vnodes.
- Fix an old bug that would leak a reference to a fd if the vnode being
mmap'd wasn't of type VREG or VCHR.
- Lock Giant in vm_mmap() around calls into the VM that can call into
pager routines that need Giant or into other VM routines that need
Giant.
- Replace code that used a goto to jump around the else branch of a test
to use an else branch instead.
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
wakeup proc0 by hand to enforce the timeout.
- When swapping out a process, keep the process locked via the proc lock
from the first checks up until we clear PS_INMEM and set PS_SWAPPING in
swapout(). The swapout() function now must be called with the proc lock
held and releases it before returning.
- Comment out the code to attempt to lock a process' VM structures before
swapping out. It is broken in that it releases the lock after obtaining
it. If it does grab the lock, it needs to hand it off to swapout()
instead of releasing it. This can be revisisted when the VM is locked
as this is a valid test to perform. It also causes a lock order reversal
for the time being, which is the immediate cause for temporarily
disabling it.
the process in question locked as soon as we find it and determine it to
be eligible until we actually kill it. To avoid deadlock, we don't block
on the process lock but skip any process that is already locked during our
search.
- Don't hold Giant in the swapper daemon while we walk the list of
processes looking for a process to swap back in.
- Don't bother grabbing the sched_lock while checking a process' sleep
time in swapout_procs() to ensure that a process has been idle for at
least swap_idle_threshold2 before swapping it out. If we lose the race
we just let a process stay in memory until the next call of
swapout_procs().
- Remove some unneeded spl's, sched_lock does all the locking needed in
this case.
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
The zone allocator's locks should be leaflocks, meaning that they
should never be held when entering into another subsystem, however
the sysctl grabs the zone global mutex and individual zone mutexes
while holding the lock it calls SYSCTL_OUT which recurses into the
VM subsystem in order to wire user memory to do a safe copy. This
can block and cause lock order reversals.
To fix this:
lock zone global.
get a count of the number of zones.
unlock global.
allocate temporary storage.
format and SYSCTL_OUT the banner.
lock global.
traverse list.
make sure we haven't looped more than the initial count taken
to avoid overflowing the allocated buffer.
lock each nodes.
read values and format into buffer.
unlock individual node.
unlock global.
format and SYSCTL_OUT the rest of the data.
free storage.
return.
Other problems included not checking for errors when doing sysctl out
of the column header. Fixed.
Inconsistant termination of the copied string. Fixed.
Objected to by: des (for not using sbuf)
Since the output is not variable length and I'm actually over
allocating signifigantly and I'd like to get this fixed now, I'll
work on the sbuf convertion at a later date. I would not object
to someone else taking it upon themselves to convert it to sbuf.
I hold no MAINTIANER rights to this code (for now).
Protect pager object list manipulation with a mutex.
It doesn't look possible to combine them under a single sx lock because
creation may block and we can't have the object list manipulation block
on anything other than a mutex because of interrupt requests.
VOP_BWRITE() was a hack which made it possible for NFS client
side to use struct buf with non-bio backing.
This patch takes a more general approach and adds a bp->b_op
vector where more methods can be added.
The success of this patch depends on bp->b_op being initialized
all relevant places for some value of "relevant" which is not
easy to determine. For now the buffers have grown a b_magic
element which will make such issues a tiny bit easier to debug.
programs. There is a case during a fork() which can cause a deadlock.
From Tor -
The workaround that consists of setting a flag in the vm map that
indicates that a fork is in progress and using that mark in the page
fault handling to force a revalidation failure. That change will only
affect (pessimize) page fault handling during fork for threaded
(linuxthreads style) applications and applications using aio_*().
Submited by: tegge
call is correct, but it interferes with the massive hack called
vm_map_growstack(). The call will be returned after our stack handling
code is fixed.
Reported by: tegge
reference count was transferred to the new object, but both the
new and the old map entries had pointers to the new object.
Correct this by transferring the second reference.
This fixes a panic that can occur when mmap(2) is used with the
MAP_INHERIT flag.
PR: i386/25603
Reviewed by: dillon, alc
supported architectures such as the alpha. This allows us to save
on kernel virtual address space, TLB entries, and (on the ia64) VHPT
entries. pmap_map() now modifies the passed in virtual address on
architectures that do not support direct-mapped segments to point to
the next available virtual address. It also returns the actual
address that the request was mapped to.
- On the IA64 don't use a special zone of PV entries needed for early
calls to pmap_kenter() during pmap_init(). This gets us in trouble
because we end up trying to use the zone allocator before it is
initialized. Instead, with the pmap_map() change, the number of needed
PV entries is small enough that we can get by with a static pool that is
used until pmap_init() is complete.
Submitted by: dfr
Debugging help: peter
Tested by: me
of memory, rather than from the start.
This fixes problems allocating bouncebuffers on alphas where there is only
1 chunk of memory (unlike PCs where there is generally at least one small
chunk and a large chunk). Having 1 chunk had been fatal, because these
structures take over 13MB on a machine with 1GB of ram. This doesn't leave
much room for other structures and bounce buffers if they're at the front.
