mac_{get,set}_{fd,file}().
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
Includes some minor whitespace changes, and re-ordering to be able to document
properly (e.g, grouping of variables and the SYSCTL macro calls for them, where
the documentation has been added.)
Reviewed by: phk (but all errors are mine)
active-filter in pppd(8).
PR: kern/12281
Submitted by: Tim Moore <moore@bricoworks.com>
Not objected by: peter
Reviewed by: ru
Approved by: ru
MFC after: 1 week
be allocated as arrays indexed by the cpu id. Previously the only reliable
way to know the max cpu id was through MAXCPU. mp_ncpus isn't useful here
because cpu ids may be sparsely mapped, although x86 and alpha do not do this.
Also, call cpu_mp_probe much earlier so the max cpu id is known before the VM
starts up. This is intended to help support per cpu queues for the new
allocator, but may be useful elsewhere.
Reviewed by: jake
Approved by: jake
Link if only ATAPI device in kernel config
Remove unused #includes
Rearrange a bit in ata-raid to make diff against -stable smaller
Enable wc as default again, dunne how this happend...