make a series of modifications to the credential arguments relating
to file read and write operations to cliarfy which credential is
used for what:
- Change fo_read() and fo_write() to accept "active_cred" instead of
"cred", and change the semantics of consumers of fo_read() and
fo_write() to pass the active credential of the thread requesting
an operation rather than the cached file cred. The cached file
cred is still available in fo_read() and fo_write() consumers
via fp->f_cred. These changes largely in sys_generic.c.
For each implementation of fo_read() and fo_write(), update cred
usage to reflect this change and maintain current semantics:
- badfo_readwrite() unchanged
- kqueue_read/write() unchanged
pipe_read/write() now authorize MAC using active_cred rather
than td->td_ucred
- soo_read/write() unchanged
- vn_read/write() now authorize MAC using active_cred but
VOP_READ/WRITE() with fp->f_cred
Modify vn_rdwr() to accept two credential arguments instead of a
single credential: active_cred and file_cred. Use active_cred
for MAC authorization, and select a credential for use in
VOP_READ/WRITE() based on whether file_cred is NULL or not. If
file_cred is provided, authorize the VOP using that cred,
otherwise the active credential, matching current semantics.
Modify current vn_rdwr() consumers to pass a file_cred if used
in the context of a struct file, and to always pass active_cred.
When vn_rdwr() is used without a file_cred, pass NOCRED.
These changes should maintain current semantics for read/write,
but avoid a redundant passing of fp->f_cred, as well as making
it more clear what the origin of each credential is in file
descriptor read/write operations.
Follow-up commits will make similar changes to other file descriptor
operations, and modify the MAC framework to pass both credentials
to MAC policy modules so they can implement either semantic for
revocation.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
these in the main filesystems. This does not change the resulting code
but makes the source a little bit more grepable.
Sponsored by: DARPA and NAI Labs.
enforcement of MAC policy on the read or write operations:
- In ext2fs, don't enforce MAC on loop-back reads and writes supporting
directory read operations in lookup(), directory modifications in
rename(), directory write operations in mkdir(), symlink write
operations in symlink().
- In the NFS client locking code, perform vn_rdwr() on the NFS locking
socket without enforcing MAC, since the write is done on behalf of
the kernel NFS implementation rather than the user process.
- In UFS, don't enforce MAC on loop-back reads and writes supporting
directory read operations in lookup(), and symlink write operations
in symlink().
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
obtain the send lock, we would bogusly try to unlock the send lock before
returning resulting in a panic. Instead, only unlock the send lock if
nfs_sndlock() succeeds and nfs_reconnect() fails.
MFC after: 3 days
Sponsored by: The Weather Channel
methodology similar to the vm_map_entry splay and the VM splay that Alan
Cox is working on. Extensive testing has appeared to have shown no
increase in overhead.
Disadvantages
Dirties more cache lines during lookups.
Not as fast as a hash table lookup (but still N log N and optimal
when there is locality of reference).
Advantages
vnode->v_dirtyblkhd is now perfectly sorted, making fsync/sync/filesystem
syncer operate more efficiently.
I get to rip out all the old hacks (some of which were mine) that tried
to keep the v_dirtyblkhd tailq sorted.
The per-vnode splay tree should be easier to lock / SMPng pushdown on
vnodes will be easier.
This commit along with another that Alan is working on for the VM page
global hash table will allow me to implement ranged fsync(), optimize
server-side nfs commit rpcs, and implement partial syncs by the
filesystem syncer (aka filesystem syncer would detect that someone is
trying to get the vnode lock, remembers its place, and skip to the
next vnode).
Note that the buffer cache splay is somewhat more complex then other splays
due to special handling of background bitmap writes (multiple buffers with
the same lblkno in the same vnode), and B_INVAL discontinuities between the
old hash table and the existence of the buffer on the v_cleanblkhd list.
