to fill in the nfs_diskless structure, at the cost of some kernel
bloat. The advantage is that this code works on a wider range of
network adapters than netboot. Several new kernel options are
documented in LINT.
Obtained from: parts of the code comes from NetBSD.
Serious:
- An important timevalfix() in settime[ofday]() was lost.
Not so serious:
- There was a race initializing `delta' in the check for setting the
time backwards.
- The `#ifdef notyet' check for setting the time more than a day forwards
was back to front.
[[I deleted the code, it's useless because of iteration - Peter]]
- The timespec was not checked for validity in clock_settime().
- The timespec was not fully checked for validity in nanotime(). The
check in itimerfix() is too late, since the conversion from a timespec
to a timeval may overflow.
- A garbage timeval was checked in settimeofday() for the (uap->tv == NULL
&& uap->tzp != NULL) case. I added the broken check this some time ago.
Cosmetic:
- The "inadvertantly (sic) sleeping forever" test always failed. hzto()
always returns >= 1.
- The style wasn't very KNFish. (I only changed new code.)
Submitted by: bde
in NetBSD. The core of settimeofday() is moved to a seperate static
function settime() which both clock_settime() and settimeofday() call.
Note that I picked up the securelevel > 1 check from NetBSD that prevents
the clock being set backwards in high securelevel mode (this was a hole
that allowed resetting of inode access timestamps to arbitary values)
Obtained from: mostly from NetBSD, but the settime() function is from
our gettimeofday(), some tweaks by me.
the patches in freefall:/home/dfr/ld.diffs to your ld sources and set
BINFORMAT to aoutkld when linking the kernel.
Library changes and userland utilities will appear in a later commit.
".." vnode. This is cheaper storagewise than keeping it in the
namecache, and it makes more sense since it's a 1:1 mapping.
2. Also handle the case of "." more intelligently rather than stuff
the namecache with pointless entries.
3. Add two lists to the vnode and hang namecache entries which go from
or to this vnode. When cleaning a vnode, delete all namecache
entries it invalidates.
4. Never reuse namecache enties, malloc new ones when we need it, free
old ones when they die. No longer a hard limit on how many we can
have.
5. Remove the upper limit on namelength of namecache entries.
6. Make a global list for negative namecache entries, limit their number
to a sysctl'able (debug.ncnegfactor) fraction of the total namecache.
Currently the default fraction is 1/16th. (Suggestions for better
default wanted!)
7. Assign v_id correctly in the face of 32bit rollover.
8. Remove the LRU list for namecache entries, not needed. Remove the
#ifdef NCH_STATISTICS stuff, it's not needed either.
9. Use the vnode freelist as a true LRU list, also for namecache accesses.
10. Reuse vnodes more aggresively but also more selectively, if we can't
reuse, malloc a new one. There is no longer a hard limit on their
number, they grow to the point where we don't reuse potentially
usable vnodes. A vnode will not get recycled if still has pages in
core or if it is the source of namecache entries (Yes, this does
indeed work :-) "." and ".." are not namecache entries any longer...)
11. Do not overload the v_id field in namecache entries with whiteout
information, use a char sized flags field instead, so we can get
rid of the vpid and v_id fields from the namecache struct. Since
we're linked to the vnodes and purged when they're cleaned, we don't
have to check the v_id any more.
12. NFS knew about the limitation on name length in the namecache, it
shouldn't and doesn't now.
Bugs:
The namecache statistics no longer includes the hits for ".."
and "." hits.
Performance impact:
Generally in the +/- 0.5% for "normal" workstations, but
I hope this will allow the system to be selftuning over a
bigger range of "special" applications. The case where
RAM is available but unused for cache because we don't have
any vnodes should be gone.
Future work:
Straighten out the namecache statistics.
"desiredvnodes" is still used to (bogusly ?) size hash
tables in the filesystems.
I have still to find a way to safely free unused vnodes
back so their number can shrink when not needed.
There is a few uses of the v_id field left in the filesystems,
scheduled for demolition at a later time.
Maybe a one slot cache for unused namecache entries should
be implemented to decrease the malloc/free frequency.
but now that we've widened the scope of the smp work to -current, it might
be an idea to warn new people that might not have read all the docs yet
that the SMP support needs to be activated via a sysctl.
This code re-numbers PCI busses in the MP table to match PCI semantics
when the MP BIOS fails to do it properly.
Reviewed by: Peter Wemm <peter@spinner.DIALix.COM>
replace invldebug with invltlb_ok for throttling smp_invltlb() during boot.
Reviewed by: informal discussion with Peter Wemm <peter@spinner.DIALix.COM>
Peter Wemm <peter@spinner.DIALix.COM>, Steve Passe <smp@csn.net>
removed all the IPI_INTS code.
made the XFAST_IPI32 code default, renaming Xfastipi32 to Xinvltlb.
This commit includes the following changes:
1) Old-style (pr_usrreq()) protocols are no longer supported, the compatibility
glue for them is deleted, and the kernel will panic on boot if any are compiled
in.
2) Certain protocol entry points are modified to take a process structure,
so they they can easily tell whether or not it is possible to sleep, and
also to access credentials.
3) SS_PRIV is no more, and with it goes the SO_PRIVSTATE setsockopt()
call. Protocols should use the process pointer they are now passed.
4) The PF_LOCAL and PF_ROUTE families have been updated to use the new
style, as has the `raw' skeleton family.
5) PF_LOCAL sockets now obey the process's umask when creating a socket
in the filesystem.
As a result, LINT is now broken. I'm hoping that some enterprising hacker
with a bit more time will either make the broken bits work (should be
easy for netipx) or dike them out.
There are various options documented in i386/conf/LINT, there is more to
come over the next few days.
The kernel should run pretty much "as before" without the options to
activate SMP mode.
There are a handful of known "loose ends" that need to be fixed, but
have been put off since the SMP kernel is in a moderately good condition
at the moment.
This commit is the result of the tinkering and testing over the last 14
months by many people. A special thanks to Steve Passe for implementing
the APIC code!
Fix another bug: if argv[0] is NULL, garbadge args might be added for
shell script
Submitted by: Tor Egge <Tor.Egge@idi.ntnu.no> (with yet one fault detect from me)
difference of approx 3mins in make world on my P6!!! This means
that vfork now has full address space sharing, so beware with
sloppy vfork programming. Also, you really do need to apply
the previously committed popen fix in libc.
Zero the b_dirty{off,end} after cluster-comitting a group of buffers.
With these fixes, I was able to complete a 'make world' with remote src
and obj directories.
were always in a tss; that tss just changed from the one in the
pcb to common_tss (who knows where it was when there was no curpcb?).
Not using the pcb also fixed the problem that there is no pcb in
idle(), so we now always get useful register values.
cache queue more often. The pageout daemon had to be waken up
more often than necessary since pages were not put on the
cache queue, when they should have been.
Submitted by: David Greenman <dg@freebsd.org>
fork. (On my machine, fork is about 240usecs, vfork is 78usecs.)
Implement rfork(!RFPROC !RFMEM), which allows a thread to divorce its memory
from the other threads of a group.
Implement rfork(!RFPROC RFCFDG), which closes all file descriptors, eliminating
possible existing shares with other threads/processes.
Implement rfork(!RFPROC RFFDG), which divorces the file descriptors for a
thread from the rest of the group.
Fix the case where a thread does an exec. It is almost nonsense for a thread
to modify the other threads address space by an exec, so we
now automatically divorce the address space before modifying it.