includes the latter, but also declares variables which are defined
in kern/subr_param.c).
Change som VM parameters from quad_t to unsigned long. They refer to
quantities (size limits for text, heap and stack segments) which must
necessarily be smaller than the size of the address space, so long is
adequate on all platforms.
MFC after: 1 week
number of entries into bucket_zone_lookup(), which helps make more
clear the logic of consumers of bucket zones.
Annotate the behavior of bucket_init() with a comment indicating
how the various data structures, including the bucket lookup tables,
are initialized.
swapoff: failed to locate %d swap blocks
The race occurred because putpages() can block between the time it
allocates swap space and the time it updates the swap metadata to
associate that space with a vm_object, so swapoff() would complain
about the temporary inconsistency. I hoped to fix this by making
swp_pager_getswapspace() and swp_pager_meta_build() a single atomic
operation, but that proved to be inconvenient. With this change,
swapoff() simply doesn't attempt to be so clever about detecting when
all the pageout activity to the target device should have drained.
because this call is only needed to wake threads that slept when they
discovered a dead object connected to a vnode. To eliminate unnecessary
calls to wakeup() by vnode_pager_dealloc(), introduce a new flag,
OBJ_DISCONNECTWNT.
Reviewed by: tegge@
thread is created rather than adjusting the priority in the main
function. (kthread_create() should probably take the initial priority
as an argument.)
- Only yield the CPU in the !PREEMPTION case if there are any other
runnable threads. Yielding when there isn't anything else better to do
just wastes time in pointless context switches (albeit while the system
is idle.)
In order to avoid livelock, swapoff() skips over objects with a
nonzero pip count and makes another pass if necessary. Since it is
impossible to know which objects we care about, it would choose an
arbitrary object with a nonzero pip count and wait for it before
making another pass, the theory being that this object would finish
paging about as quickly as the ones we care about. Unfortunately,
we may have slept since we acquired a reference to this object.
Hack around this problem by tsleep()ing on the pointer anyway, but
timeout after a fixed interval. More elegant solutions are possible,
but the ones I considered unnecessarily complicate this rare case.
Also, kill some nits that seem to have crept into the swapoff() code
in the last 75 revisions or so:
- Don't pass both sp and sp->sw_used to swap_pager_swapoff(), since
the latter can be derived from the former.
- Replace swp_pager_find_dev() with something simpler. There's no
need to iterate over the entire list of swap devices just to determine
if a given block is assigned to the one we're interested in.
- Expand the scope of the swhash_mtx in a couple of places so that it
isn't released and reacquired once for every hash bucket.
- Don't drop the swhash_mtx while holding a reference to an object.
We need to lock the object first. Unfortunately, doing so would
violate the established lock order, so use VM_OBJECT_TRYLOCK() and
try again on a subsequent pass if the object is already locked.
- Refactor swp_pager_force_pagein() and swap_pager_swapoff() a bit.
need for most calls to vm_page_busy(). Specifically, most calls to
vm_page_busy() occur immediately prior to a call to vm_page_remove().
In such cases, the containing vm object is locked across both calls.
Consequently, the setting of the vm page's PG_BUSY flag is not even
visible to other threads that are following the synchronization
protocol.
This change (1) eliminates the calls to vm_page_busy() that
immediately precede a call to vm_page_remove() or functions, such as
vm_page_free() and vm_page_rename(), that call it and (2) relaxes the
requirement in vm_page_remove() that the vm page's PG_BUSY flag is
set. Now, the vm page's PG_BUSY flag is set only when the vm object
lock is released while the vm page is still in transition. Typically,
this is when it is undergoing I/O.
IF INVARIANTS is defined, and in the rare case that we have
allocated some objects from the slab and at least one initializer
on at least one of those objects failed, and we need to fail the
allocation and push the uninitialized items back into the slab
caches -- in that scenario, we would fail to [re]set the
bucket cache's ub_bucket item references to NULL, which would
eventually trigger a KASSERT.
We keep si_bsize_phys around for now as that is the simplest way to pull
the number out of disk device drivers in devfs_open(). The correct solution
would be to do an ioctl(DIOCGSECTORSIZE), but the point is probably mooth
when filesystems sit on GEOM, so don't bother for now.
Extend it with a strategy method.
Add bufstrategy() which do the usual VOP_SPECSTRATEGY/VOP_STRATEGY
song and dance.
Rename ibwrite to bufwrite().
Move the two NFS buf_ops to more sensible places, add bufstrategy
to them.
Add inlines for bwrite() and bstrategy() which calls through
buf->b_bufobj->b_ops->b_{write,strategy}().
