specific attribute name. It will have the same semantics as the
older vop_getextattr() "retrieve the names" hack, returning
a buffer with ASCII nul-seperated names.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
to sort out disk-io from file-io in the vm/buffer/filesystem space.
The intent is to sort VOP_STRATEGY calls into those which operate
on "real" vnodes and those which operate on VCHR vnodes. For
the latter kind, the call will be changed to VOP_SPECSTRATEGY,
possibly conditionally for those places where dual-use happens.
Add a default VOP_SPECSTRATEGY method which will call the normal
VOP_STRATEGY. First time it is called it will print debugging
information. This will only happen if a normal vnode is passed
to VOP_SPECSTRATEGY by mistake.
Add a real VOP_SPECSTRATEGY in specfs, which does what VOP_STRATEGY
does on a VCHR vnode today.
Add a new VOP_STRATEGY method in specfs to catch instances where
the conversion to VOP_SPECSTRATEGY has not yet happened. Handle
the request just like we always did, but first time called print
debugging information.
Apart up to two instances of console messages per boot, this amounts
to a glorified no-op commit.
If you get any of the messages on your console I would very much
like a copy of them mailed to phk@freebsd.org
wasn't doing. Rather than just lock and unlock the vnode around the call
to VOP_FSYNC(), implement rwatson's suggestion to lock the file vnode
in kern_link() before calling VOP_LINK(), since the other filesystems
also locked the file vnode right away in their link methods. Remove the
locking and and unlocking from the leaf filesystem link methods.
Reviewed by: rwatson, bde (except for the unionfs_link() changes)
Together these two implement a simple transcation style grouping for
modifications of extended attributes on a vnode.
VOP_CLOSEEXTATTR() takes a boolean "commit" argument, which determines
if the aggregate changes are attempted written or not. A commit will
fail if any of the VOP_SETEXTATTR() calls since the VOP_OPENEXTATTR()
have failed to meet their objective or if the flush to disk fails.
The default operations for these two VOP's is to return EOPNOTSUPP.
This API may still be subject to change.
Sponsored by: DARPA & NAI Labs
- Use the new VI asserts in place of the old mtx_assert checks.
- Add the VI asserts to the automated lock checking in the VOP calls. The
interlock should not be held across vops with a few exceptions.
- Add the vop_(un)lock_{pre,post} functions to assert that interlock is held
when LK_INTERLOCK is set.
kernel access control. The MAC framework permits loadable kernel
modules to link to the kernel at compile-time, boot-time, or run-time,
and augment the system security policy. This commit includes the
initial kernel implementation, although the interface with the userland
components of the operating system is still under work, and not all
kernel subsystems are supported. Later in this commit sequence,
documentation of which kernel subsystems will not work correctly with
a kernel compiled with MAC support will be added.
Introduce two node vnode operations required to support MAC. First,
VOP_REFRESHLABEL(), which will be invoked by callers requiring that
vp->v_label be sufficiently "fresh" for access control purposes.
Second, VOP_SETLABEL(), which be invoked by callers requiring that
the passed label contents be updated. The file system is responsible
for updating v_label if appropriate in coordination with the MAC
framework, as well as committing to disk. File systems that are
not MAC-aware need not implement these VOPs, as the MAC framework
will default to maintaining a single label for all vnodes based
on the label on the file system mount point.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
- Switch to the new vop_strategy_pre for lock validation.
VOP_STRATEGY requires only that the buf is locked UNLESS the block numbers need
to be translated. There may be other reasons, but as long as the underlying
layer uses a VOP to perform the operations they will be caught later.
the bio and buffer structures to have daddr64_t bio_pblkno,
b_blkno, and b_lblkno fields which allows access to disks
larger than a Terabyte in size. This change also requires
that the VOP_BMAP vnode operation accept and return daddr64_t
blocks. This delta should not affect system operation in
any way. It merely sets up the necessary interfaces to allow
the development of disk drivers that work with these larger
disk block addresses. It also allows for the development of
UFS2 which will use 64-bit block addresses.
should require a shared lock, rather than an exclusive lock, which can
improve performance. No actual code change here, since a number of
VFS locking fixes are in the works.
o Modify the system call syntax for extattr_{get,set}_{fd,file}() so
as not to use the scatter gather API (which appeared not to be used
by any consumers, and be less portable), rather, accepts 'data'
and 'nbytes' in the style of other simple read/write interfaces.
