defined values instead of hard-coded values. Don't repeat the register
access part of the code 4 times times or triple-space statements. This
fixes half of the style bugs in rev.1.172.
Hardware flow control of 16650As is still officially unsupported. I
was mistaken about it being broken. It is broken in 16650s but is
fixed in 16650As except for the maximum trigger level (which is no
longer used). Testing of the 16650's broken hardware flow control
watermarks by programming them on 16950s showed that their effects are
not too bad if the fifo size and trigger level are reasonably large
(16 is much better than 8).
an UART interface could get stuck when a new interrupt condition
arose while servicing a previous interrupt. Since an interrupt was
already pending, no new interrupt would be triggered.
Avoid infinite recursion by flushing the Rx FIFO and marking an
overrun condition when we could not move the data from the Rx
FIFO to the receive buffer in toto. Failure to flush the Rx FIFO
would leave the Rx ready condition pending.
Note that the SAB 82532 already did this due to the nature of the
chip.
from the sparc64 subtree, which breaks building non-sparc64 platforms
in the event the sparc64 subtree does not exist.
The problem is specific to the module, because non-module builds are
affected by the presence or absence of "device ebus" in the kernel
configuration.
PR: kern/56869
precisely where locking would be needed before adding it, but it
seems uart(4) draws slightly too much attention to have it without
locking for too long.
The lock added is a spinlock that protects access to the underlying
hardware. As a first and obvious stab at this, each method of the
hardware interface grabs the lock. Roughly speaking this serializes
the methods. Exceptions are the probe, attach and detach methods.
o change timeout to MPSAFE callout
o restructure rule deletion to deal with locking requirements
o replace static buffer used for ipfw control operations with malloc'd storage
Sponsored by: FreeBSD Foundation
o change time to MPSAFE callout
o make debug printfs conditional on DUMMYNET_DEBUG and runtime controllable
by net.inet.ip.dummynet.debug
o make boot-time printf dependent on bootverbose
Sponsored by: FreeBSD Foundation
o replace magic constants with #defines (e.g. ETHER_ADDR_LEN)
o move mib variables to net.link.ether.bridge with backwards compatible
entries for well-known items maintained under BURN_BRIDGES
o revamp debugging support so it is conditioanlly compiled with BRIDGE_DEBUG
(on currently) and runtime controlled by net.link.ether.bridge.debug
o change timeout to MPSAFE callout
o optimize lookup for common case of two interfaces
o optimize forwarding path to take IFNET lock only when needed
o make boot-time printf dependent on bootverbose
o sundry style changes (ANSI decls, extraneous spaces, etc.)
Sponsored by: FreeBSD Foundation
a problem for command responses since we rarely ever filled the queue.
However, adapter-initiated commands have a much smaller queue and could
tickle this bug. It's possible that this might fix the recently reported
problems with the aac-2120s, though I haven't been able to reproduce the
problem locally.
MFC-After: 1 day
and some of their bits (i.e., fifo trigger levels, frequency multipliers
and divisors, and bits to select the registers for these). This
attempts to completely describe the 16950's complicated register selects
for 16950-specific registers only.
the description of the data latch registers (they were described as
readonly).
Added some better and worse aliases for standard registers, mostly taken
from the 16950 data sheet. Define deprecated aliases in terms of the
preferred one.
Don't define com_efr in terms of com_fifo. It is unrelated (in a
different bank).
Merged comments to match (put them at the right of the #defines instead
of duplicating them).
Sorted the resulting sections on UART type and register bank. Added a
comment for each bank.
to ns16550.h. The organization of these files was sort of backwards.
The bits in the registers have no driver or bus dependencies but they
but the offsets of the registers in bus space are very bus-dependent.
However, it does no harm to keep the definitions of the register offsets
in ns16550.h provided they are thought of as internal ns*50 offsets.
that has been recorded earlier and overwrite it again later by
reading it directly from the EEPROM again.
Read the MAC address from the PAR0/PAR1 registers instead, which
are autoloaded on reboot.
Tested on AN985, AN983B. According to the datasheets, it should
also work for the AL981 (I don't have such a chip on a card at home)
PR: 52988
Submitted by: Andrew Gordon <arg-bsd@arg.me.uk>
MFC after: 2 weeks
calculate smoothed signal quality data for each node.
o add a 16-deep history buffer to each driver-private node storage that
holds rssi and antenna info for received frames
o override the default per-node "get rssi" method to return an average
rssi value based on samples collected over the last second
o enable beacon reception so even idle systems maintain a running history
of signal quality
This data may also be useful for improving the rate control algorithm.
Based on work by Tom Marshall <tommy@home.tig-grr.com> for MADWIFI.
things than record a single value.
o add a per-node method for returning the "current RSSI" for a node
o create a default method that returns ni_rssi which is the rssi for
the last received frame
o use the per-node "get rssi" method to return data for the RID's
submitted by wicontrol, et. al.
Loosely based on work by Tom Marshall <tommy@home.tig-grr.com> for MADWIFI.
to the 802.11 layer if they are at least IEEE80211_MIN_LEN
o mask off interrupt status bits that we don't care about so we don't do
the wrong thing; this fixes a problem where the beacon miss interrupt status
bit is delivered together with other status bits when operating in monitor
mode (we would post a beacon miss swi and then do the wrong thing)
In particular, let drivers send up control frames so we can dispatch
them to bpf in monitor mode.
