Restructure pmap_enter() to prevent the loss of a page modified (PG_M) bit
in a race between processors. (This restructuring assumes the newly atomic
pte_load_store() for correct operation.)
Reviewed by: tegge@
PR: i386/61852
pmap_copy(). This entails additional locking in pmap_copy() and the
addition of a "flags" parameter to the page table page allocator for
specifying whether it may sleep when memory is unavailable. (Already,
pmap_copy() checks the availability of memory, aborting if it is scarce.
In theory, another CPU could, however, allocate memory between
pmap_copy()'s check and the call to the page table page allocator,
causing the current thread to release its locks and sleep. This change
makes this scenario impossible.)
Reviewed by: tegge@
not sure yet about 5.x... MFC if needed.
Also fixes small problems with examining some registers and
some specific gdb transfer problems.
As the patch says:
This is not a pretty patch and only meant as a temporary
fix until a better solution is committed.
PR: i386/71715
Submitted by: Stephan Uphoff <ups@tree.com>
MFC after: 1 week
value was only enough for 8GB of RAM, the new value can do 16GB. This still
isn't optimal since it doesn't scale. Fixing this for amd64 looks to be
fairly easy, but for i386 will be quite difficult.
Reviewed by: peter
FULL_PREEMPTION is defined. Add a runtime warning to ULE if PREEMPTION is
enabled (code inspired by the PREEMPTION warning in kern_switch.c). This
is a possible MT5 candidate.
these two reasons:
1. On ia64 a function pointer does not hold the address of the first
instruction of a functions implementation. It holds the address
of a function descriptor. Hence the user(), btrap(), eintr() and
bintr() prototypes are wrong for getting the actual code address.
2. The logic forces interrupt, trap and exception entry points to
be layed-out contiguously. This can not be achieved on ia64 and is
generally just bad programming.
The MCOUNT_FROMPC_USER macro is used to set the frompc argument to
some kernel address which represents any frompc that falls outside
the kernel text range. The macro can expand to ~0U to bail out in
that case.
The MCOUNT_FROMPC_INTR macro is used to set the frompc argument to
some kernel address to represent a call to a trap or interrupt
handler. This to avoid that the trap or interrupt handler appear to
be called from everywhere in the call graph. The macro can expand
to ~0U to prevent adjusting frompc. Note that the argument is selfpc,
not frompc.
This commit defines the macros on all architectures equivalently to
the original code in sys/libkern/mcount.c. People can take it from
here...
Compile-tested on: alpha, amd64, i386, ia64 and sparc64
Boot-tested on: i386
The C code assumes that the carry bit is always kept from the previous
operation. However, the pointer indexing requires another add operation.
Thus, the carry bit from the first operation is tromped over by the
"addl" operation that ends up following it, so the "adcl" that follows
that has no effect because the carry bit is cleared before it.
The result is checksum failure on received packets.
The larger issue is that there isn't any other way of preventing the compiler
inserting arbitrary instructions between different __asm statements (and
that the commit message in revision 1.13 of in_cksum.h is wrong on
this point). From
http://developer.apple.com/documentation/DeveloperTools/gcc-3.3/gcc/Extended-Asm.html
---8<---8<---8<---
You can't expect a sequence of volatile asm instructions to remain
perfectly consecutive. If you want consecutive output, use a single
asm. Also, GCC will perform some optimizations across a volatile
asm instruction; GCC does not "forget everything" when it encounters
a volatile asm instruction the way some other compilers do.
---8<---8<---8<---
Also, this change also makes the ASM code much easier to read.
PR: 69257
Submitted by: Mike Bristow <mike@urgle.com>, Qing Li <qing.li@bluecoat.com>
logical CPUs on a system to be used as a dedicated watchdog to cause a
drop to the debugger and/or generate an NMI to the boot processor if
the kernel ceases to respond. A sysctl enables the watchdog running
out of the processor's idle thread; a callout is launched to reset a
timer in the watchdog. If the callout fails to reset the timer for ten
seconds, the watchdog will fire. The sysctl allows you to select which
CPU will run the watchdog.
A sample "debug.leak_schedlock" is included, which causes a sysctl to
spin holding sched_lock in order to trigger the watchdog. On my Xeons,
the watchdog is able to detect this failure mode and break into the
debugger, which cannot otherwise be done without an NMI button.
This option does not currently work with sched_ule due to ule's push
notion of scheduling, similar to machdep.hlt_logical_cpus failing to
work with that scheduler.
