{set,fill}_{,fp,db}regs() fixup:
- Add dummy {set,fill}_dbregs() on architectures that don't have them.
- KSEfy the powerpc versions (struct proc -> struct thread).
- Some architectures had the prototypes in md_var.h, some in reg.h, and
some in both; for consistency, move them to reg.h on all platforms.
These functions aren't really MD (the implementation is MD, but the interface
is MI), so they should move to an MI header, but I haven't figured out which
one yet.
Run-tested on i386, build-tested on Alpha, untested on other platforms.
was used. This resulted in bogus bad window traps (invalid wstate).
Add a trace to sfsr traps (alignment among other things).
Use KTR_TRAP instead of KTR_CT1.
Use the right registers when storing the values of various
mmu registers into the trap frame. This fixes a bug where sometimes
the context number reported by a fault would be garbage. Sometimes
it would be zero for faults on user address space so the kernel would
wrongly think that it was a fault on kernel address space and fail.
Use the preloaded registers in the vectored interrupt trap instead
of reading pointers from memory. Remove traces due to register
pressure and excess verbosity. We can probably still sneak in one
trace. Remove some debug code.
Go back to using the tsb register during kernel page table lookups.
This is the best way to not have to have the address of the kernel tsb be
a compile time constant. We lie and say we have 1 page tsb when really
its much larger. This way the hardware provides bits 13-22 of the
virtual address (the lower 9 bits of the virtual page number) in the
form of the address of the tte corresponding to the fault address in
the (1 page) kernel tsb. With some clever arithmetic we can then get
bits 22 and up from the tte tag and add them to the tte address in
order to index massive tsbs (basically unlimited).
Add traps for physical address hardware watchpoints.
Don't try to pass the window state from the trap table entry point
all the way down to the common trap code. Its too easy to clobber
and reading it again doesn't cost much.
Fixup some traces.
Fiddle the cwp bits on return from the kernel to user mode so that
the window we are returning to is always the same as the one we
restore to in the trap code. Strictly speaking this is not necessary,
it only affects return from fork and exec, but setting up the windows
right would require hard coding the right cwp values in cpu_fork and
setregs, basically hard coding the number of frames between syscall and
tl0_ret. The result of getting it wrong is usually a spill to an invalid
stack pointer; either 0 or pointing into kernel space. This should also
alleviate the need to context switch the cwp.
Transfer the trap state from locals to alternate globals in the trap
return code so that we can do a restore and rotate the windows before
reloading the trap registers. If the restore fails we'll trap back
into the kernel, so there's no point in loading the trap registers
before hand. Its is crucial that the window trap recovery code not
clobber the alternate globals.
boundary. It must be on at least an 8 byte boundary so that the length
of the signal code is a multiple of 8 (well aligned). The size is used
in the calculation of the address of the argument and environment vectors
on the user stack; getting it wrong results in the string pointers being
misaligned and causes alignment faults in getenv() among other things.
Allocate a regular stack frame below the signal frame on the user stack
and join up the frame pointer to the previous frame. This fixes longjmp-ing
out of signal handlers. Longjmp traverses the stack upwards in order to
find the right frame to return to, so the frame pointers must join up
seamlessly. I thought this would just work, but obviously the frame
needs to be below the signal frame, not above it like before. Account
for the extra space in the signal code.
Preload pointers to interrupt data structures in interrupt globals.
This avoids the need to load the pointers from memory in the vectored
interrupt trap handler.
Transfer the first 2 out registers into td_retval in setregs. We use
the same registers for system call arguments as return values, so these
registers got clobbered by the system call return values on return from
execve. They now get clobbered by the right values. We must put the values
in both the out registers in the trapframe and in td_retval because init
calls exec but fails to transfer the return value into the out registers.
This fixes a bug where the first exec after init would pass junk to the
c runtime, instead of a pointer to the argument strings. A better solution
would be to return EJUSTRETURN on success from execve.
Adjust for change in pmap_bootstraps prototype.
Map the message buffer after the trap table is setup. We will fault
on it immediately.
Don't use a hard coded address constant for the virtual address of the
kernel tsb. Allocate kernel virtual address space for the kernel tsb
at runtime.
Remove unused parameter to pmap_bootstrap.
Adapt pmap.c to use KVA_PAGES.
Map the message buffer too.
Add some traces.
Implement pmap_protect.
be used to index tables of counters.
Remove intr_dispatch() inline, it is implemented directly in tl*_intr now.
Count stray interrupts in a table of counters like intrcnt.
Disable interrupts briefly when setting up the interrupt vector table.
We must disable interrupts completely, not just raise the pil.
Pass pointers to the intr_vector structures rather than a vector number
to sched_ithd and intr_stray.
the existence of the __gnuc_va_list type[*] because our compiler is GCC.
[*] __gnuc_va_list is defined in the GCC ginclude/stdarg.h replacement
headerwhich we don't use.
Until now, the ptrace syscall was implemented as a wrapper that called
various functions in procfs depending on which ptrace operation was
requested. Most of these functions were themselves wrappers around
procfs_{read,write}_{,db,fp}regs(), with only some extra error checks,
which weren't necessary in the ptrace case anyway.
This commit moves procfs_rwmem() from procfs_mem.c into sys_process.c
(renaming it to proc_rwmem() in the process), and implements ptrace()
directly in terms of procfs_{read,write}_{,db,fp}regs() instead of
having it fake up a struct uio and then call procfs_do{,db,fp}regs().
It also moves the prototypes for procfs_{read,write}_{,db,fp}regs()
and proc_rwmem() from proc.h to ptrace.h, and marks all procfs files
except procfs_machdep.c as "optional procfs" instead of "standard".
Handle overlap in bcopy.
Add routines for copying and zeroing pages using physical addresses
directly.
Remove all the hacks to account for calling the firmware on its own
trap table, we use the kernel trap table. There is still a problem
with OF_exit().
easier and hopefully this code is done changing radically.
Don't use the mmu tlb register to address the kernel page table, nor
the 8k pointer register. The hardware will do some of the page table
lookup by storing the the base address in an internal register and
calculating the address of the tte in the table. However it is limited
to a 1 meg tsb, which only maps 512 megs. The kernel page table only
has one level, so its easy to just do it by hand, which has the advantage
of supporting abitrary amounts of kvm and only costs a few more instructions.
Increase kvm to 1 gig now that its easy to do so and so we don't waste
most of a 4 meg page.
Fix some traces. Fix more proc locking.
Call tsb_stte_promote if we get a soft fault on a mapping in the upper
levels of the tsb. If there is an invalid or unreferenced mapping
in the primary tsb, it will be replaced.
Immediately fail for faults occuring in {f,s}uswintr.
one 4 meg page can map both the kernel and the openfirmware mappings.
Add the openfirmware mappings to the kernel tsb so we can call the firmware
on the kernel trap table and access kernel memory normally.
Implement pmap_swapout_proc, pmap_swapin_proc, pmap_swapout_thread,
pmap_swapin_thread, pmap_activate, pmap_page_exists, and pmap_phys_address.
Add a guard page at the bottom of the kernel stack. Its unclear how easy
it will be to detect these faults and do something useful.
Setup the registers on exec how the c runtime expects.
Implement various {fill,set}_*regs.
Fix proc locking.