This is the first (small) step to adding more functionality such as
power save mode.
was added to the fast path to support the COM_IIR_RXRDYBUG() case even
when that case is not configured. This increased the relative overhead
of sio input by almost 25% in the worst case and by 2-3% in the usual
case (usually only about 0.2% absolute per port at 115200 bps). The
quick fix is to significantly pessimize only the COM_IIR_RXRDYBUG()
case.
safe since the 802.11 layer does the right thing for 11a operation)
o select short preamble operation based on the negotiated capabilities; not
just the local state/capability
o fillin the duration field in the 802.11 header as appropriate
o remove detection of 11g support; no longer needed
Obtained from: MADWIFI (with modifications)
capabilities for outbound management frames. But beware of sending
this when operating on 5GHz channels; some 11a AP's reject association
requests if this bit is set in the capabilities listed.
Obtained from: MADWIFI (with modifications)
special signal-delivery protections for setugid processes. In the
event that a system is relying on "unusual" signal delivery to
processes that change their credentials, this can be used to work
around application problems.
Also, add SIGALRM to the set of signals permitted to be delivered to
setugid processes by unprivileged subjects.
Reported by: Joe Greco <jgreco@ns.sol.net>
we're on a 32-bit/64-bit bus or not. Use this to decide if we should
set the PCI dual-address cycle enable bit in the C+ command register.
(Enabling DAC on a 32-bit bus seems to do bad things.)
Also, initialize the C+ command register early in the re_init() routine.
The documentation says this register should be configured first.
in6_pcbpurgeif0(LIST_FIRST(udbinfo.listhead), ifp);
in6_pcbpurgeif0(LIST_FIRST(ripcbinfo.listhead), ifp);
The problem here is that udbinfo.listhead and ripcbinfo.listhead are
not initialized during the device probe/attach phase of the kernel
boot process. So if, for example, a network driver calls ether_ifattach()
in its foo_attach() routine and then decides that something is wrong
and calls ether_ifdetach() to reverse the process, we will panic trying
to dereference the uninitialized list head pointers. (Though the
same sequence of events performed after the kernel has come up works
file, i.e. doing kldload if_foo from multiuser.)
Change this to:
if (udbinfo.listhead != NULL)
in6_pcbpurgeif0(LIST_FIRST(udbinfo.listhead), ifp);
if (ripcbinfo.listhead != NULL)
in6_pcbpurgeif0(LIST_FIRST(ripcbinfo.listhead), ifp);
to avoid the NULL pointer dereferences.
pmap_remove_pte(), passed NULL instead of the required page table
page to pmap_unuse_pt(). Compute the necessary page table page
in pmap_remove_pte(). Also, remove some unreachable code from
pmap_remove_pte().
count in _vm_object_allocate(). (Access to the generation count is
governed by the vm object's lock.) Note: the introduction of the
atomic increment in revision 1.238 appears to be an accident. The
purpose of that commit was to fix an Alpha-specific bug in UMA's
debugging code.
We simply use the detected FIFO size to determine whether we have
a post 16550 UART or not. The support lacks proper serialization of
hardware access for now.
pmap_extract_and_hold(). Note, however, that GIANT_REQUIRED should not be
removed until all platforms fully implement the "prot" parameter to
pmap_extract_and_hold().
Reviewed by: tegge
fixes a longstanding issue WRT resetting the chip after startup- it
would fail if we were connected as an F-port to a switch. If we
were connected as an F-port, we got assigned a hard loop ID of 255,
which is really a bogus loop id. Then when we turned around to
reset ourselves, the firmware would reject the ICB_INIT request
because the loop id was bogus. *sputter*
Minor fixlet from somebody in NetBSD with too much time on their
hands (dma -> DMA).
the "compatible" property too in the ns8250 case. This gets the serial
console to work on Blade 100s, where the device name is just "serial".
Reviewed by: marcel
Second (PPS) timing interface. The support is non-optional and by
default uses the DCD line signal as the pulse input. A compile-time
option (UART_PPS_ON_CTS) can be used to have uart(4) use the CTS line
signal.
Include <sys/timepps.h> in uart_bus.h to avoid having to add the
inclusion of that header in all source files.
Reviewed by: phk
This commit puts the relevant code snippets under #ifdef GONE_IN_5
(rather than #ifndef BURN_BRIDGES) thereby disabling the code now.
The code wil be entirely removed before 5.2 unless we find reasons
why this would be a bad idea.
Approach suggested by: imp
seems to be necessary for the 8139C+ under certain circumstances, and
doesn't appear to hurt the other chips. (In the failure case, the
packet would be sent through the TX DMA ring but not get echoed
back. I suspect this has something to do with the link state changing
unexpectedly.)
autoload and then copying the contends of the station address
registers. For some reason, reading the EEPROM on the 8169S doesn't
work right. This gets around the problem, and allows us to read
the station address correctly on the 8169S.
- Insert a delay after initiating packet transmition in re_diag() to
allow lots of time for the frame to echo back to the host, and wait
for both the 'RX complete' and 'timeout expired' bits in the ISR
register to be set.
- Deal more intelligently with the fact that the frame length
field in the RX descriptor is a different width on the 8139C+
than it is on the 8169/8169S/8110S
- For the 8169, you have to set bit 17 in the TX config register
to enter digital loopback mode, but for the 8139C+, you have to
set both bits 17 and 18. Take this into account so that re_diag()
works properly for both types of chips.