parameters needed for smp support.
If we are not the boot processor, jump to the smp startup code instead.
Implement a per-cpu panic stack, which is used for bootstrapping both
primary and secondary processors and during faults on the kernel stack.
Arrange the per-cpu page like the pcb, with the struct pcpu at the end
of the page and the panic stack before it.
Use the boot processor's panic stack for calling sparc64_init.
Split the code to set preloaded global registers and to map the kernel
tsb out into functions, which non-boot processors can call.
Allocate the kstack for thread0 dynamically in pmap_bootstrap, and give
it a guard page too.
to the current pcb.
Remove interrupt global defines; they use PCPU_REG now.
Move ATOMIC_INC_INT here from exception.s, add ATOMIC_DEC_INT.
Add a KASSERT macro for use in assembler.
substantial fraction of the number of entries of tte's in the tsb
would need to be looked up, traverse the tsb instead. This is crucial
in some places, e.g. when swapping out a process, where a certain
pmap_remove() call would take very long time to complete without this.
2. Implement pmap_qenter_flags(), which will become used later
3. Reactivate the instruction cache flush done when mapping as executable.
This is required e.g. when executing files via NFS, but is known to
cause problems on UltraSPARC-IIe CPU's. If you have such a CPU, you
will need to comment this call out for now.
Submitted by: jake (3)
struct ofw_nexus_reg. Implement UPA device memory management in the
nexus driver.
Adapt the psycho driver to these changes, and do some minor cleanup work
while being there.
for certain user pages, stores to kernel pages would not update the
affected cache lines, which would sometimes cause the wrong data to be
returned for loads from kernel pages. This was especially fatal when
the addresses affected held the kernel stack pointer, and a random
value was loaded into it.
Fix a harmless off by one error in a dcache_inval_phys call.
Fix a potential race in setting up the per-cpu pointer if the special
restore fails on return to user mode fails and we need to trap back
into the kernel to fault in more stack.
Remove debug code.
an efficient way for the kernel to bounce certain mundane traps back to
userland for handling there. A user trap handler returns directly to the
trapping user code, rather than going through the kernel again. Only a
handful of instructions are actually executed in kernel mode.
Implement sysarch(SPARC_UTRAP_INSTALL).
Add code to handle sharing of the user trap table across forks and unsharing
at exec.
This can be used to implement efficient tracking of floating point register
usage in userland, fe by a thread library, and to handle alignment fault
fixups and instruction emulation in userland, for which the code may need
to be different for 32bit and 64bit binaries.
something wrong with the kernel stack.
Add code to check the kernel stack pointer in various important places
and try hard not to go down in flames if its wrong.
Add fields to md_page for tracking virtual page color, and pv entry
lists.
Fix pmap_track_modified to work for non-kernel pmaps. This is due to
kernel virtual addresses potentially overlapping with userland addresses.
much less magic, fragile, broken. Use ttes rather than sttes.
We still use the replacement scheme used by the original code, which
is pretty cool.
Many crucial bug fixes from: tmm
of sttes. Also removes many differences between this and the other pmaps.
Reserve the kva space used by the openfirmware translations.
Use physical addresses directly in pmap_zero_page and pmap_copy_page, now
that we have the cache line shooting support.
Add code to track the virtual cachability of mapped pages. The dmmu
requires that multiple mappings of the same phsyical address have the
save virtual address bits up to a colour boundary. Violating this
requires all mappings to be mapped uncacheable. We do not yet handle
the case of a badly aliased mapping becoming cachable again.
Many crucial bug fixes from: tmm
the registers so we don't uselessly save them over and over again for
each context switch until another floating point instruction is executed.
Use a non-specific tlb slot for the tsb, which needs to have a locked
entry.
Remove overly verbose traces.
Add macros to atomically increment an integer variable in the data
section and to atomically set a bit in a tte. Note that the latter
does not return the new value.
Rewrite RESUME_SPILLFILL_MAGIC to use more sensical calculations, and
to preserve all alternate globals religiously. Must now be called on
alternate globals.
Defer switching to the kernel stack until inside the syscall, trap,
interrupt wrappers. Splitting the windows is all that's really urgent.
Adapt to new trap types.
Add %xcc where appropriate in order to not use v8 opcodes inadvertantly
(which work fine).
Modify the low level tlb fault handlers to operate on a tsb made up of
ttes, not sttes. This effectively makes the tsb twice as large.
After atomically updating tte bits in memory, also set the bit in the
register that holds the data which will be loaded into the tlb. The
macro returns the old value.
Use the preloaded mmu global which holds the address of the current
user tsb.
Add back a low level protection fault handler instead of just punting
into the vm system. This effectively saves a soft fault per COW fault.
Add a trace to intr_enqueue.
Pass arguments to the trap, interrupt, syscall wrappers in the out
registers instead of some on the stack, some in registers.
Use the preloaded alternate global pcb register.
2. Make trap_pfault more like it is on other architectures.
3. Fix a bug in syscall() which caused system calls with more than
six arguments that are called through the wild card syscall to
have their arguments scrambled. This affected mmap due to the
(bogus) wrapper in libc.
Submitted by: tmm (3)
Add some traces that can be useful but are also very loud.
Use defines for offsets into jmpbuf instead of magic numbers.
Fix a style bug.
Fixup comments.