Suggested by: alc
nfs_readlink() calls nfs_bioread() which passes in uio_td as the thread
argument to nfs_getcacheblk(). In nfs_getcacheblk() we dereference the
thread pointer to get a process pointer to pass to nfs_sigintr(). This
obviously results in a panic. :)
Rather than change nfs_getcacheblk() to check if the thread pointer is
NULL when calling nfs_sigintr() like other callers do, change
nfs_sigintr() to take a thread as the last argument instead of a
process so none of the callers have to care if the thread is NULL or not.
o Add a mutex (sb_mtx) to struct sockbuf. This protects the data in a
socket buffer. The mutex in the receive buffer also protects the data
in struct socket.
o Determine the lock strategy for each members in struct socket.
o Lock down the following members:
- so_count
- so_options
- so_linger
- so_state
o Remove *_locked() socket APIs. Make the following socket APIs
touching the members above now require a locked socket:
- sodisconnect()
- soisconnected()
- soisconnecting()
- soisdisconnected()
- soisdisconnecting()
- sofree()
- soref()
- sorele()
- sorwakeup()
- sotryfree()
- sowakeup()
- sowwakeup()
Reviewed by: alfred
kernel BOOTP option. The format will be:
FreeBSD:<MACHINE>:<osrelease>
this way people can tune their DHCP server to server up root file systems
via the OS, machine type and version.
Obtained from: NetBSD
MFC after: 3 weeks
where some client operations might be unexpectedly cancelled during
an unsuccessful non-forced unmount attempt. This causes problems
for amd(8), because it periodically attempts a non-forced unmount
to check if the filesystem is still in use.
Fix this by adding a new mountpoint flag MNTK_UNMOUNTF that is set
only during the operation of a forced unmount. Use this instead of
MNTK_UNMOUNT to trigger the cancellation of hung NFS operations.
Also correct a problem where dounmount() might inadvertently clear
the MNTK_UNMOUNT flag.
Reported by: simokawa
MFC after: 1 week
general cleanup of the API. The entire API now consists of two functions
similar to the pre-KSE API. The suser() function takes a thread pointer
as its only argument. The td_ucred member of this thread must be valid
so the only valid thread pointers are curthread and a few kernel threads
such as thread0. The suser_cred() function takes a pointer to a struct
ucred as its first argument and an integer flag as its second argument.
The flag is currently only used for the PRISON_ROOT flag.
Discussed on: smp@
which is initialized with whatever string a dhcp/bootp server passes
as vendor tag 134.
There is no standard tag that I know with this information, and
no vendor-defined tag that applies to FreeBSD that I could find
doing the same thing.
The intended use is to pass information to userland for run-time
configuration of a diskless client without having to run a bootp/dhcp
client for the third time (after the one in pxeboot/etherboot, and
the one in the kernel bootp), also because these clients generally
screwup the interface configuration, which is not exactly what you
want when you have your disks nfs-mounted.
Manpage update to follow soon.
MFC-after: 3 days
This is belived to be the only place where a soft reference to a vnode
is held with no sort of hard reference, consequently this change should
allow us to free(9) vnodes from the freelist after properly cleaning
them up.
Reviewed by: dillon
and isn't strictly required. However, it lowers the number of false
positives found when grep'ing the kernel sources for p_ucred to ensure
proper locking.
this is a low-functionality change that changes the kernel to access the main
thread of a process via the linked list of threads rather than
assuming that it is embedded in the process. It IS still embeded there
but remove all teh code that assumes that in preparation for the next commit
which will actually move it out.
Reviewed by: peter@freebsd.org, gallatin@cs.duke.edu, benno rice,
vfs.nfs.iodmaxidle (idle time before nfsiod's exit). Make it adaptive
so that we create nfsiod's on demand and they go away after not being
used for a while. The upper limit is NFS_MAXASYNCDAEMON (currently 20).
More will be done here, but this is a useful checkpoint.
Submitted by: Maxime Henrion <mux@qualys.com>
process of being unmounted. This allows forced NFS unmounts to
complete even if there are processes stuck holding the mnt_lock
while the server is down. The mechanism is not ideal in that there
is a small chance we might accidentally cancel requests during a
failed non-forced unmount attempt on that filesystem, but this
is not really a big problem.
Also, move the tsleep() in nfs_nmcancelreqs() so that we do not
sleep in the case where there are no requests to be cancelled.
down, even if there are hung processes and the mount is non-
interruptible.