Reviewed by: dfr, anderson@cs.duke.edu, silence on -arch
Tested by: Yoriaki FUJIMORI <fujimori@grafin.fujimori.cache.waseda.ac.jp>
make sure that PG_NOSYNC is properly set. Previously we only set it
for a write-fault, but this can occur on a read-fault too.
(will be MFCd prior to 4.3 freeze)
this information via the vm.nswapdev sysctl (number of swap areas)
and vm.swapdevX nodes (where X is the device), which contain the MIBs
dev, blocks, used, and flags. These changes are required to allow
top and other userland swap-monitoring utilities to run without
setgid kmem.
Submitted by: Thomas Moestl <tmoestl@gmx.net>
Reviewed by: freebsd-audit
- All processes go into the same array of queues, with different
scheduling classes using different portions of the array. This
allows user processes to have their priorities propogated up into
interrupt thread range if need be.
- I chose 64 run queues as an arbitrary number that is greater than
32. We used to have 4 separate arrays of 32 queues each, so this
may not be optimal. The new run queue code was written with this
in mind; changing the number of run queues only requires changing
constants in runq.h and adjusting the priority levels.
- The new run queue code takes the run queue as a parameter. This
is intended to be used to create per-cpu run queues. Implement
wrappers for compatibility with the old interface which pass in
the global run queue structure.
- Group the priority level, user priority, native priority (before
propogation) and the scheduling class into a struct priority.
- Change any hard coded priority levels that I found to use
symbolic constants (TTIPRI and TTOPRI).
- Remove the curpriority global variable and use that of curproc.
This was used to detect when a process' priority had lowered and
it should yield. We now effectively yield on every interrupt.
- Activate propogate_priority(). It should now have the desired
effect without needing to also propogate the scheduling class.
- Temporarily comment out the call to vm_page_zero_idle() in the
idle loop. It interfered with propogate_priority() because
the idle process needed to do a non-blocking acquire of Giant
and then other processes would try to propogate their priority
onto it. The idle process should not do anything except idle.
vm_page_zero_idle() will return in the form of an idle priority
kernel thread which is woken up at apprioriate times by the vm
system.
- Update struct kinfo_proc to the new priority interface. Deliberately
change its size by adjusting the spare fields. It remained the same
size, but the layout has changed, so userland processes that use it
would parse the data incorrectly. The size constraint should really
be changed to an arbitrary version number. Also add a debug.sizeof
sysctl node for struct kinfo_proc.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
by myself. It solves a serious vm_map corruption problem that can occur
with the buffer cache when block sizes > 64K are used. This code has been
heavily tested in -stable but only tested somewhat on -current. An MFC
will occur in a few days. My additions include the vm_map_simplify_entry()
and minor buffer cache boundry case fix.
Make the buffer cache use a system map for buffer cache KVM rather then a
normal map.
Ensure that VM objects are not allocated for system maps. There were cases
where a buffer map could wind up with a backing VM object -- normally
harmless, but this could also result in the buffer cache blocking in places
where it assumes no blocking will occur, possibly resulting in corrupted
maps.
Fix a minor boundry case in the buffer cache size limit is reached that
could result in non-optimal code.
Add vm_map_simplify_entry() calls to prevent 'creeping proliferation'
of vm_map_entry's in the buffer cache's vm_map. Previously only a simple
linear optimization was made. (The buffer vm_map typically has only a
handful of vm_map_entry's. This stabilizes it at that level permanently).
PR: 20609
Submitted by: (Tor Egge) tegge
- Proc locking in a few places.
- faultin() now must be called with the proc lock held.
- Split up swappable() into a couple of tests so that it can be locke in
swapout_procs().
- Use queue macros.
- replace the simplelock in struct vm_zone with a mutex.
- use a proper SLIST rather than a hand-rolled job for the zone list.
- add a subsystem lock that protects the zone list and the statistics
counters.
- merge _zalloc() into zalloc() and _zfree() into zfree(), and
move them below _zget() so there's no need for a prototype.
- add two initialization functions: one which initializes the
subsystem mutex and the zone list, and one that currently doesn't
do anything.
- zap zerror(); use KASSERTs instead.
- dike out half of sysctl_vm_zone(), which was mostly trying to do
manually what the snprintf() call could do better.
Reviewed by: jhb, jasone
in 4.2-REL which I ripped out in -stable and -current when implementing the
low-memory handling solution. However, maxlaunder turns out to be the saving
grace in certain very heavily loaded systems (e.g. newsreader box). The new
algorithm limits the number of pages laundered in the first pageout daemon
pass. If that is not sufficient then suceessive will be run without any
limit.
Write I/O is now pipelined using two sysctls, vfs.lorunningspace and
vfs.hirunningspace. This prevents excessive buffered writes in the
disk queues which cause long (multi-second) delays for reads. It leads
to more stable (less jerky) and generally faster I/O streaming to disk
by allowing required read ops (e.g. for indirect blocks and such) to occur
without interrupting the write stream, amoung other things.