On face value, this might seem somewhat inefficient, but there are a
lot of dual-processor Xeons with HTT around, so using one as a watchdog
for testing is not as inefficient as one might fear.
being defined, define and use a new MD macro, cpu_spinwait(). It only
expands to something on i386 and amd64, so the compiled code should be
identical.
Name of the macro found by: jhb
Reviewed by: jhb
pic_eoi_source() into one call. This halves the number of spinlock operations
and indirect function calls in the normal case of handling a normal (ithread)
interrupt. Optimize the atpic and ioapic drivers to use inlines where
appropriate in supporting the intr_execute_handlers() change.
This knocks 900ns, or roughly 1350 cycles, off of the time spent servicing an
interrupt in the common case on my 1.5GHz P4 uniprocessor system. SMP systems
likely won't see as much of a gain due to the ioapic being more efficient than
the atpic. I'll investigate porting this to amd64 soon.
Reviewed by: jhb
their own directory and module, leaving the MD parts in the MD
area (the MD parts _are_ part of the modules). /dev/mem and /dev/io
are now loadable modules, thus taking us one step further towards
a kernel created entirely out of modules. Of course, there is nothing
preventing the kernel from having these statically compiled.
dereference curthread. It is called only from critical_{enter,exit}(),
which already dereferences curthread. This doesn't seem to affect SMP
performance in my benchmarks, but improves MySQL transaction throughput
by about 1% on UP on my Xeon.
Head nodding: jhb, bmilekic
Most of the changes are a direct result of adding thread awareness.
Typically, DDB_REGS is gone. All registers are taken from the
trapframe and backtraces use the PCB based contexts. DDB_REGS was
defined to be a trapframe on all platforms anyway.
Thread awareness introduces the following new commands:
thread X switch to thread X (where X is the TID),
show threads list all threads.
The backtrace code has been made more flexible so that one can
create backtraces for any thread by giving the thread ID as an
argument to trace.
With this change, ia64 has support for breakpoints.
o s/ddb_on_nmi/kdb_on_nmi/g
o Rename sysctl machdep.ddb_on_nmi to machdep.kdb_on_nmi
o Make debugging support conditional upon KDB instead of DDB.
o Call kdb_reenter() when kdb_active is non-zero.
o Call kdb_trap() to enter the debugger when not already active.
o Update comments accordingly.
o Remove misplaced prototype of kdb_trap().
a PCB from a trapframe for purposes of unwinding the stack. The PCB
is used as the thread context and all but the thread that entered the
debugger has a valid PCB.
This function can also be used to create a context for the threads
running on the CPUs that have been stopped when the debugger got
entered. This however is not done at the time of this commit.
in which multiple (presumably different) debugger backends can be
configured and which provides basic services to those backends.
Besides providing services to backends, it also serves as the single
point of contact for any and all code that wants to make use of the
debugger functions, such as entering the debugger or handling of the
alternate break sequence. For this purpose, the frontend has been
made non-optional.
All debugger requests are forwarded or handed over to the current
backend, if applicable. Selection of the current backend is done by
the debug.kdb.current sysctl. A list of configured backends can be
obtained with the debug.kdb.available sysctl. One can enter the
debugger by writing to the debug.kdb.enter sysctl.
backend improves over the old GDB support in the following ways:
o Unified implementation with minimal MD code.
o A simple interface for devices to register themselves as debug
ports, ala consoles.
o Compression by using run-length encoding.
o Implements GDB threading support.
than as one-off hacks in various other parts of the kernel:
- Add a function maybe_preempt() that is called from sched_add() to
determine if a thread about to be added to a run queue should be
preempted to directly. If it is not safe to preempt or if the new
thread does not have a high enough priority, then the function returns
false and sched_add() adds the thread to the run queue. If the thread
should be preempted to but the current thread is in a nested critical
section, then the flag TDF_OWEPREEMPT is set and the thread is added
to the run queue. Otherwise, mi_switch() is called immediately and the
thread is never added to the run queue since it is switch to directly.
When exiting an outermost critical section, if TDF_OWEPREEMPT is set,
then clear it and call mi_switch() to perform the deferred preemption.
- Remove explicit preemption from ithread_schedule() as calling
setrunqueue() now does all the correct work. This also removes the
do_switch argument from ithread_schedule().
- Do not use the manual preemption code in mtx_unlock if the architecture
supports native preemption.
- Don't call mi_switch() in a loop during shutdown to give ithreads a
chance to run if the architecture supports native preemption since
the ithreads will just preempt DELAY().
- Don't call mi_switch() from the page zeroing idle thread for
architectures that support native preemption as it is unnecessary.