This works by having nfs_unmount call a new function nfs_nmcancelreqs()
in the FORCECLOSE case. It scans the list of outstanding requests
and marks as interrupted any requests belonging to the specified
mount. Then it waits up to 30 seconds for all requests to terminate.
A few other changes are necessary to support this:
- Unconditionally set a socket timeout so that even hard mounts
are guaranteed to occasionally check the R_SOFTTERM flag on
requests. For hard mounts this flag can only be set by
nfs_nmcancelreqs().
- Reject requests on a mount that is currently being unmounted.
- Never grant the receive lock to a request that has been cancelled.
This should also avoid an old problem where a forced NFS unmount
could cause a crash; it occurred when a VOP on an unlocked vnode
(usually VOP_GETATTR) was in progress at the time of the forced
unmount.
socreate(), rather than getting it implicitly from the thread
argument.
o Make NFS cache the credential provided at mount-time, and use
the cached credential (nfsmount->nm_cred) when making calls to
socreate() on initially connecting, or reconnecting the socket.
This fixes bugs involving NFS over TCP and ipfw uid/gid rules, as well
as bugs involving NFS and mandatory access control implementations.
Reviewed by: freebsd-arch
1222 bytes (derived as the maximum that isc-dhcpd uses). This solves
the problem if a bootp/DHCP reply is over 256 bytes in which the
end of the bootp/DHCP reply will not be found and then the reply will
be ignored. This happens when swap and root paths are longish or many
parameters are set.
Reviewed by: imp
Approved by: imp
temporary storage. In the old NFS code it wasn't at all clear if
the value of `tl' was used across or after macro calls, but I'm
fairly confident that the convention was to keep its use local.
Each ex-macro function now uses a local version of this variable,
so all of the double-indirection goes away.
The only exception to the `local use' rule for `tl' is nfsm_clget(),
which is left unchanged by this commit.
Reviewed by: peter
commit by Kirk also fixed a softupdates bug that could easily be triggered
by server side NFS.
* An edge case with shared R+W mmap()'s and truncate whereby
the system would inappropriately clear the dirty bits on
still-dirty data. (applicable to all filesystems)
THIS FIX TEMPORARILY DISABLED PENDING FURTHER TESTING.
see vm/vm_page.c line 1641
* The straddle case for VM pages and buffer cache buffers when
truncating. (applicable to NFS client side)
* Possible SMP database corruption due to vm_pager_unmap_page()
not clearing the TLB for the other cpu's. (applicable to NFS
client side but could effect all filesystems). Note: not
considered serious since the corruption occurs beyond the file
EOF.
* When flusing a dirty buffer due to B_CACHE getting cleared,
we were accidently setting B_CACHE again (that is, bwrite() sets
B_CACHE), when we really want it to stay clear after the write
is complete. This resulted in a corrupt buffer. (applicable
to all filesystems but probably only triggered by NFS)
* We have to call vtruncbuf() when ftruncate()ing to remove
any buffer cache buffers. This is still tentitive, I may
be able to remove it due to the second bug fix. (applicable
to NFS client side)
* vnode_pager_setsize() race against nfs_vinvalbuf()... we have
to set n_size before calling nfs_vinvalbuf or the NFS code
may recursively vnode_pager_setsize() to the original value
before the truncate. This is what was causing the user mmap
bus faults in the nfs tester program. (applicable to NFS
client side)
* Fix to softupdates (see ufs/ffs/ffs_inode.c 1.73, commit made
by Kirk).
Testing program written by: Avadis Tevanian, Jr.
Testing program supplied by: jkh / Apple (see Dec2001 posting to freebsd-hackers with Subject 'NFS: How to make FreeBS fall on its face in one easy step')
MFC after: 1 week
reference: with td->td_ucred, it will be desirable to authorize
based on td->td_ucred, rather than p->p_ucred.
o Since the same variable 'p' was later used with pfind() on the target
process for the wakeup, introduce a new local variable 'targetp'
to use instead.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
to avoid the need for rpc.lockd to perform client locks. Using
this option a user can revert back to using local locks for NFS mounts
like we did before we had rpc.lockd.