NOTE: eventually, filesystem write I/O pipelining needs to be done on a
per-device basis. At the moment it is globalized.
The fix works by reverting the ordering of free memory so that the
chances of contig_malloc() succeeding increases.
PR: 23291
Submitted by: Andrew Atrens <atrens@nortel.ca>
struct swblock entries by dividing the number of the entries by 2
until the swap metadata fits.
- Reject swapon(2) upon failure of swap_zone allocation.
This is just a temporary fix. Better solutions include:
(suggested by: dillon)
o reserving swap in SWAP_META_PAGES chunks, and
o swapping the swblock structures themselves.
Reviewed by: alfred, dillon
of explicit calls to lockmgr. Also provides macros for the flags
pased to specify shared, exclusive or release which map to the
lockmgr flags. This is so that the use of lockmgr can be easily
replaced with optimized reader-writer locks.
- Add some locking that I missed the first time.
cases with file fragments and read-write mmap's can lead to a situation
where a VM page has odd dirty bits, e.g. 0xFC - due to being dirtied by
an mmap and only the fragment (representing a non-page-aligned end of
file) synced via a filesystem buffer. A correct solution that
guarentees consistent m->dirty for the file EOF case is being
worked on. In the mean time we can't be so conservative in the
KASSERT.
Backout the previous delta (rev 1.4), it didn't make any difference.
If the requested handle is NULL then don't add it to the list of
objects, to be found by handle.
The problem is that when asking for a NULL handle you are implying
you want a new object. Because objects with NULL handles were
being added to the list, any further requests for phys backed
objects with NULL handles would return a reference to the initial
NULL handle object after finding it on the list.
Basically one couldn't have more than one phys backed object without
a handle in the entire system without this fix. If you did more
than one shared memory allocation using the phys pager it would
give you your initial allocation again.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
Pre-rfork code assumed inherent locking of a process's file descriptor
array. However, with the advent of rfork() the file descriptor table
could be shared between processes. This patch closes over a dozen
serious race conditions related to one thread manipulating the table
(e.g. closing or dup()ing a descriptor) while another is blocked in
an open(), close(), fcntl(), read(), write(), etc...
PR: kern/11629
Discussed with: Alexander Viro <viro@math.psu.edu>
the offending inline function (BUF_KERNPROC) on it being #included
already.
I'm not sure BUF_KERNPROC() is even the right thing to do or in the
right place or implemented the right way (inline vs normal function).
Remove consequently unneeded #includes of <sys/proc.h>
- Close a small race condition. The sched_lock mutex protects
p->p_stat as well as the run queues. Another CPU could change p_stat
of the process while we are waiting for the lock, and we would end up
scheduling a process that isn't runnable.
write caching is disabled on both SCSI and IDE disks where large
memory dumps could take up to an hour to complete.
Taking an i386 scsi based system with 512MB of ram and timing (in
seconds) how long it took to complete a dump, the following results
were obtained:
Before: After:
WCE TIME WCE TIME
------------------ ------------------
1 141.820972 1 15.600111
0 797.265072 0 65.480465
Obtained from: Yahoo!
Reviewed by: peter
in the face of non-stripe-aligned swap areas. The bug could cause a
panic during boot.
Refuse to configure a swap area that is too large (67 GB or so)
Properly document the power-of-2 requirement for SWB_NPAGES.
The patch is slightly different then the one Tor enclosed in the P.R.,
but accomplishes the same thing.
PR: kern/20273
Submitted by: Tor.Egge@fast.no
and initialized during boot. This avoids bloating sizeof(struct lock).
As a side effect, it is no longer necessary to enforce the assumtion that
lockinit()/lockdestroy() calls are paired, so the LK_VALID flag has been
removed.
Idea taken from: BSD/OS.
it to lower its memory usage. This was mentioned on the mailing
lists ages ago, and I've lost the name of the person who brought
it up.
Reviewed by: alc
Add lockdestroy() and appropriate invocations, which corresponds to
lockinit() and must be called to clean up after a lockmgr lock is no
longer needed.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
the SF_IMMUTABLE flag to prevent writing. Instead put in explicit
checking for the SF_SNAPSHOT flag in the appropriate places. With
this change, it is now possible to rename and link to snapshot files.
It is also possible to set or clear any of the owner, group, or
other read bits on the file, though none of the write or execute
bits can be set. There is also an explicit test to prevent the
setting or clearing of the SF_SNAPSHOT flag via chflags() or
fchflags(). Note also that the modify time cannot be changed as
it needs to accurately reflect the time that the snapshot was taken.
Submitted by: Robert Watson <rwatson@FreeBSD.org>
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
SYSCTL_LONG macro to be consistent with other integer sysctl variables
and require an initial value instead of assuming 0. Update several
sysctl variables to use the unsigned types.
PR: 15251
Submitted by: Kelly Yancey <kbyanc@posi.net>