This changes the API and ABI.
o Modify system call semantics so that extattr_get_{fd,file}() return
a size_t. When performing a read, the number of bytes read will
be returned, unless the data pointer is NULL, in which case the
number of bytes of data are returned. This changes the API only.
o Modify the VOP_GETEXTATTR() vnode operation to accept a *size_t
argument so as to return the size, if desirable. If set to NULL,
the size will not be returned.
o Update various filesystems (pseodofs, ufs) to DTRT.
These changes should make extended attributes more useful and more
portable. More commits to rebuild the system call files, as well
as update userland utilities to follow.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
VOP_BWRITE() was a hack which made it possible for NFS client
side to use struct buf with non-bio backing.
This patch takes a more general approach and adds a bp->b_op
vector where more methods can be added.
The success of this patch depends on bp->b_op being initialized
all relevant places for some value of "relevant" which is not
easy to determine. For now the buffers have grown a b_magic
element which will make such issues a tiny bit easier to debug.
introduce a new argument, "namespace", rather than relying on a first-
character namespace indicator. This is in line with more recent
thinking on EA interfaces on various mailing lists, including the
posix1e, Linux acl-devel, and trustedbsd-discuss forums. Two namespaces
are defined by default, EXTATTR_NAMESPACE_SYSTEM and
EXTATTR_NAMESPACE_USER, where the primary distinction lies in the
access control model: user EAs are accessible based on the normal
MAC and DAC file/directory protections, and system attributes are
limited to kernel-originated or appropriately privileged userland
requests.
o These API changes occur at several levels: the namespace argument is
introduced in the extattr_{get,set}_file() system call interfaces,
at the vnode operation level in the vop_{get,set}extattr() interfaces,
and in the UFS extended attribute implementation. Changes are also
introduced in the VFS extattrctl() interface (system call, VFS,
and UFS implementation), where the arguments are modified to include
a namespace field, as well as modified to advoid direct access to
userspace variables from below the VFS layer (in the style of recent
changes to mount by adrian@FreeBSD.org). This required some cleanup
and bug fixing regarding VFS locks and the VFS interface, as a vnode
pointer may now be optionally submitted to the VFS_EXTATTRCTL()
call. Updated documentation for the VFS interface will be committed
shortly.
o In the near future, the auto-starting feature will be updated to
search two sub-directories to the ".attribute" directory in appropriate
file systems: "user" and "system" to locate attributes intended for
those namespaces, as the single filename is no longer sufficient
to indicate what namespace the attribute is intended for. Until this
is committed, all attributes auto-started by UFS will be placed in
the EXTATTR_NAMESPACE_SYSTEM namespace.
o The default POSIX.1e attribute names for ACLs and Capabilities have
been updated to no longer include the '$' in their filename. As such,
if you're using these features, you'll need to rename the attribute
backing files to the same names without '$' symbols in front.
o Note that these changes will require changes in userland, which will
be committed shortly. These include modifications to the extended
attribute utilities, as well as to libutil for new namespace
string conversion routines. Once the matching userland changes are
committed, a buildworld is recommended to update all the necessary
include files and verify that the kernel and userland environments
are in sync. Note: If you do not use extended attributes (most people
won't), upgrading is not imperative although since the system call
API has changed, the new userland extended attribute code will no longer
compile with old include files.
o Couple of minor cleanups while I'm there: make more code compilation
conditional on FFS_EXTATTR, which should recover a bit of space on
kernels running without EA's, as well as update copyright dates.
Obtained from: TrustedBSD Project
structure rather than assuming that the device vnode would reside
in the FFS filesystem (which is obviously a broken assumption with
the device filesystem).
must be held when retrieving ACLs from vnodes. This is required for
EA-based UFS ACL implementations.
o Update vacl_get_acl() so that it does appropriate vnode locking.
o Remove static from M_ACL malloc define so that it is accessible for
consumers of ACLs other than in kern_acl.c
Obtained from: TrustedBSD Project
allow for that.
o Remember to call NDFREE() if exiting as a result of a failed
vn_start_write() when snapshotting.