- Native preemption is enabled on the same archs that supported ithread
preemption, namely alpha, i386, and amd64.
This change should largely be a NOP for the default case as committed
except that we will do fewer context switches in a few cases and will
avoid the run queues completely when preempting.
Approved by: scottl (with his re@ hat)
pv entries per 1GB of user virtual memory. (eg: if we had 1GB file was
mmaped into 30 processes, that would theoretically reduce the KVA demand by
30MB for pv entries. In reality though, we limit pv entries so we don't
have that many at once.)
We used to store the vm_page_t for the page table page. But we recently
had the pa of the ptp, or can calculate it fairly quickly. If we wanted
to avoid the shift/mask operation in pmap_pde(), we could recover the
pa but that means we have to store it for a while.
This does not measurably change performance.
Suggested by: alc
Tested by: alc
- Allow ioapic_set_{nmi,smi,extint}() to be called multiple times on the
same pin so long as the pin's mode is the same as the mode being
requested.
- Add a notion of bus type for the interrupt associated with interrupt pin.
This is needed so that we can force all EISA interrupts to be active high
in the forthcoming ioapic_config_intr().
- Fix a bug for EISA systems that didn't remap IRQs. This would have broken
EISA systems that tried to disable mixed mode for IRQ 0.
present and thus that the PnPBIOS probe should be skipped instead of
having ACPI zero out the PnPBIOStable pointer.
- Make the PnPBIOStable pointer static to i386/i386/bios.c now that that is
the only place it is used.
high resolution kernel profiling (options GUPROF. "U" in GUPROF stands
for microseconds resolution, but the resolution is now smaller than 1
nanosecond on multi-GHz machines and the accuracy is heading towards
1 nanosecond too). Arches that support GUPROF must now provide certain
macros for the calibration. GUPROF is now only supported for i386's,
so the absence of the new macros for other arches doesn't break anything
that wasn't already broken. amd64's have uncommitted support for
GUPROF, and sparc64's have support that seems to be complete except
here (there was an #error for non-i386 cases; now there are undefined
macros).
Changed the asms a little:
- declare them as __volatile. They must not be moved, and exporting a
label across asms is technically incorrect, so try harder to stop gcc
moving them.
- don't put the non-clobbered register "bx" in the clobber list. The
clobber lists are still more conservative than necessary.
- drop the non-support for gcc-1. It just gave a better error message,
and this is not useful since compiling with gcc-1 would cause thousands
of worse error messages.
- drop the support for aout.
to <sys/gmon.h>. Cleaned them up a little by not attempting to ifdef
for incomplete and out of date support for GUPROF in userland, as in
the sparc64 version.
- Require the APIC enumerators to explicitly enable mixed mode by calling
ioapic_enable_mixed_mode(). Calling this function tells the apic driver
that the PC-AT 8259A PICs are present and routable through the first I/O
APIC via an ExtINT pin. The mptable enumerator always calls this
function for now. The MADT enumerator only enables mixed mode if the
PC-AT compatability flag is set in the MADT header.
- Allow mixed mode to be enabled or disabled via a 'hw.apic.mixed_mode'
tunable. By default this tunable is set to 1 (true). The kernel option
NO_MIXED_MODE changes the default to 0 to preserve existing behavior, but
adding 'hw.apic.mixed_mode=0' to loader.conf achieves the same effect.
- Only use mixed mode to route IRQ 0 if it is both enabled by the APIC
enumerator and activated by the loader tunable. Note that both
conditions must be true, so if the APIC enumerator does not enable mixed
mode, then you can't set the tunable to try to override the enumerator.
individual asm versions. The global lock is shared between the BIOS and
OS and thus cannot use our mutexes. It is defined in section 5.2.9.1 of
the ACPI specification.
Reviewed by: marcel, bde, jhb
host-PCI bridge device and find a valid $PIR.
- Make pci_pir_parse() private to pci_pir.c and have pir0's attach routine
call it instead of having legacy_pcib_attach() call it.
- Implement suspend/resume support for the $PIR by giving pir0 a resume
method that calls the BIOS to reroute each link that was already routed
before the machine was suspended.
- Dump the state of the routed flag in the links display code.
- If a link's IRQ is set by a tunable, then force that link to be re-routed
the first time it is used.
- Move the 'Found $PIR' message under bootverbose as the pir0 description
line lists the number of entries already. The pir0 line also only shows
up if we are actually using the $PIR which is a bonus.
- Use BUS_CONFIG_INTR() to ensure that any IRQs used by a PCI link are
set to level/low trigger/polarity.