Replace almost all VOP_STRATEGY()/VOP_SPECSTRATEGY() calls with bstrategy().
vm_page_sleep_if_busy(). (The motivation being to transition
synchronization of the vm_page's PG_BUSY flag from the global page queues
lock to the per-object lock.)
that indicates that the caller does not want a page with its busy flag set.
In many places, the global page queues lock is acquired and released just
to clear the busy flag on a just allocated page. Both the allocation of
the page and the clearing of the busy flag occur while the containing vm
object is locked. So, the busy flag might as well never be set.
Initialize b_bufobj for all buffers.
Make incore() and gbincore() take a bufobj instead of a vnode.
Make inmem() local to vfs_bio.c
Change a lot of VI_[UN]LOCK(bp->b_vp) to BO_[UN]LOCK(bp->b_bufobj)
also VI_MTX() to BO_MTX(),
Make buf_vlist_add() take a bufobj instead of a vnode.
Eliminate other uses of bp->b_vp where bp->b_bufobj will do.
Various minor polishing: remove "register", turn panic into KASSERT,
use new function declarations, TAILQ_FOREACH_SAFE() etc.
Add bufobj_wref(), bufobj_wdrop() and bufobj_wwait() to handle the write
count on a bufobj. Bufobj_wdrop() replaces vwakeup().
Use these functions all relevant places except in ffs_softdep.c where
the use if interlocked_sleep() makes this impossible.
Rename b_vnbufs to b_bobufs now that we touch all the relevant files anyway.
errors are in rarely executed paths.
1. Each time the retry_alloc path is taken, the PG_BUSY must be set again.
Otherwise vm_page_remove() panics.
2. There is no need to set PG_BUSY on the newly allocated page before
freeing it. The page already has PG_BUSY set by vm_page_alloc().
Setting it again could cause an assertion failure.
MFC after: 2 weeks
vm_page_io_finish(). The motivation being to transition synchronization of
the vm_page's busy field from the global page queues lock to the per-object
lock.
sysctl routines and state. Add some code to use it for signalling the need
to downconvert a data structure to 32 bits on a 64 bit OS when requested by
a 32 bit app.
I tried to do this in a generic abi wrapper that intercepted the sysctl
oid's, or looked up the format string etc, but it was a real can of worms
that turned into a fragile mess before I even got it partially working.
With this, we can now run 'sysctl -a' on a 32 bit sysctl binary and have
it not abort. Things like netstat, ps, etc have a long way to go.
This also fixes a bug in the kern.ps_strings and kern.usrstack hacks.
These do matter very much because they are used by libc_r and other things.
state management corruption, mbuf leaks, general mbuf corruption,
and at least on i386 a first level splash damage radius that
encompasses up to about half a megabyte of the memory after
an mbuf cluster's allocation slab. In short, this has caused
instability nightmares anywhere the right kind of network traffic
is present.
When the polymorphic refcount slabs were added to UMA, the new types
were not used pervasively. In particular, the slab management
structure was turned into one for refcounts, and one for non-refcounts
(supposed to be mostly like the old slab management structure),
but the latter was almost always used through out. In general, every
access to zones with UMA_ZONE_REFCNT turned on corrupted the
"next free" slab offset offset and the refcount with each other and
with other allocations (on i386, 2 mbuf clusters per 4096 byte slab).
Fix things so that the right type is used to access refcounted zones
where it was not before. There are additional errors in gross
overestimation of padding, it seems, that would cause a large kegs
(nee zones) to be allocated when small ones would do. Unless I have
analyzed this incorrectly, it is not directly harmful.
frobbing the cdevsw.
In both cases we examine only the cdevsw and it is a good question if we
weren't better off copying those properties into the cdev in the first
place. This question will be revisited.
UMA_ZONE_NOFREE to guarantee type stability, so proc_fini() should
never be called. Move an assertion from proc_fini() to proc_dtor()
and garbage-collect the rest of the unreachable code. I have retained
vm_proc_dispose(), since I consider its disuse a bug.
and which takes a M_WAITOK/M_NOWAIT flag argument.
Add compatibility isa_dmainit() macro which whines loudly if
isa_dma_init() fails.
Problem uncovered by: tegge
write and zero-fill faults to run without holding Giant. It is still
possible to disable Giant-free operation by setting debug.mpsafevm to 0 in
loader.conf.
FULL_PREEMPTION is defined. Add a runtime warning to ULE if PREEMPTION is
enabled (code inspired by the PREEMPTION warning in kern_switch.c). This
is a possible MT5 candidate.