Reviewed by: mckusick
Obtained from: TrustedBSD Project
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
* lockstatus() and VOP_ISLOCKED() gets a new process argument and a new
return value: LK_EXCLOTHER, when the lock is held exclusively by another
process.
* The ASSERT_VOP_(UN)LOCKED family is extended to use what this gives them
* Extend the vnode_if.src format to allow more exact specification than
locked/unlocked.
This commit should not do any semantic changes unless you are using
DEBUG_VFS_LOCKS.
Discussed with: grog, mch, peter, phk
Reviewed by: peter
Note: Previous commit to these files (except coda_vnops and devfs_vnops)
that claimed to remove WILLRELE from VOP_RENAME actually removed it from
VOP_MKNOD.
device drivers about sectors no longer in use.
Device-drivers receive the call through d_strategy, if they have
D_CANFREE in d_flags.
This allows flash based devices to erase the sectors and avoid
pointlessly carrying them around in compactions.
Reviewed by: Kirk Mckusick, bde
Sponsored by: M-Systems (www.m-sys.com)
as the value in b_vp is often not really what you want.
(and needs to be frobbed). more cleanups will follow this.
Reviewed by: Bruce Evans <bde@freebsd.org>
---------
Make callers of namei() responsible for releasing references or locks
instead of having the underlying filesystems do it. This eliminates
redundancy in all terminal filesystems and makes it possible for stacked
transport layers such as umapfs or nullfs to operate correctly.
Quality testing was done with testvn, and lat_fs from the lmbench suite.
Some NFS client testing courtesy of Patrik Kudo.
vop_mknod and vop_symlink still release the returned vpp. vop_rename
still releases 4 vnode arguments before it returns. These remaining cases
will be corrected in the next set of patches.
---------
Submitted by: Michael Hancock <michaelh@cet.co.jp>
1. Remove VOP_UPDATE, it is (also) an UFS/{FFS,LFS,EXT2FS,MFS}
intereface function, and now lives in the ufsmount structure.
2. Remove VOP_SEEK, it was unused.
3. Add mode default vops:
VOP_ADVLOCK vop_einval
VOP_CLOSE vop_null
VOP_FSYNC vop_null
VOP_IOCTL vop_enotty
VOP_MMAP vop_einval
VOP_OPEN vop_null
VOP_PATHCONF vop_einval
VOP_READLINK vop_einval
VOP_REALLOCBLKS vop_eopnotsupp
And remove identical functionality from filesystems
4. Add vop_stdpathconf, which returns the canonical stuff. Use
it in the filesystems. (XXX: It's probably wrong that specfs
and fifofs sets this vop, shouldn't it come from the "host"
filesystem, for instance ufs or cd9660 ?)
5. Try to make system wide VOP functions have vop_* names.
6. Initialize the um_* vectors in LFS.
(Recompile your LKMS!!!)
1. Add new file "sys/kern/vfs_default.c" where default actions for
VOPs go. Implement proper defaults for ABORTOP, BWRITE, LEASE,
POLL, REVOKE and STRATEGY. Various stuff spread over the entire
tree belongs here.
2. Change VOP_BLKATOFF to a normal function in cd9660.
3. Kill VOP_BLKATOFF, VOP_TRUNCATE, VOP_VFREE, VOP_VALLOC. These
are private interface functions between UFS and the underlying
storage manager layer (FFS/LFS/MFS/EXT2FS). The functions now
live in struct ufsmount instead.
4. Remove a kludge of VOP_ functions in all filesystems, that did
nothing but obscure the simplicity and break the expandability.
If a filesystem doesn't implement VOP_FOO, it shouldn't have an
entry for it in its vnops table. The system will try to DTRT
if it is not implemented. There are still some cruft left, but
the bulk of it is done.
5. Fix another VCALL in vfs_cache.c (thanks Bruce!)