mirror of
https://git.FreeBSD.org/src.git
synced 2024-11-23 07:31:31 +00:00
1f628be888
When the kernel is compiled with options RATELIMIT, the mlx5en driver cannot detach. It gets stuck waiting for all kernel users of its rates to drop to zero before finally calling ether_ifdetach. The tcp ratelimit code has an eventhandler for ifnet departure which causes rates to be released. However, this is called as an ifnet departure eventhandler, which is invoked as part of ifdetach(), via either_ifdetach(). This means that the tcp ratelimit code holds down many hw rates when the mlx5en driver is waiting for the rate count to go to 0. Thus devctl detach will deadlock on mlx5 with this stack: mi_switch+0xcf sleepq_timedwait+0x2f _sleep+0x1a3 pause_sbt+0x77 mlx5e_destroy_ifp+0xaf mlx5_remove_device+0xa7 mlx5_unregister_device+0x78 mlx5_unload_one+0x10a remove_one+0x1e linux_pci_detach_device+0x36 linux_pci_detach+0x24 device_detach+0x180 devctl2_ioctl+0x3dc devfs_ioctl+0xbb vn_ioctl+0xca devfs_ioctl_f+0x1e kern_ioctl+0x1c3 sys_ioctl+0x10a To fix this, provide an explicit API for a driver to call the tcp ratelimit code telling it to detach itself from an ifnet. This allows the mlx5 driver to unload cleanly. I considered adding an ifnet pre-departure eventhandler. However, that would need to be invoked by the driver, so a simple function call seemed better. The mlx5en driver has been updated to call this function. Reviewed by: kib, rrs Differential Revision: https://reviews.freebsd.org/D46221 Sponsored by: Netflix
1799 lines
51 KiB
C
1799 lines
51 KiB
C
/*-
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2018-2020
|
|
* Netflix Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
/**
|
|
* Author: Randall Stewart <rrs@netflix.com>
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_ratelimit.h"
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/ck.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_private.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#define TCPSTATES /* for logging */
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcp_hpts.h>
|
|
#include <netinet/tcp_log_buf.h>
|
|
#include <netinet/tcp_ratelimit.h>
|
|
#ifndef USECS_IN_SECOND
|
|
#define USECS_IN_SECOND 1000000
|
|
#endif
|
|
/*
|
|
* For the purposes of each send, what is the size
|
|
* of an ethernet frame.
|
|
*/
|
|
MALLOC_DEFINE(M_TCPPACE, "tcp_hwpace", "TCP Hardware pacing memory");
|
|
#ifdef RATELIMIT
|
|
|
|
/*
|
|
* The following preferred table will seem weird to
|
|
* the casual viewer. Why do we not have any rates below
|
|
* 1Mbps? Why do we have a rate at 1.44Mbps called common?
|
|
* Why do the rates cluster in the 1-100Mbps range more
|
|
* than others? Why does the table jump around at the beginnign
|
|
* and then be more consistently raising?
|
|
*
|
|
* Let me try to answer those questions. A lot of
|
|
* this is dependant on the hardware. We have three basic
|
|
* supporters of rate limiting
|
|
*
|
|
* Chelsio - Supporting 16 configurable rates.
|
|
* Mlx - c4 supporting 13 fixed rates.
|
|
* Mlx - c5 & c6 supporting 127 configurable rates.
|
|
*
|
|
* The c4 is why we have a common rate that is available
|
|
* in all rate tables. This is a selected rate from the
|
|
* c4 table and we assure its available in all ratelimit
|
|
* tables. This way the tcp_ratelimit code has an assured
|
|
* rate it should always be able to get. This answers a
|
|
* couple of the questions above.
|
|
*
|
|
* So what about the rest, well the table is built to
|
|
* try to get the most out of a joint hardware/software
|
|
* pacing system. The software pacer will always pick
|
|
* a rate higher than the b/w that it is estimating
|
|
*
|
|
* on the path. This is done for two reasons.
|
|
* a) So we can discover more b/w
|
|
* and
|
|
* b) So we can send a block of MSS's down and then
|
|
* have the software timer go off after the previous
|
|
* send is completely out of the hardware.
|
|
*
|
|
* But when we do <b> we don't want to have the delay
|
|
* between the last packet sent by the hardware be
|
|
* excessively long (to reach our desired rate).
|
|
*
|
|
* So let me give an example for clarity.
|
|
*
|
|
* Lets assume that the tcp stack sees that 29,110,000 bps is
|
|
* what the bw of the path is. The stack would select the
|
|
* rate 31Mbps. 31Mbps means that each send that is done
|
|
* by the hardware will cause a 390 micro-second gap between
|
|
* the packets sent at that rate. For 29,110,000 bps we
|
|
* would need 416 micro-seconds gap between each send.
|
|
*
|
|
* Note that are calculating a complete time for pacing
|
|
* which includes the ethernet, IP and TCP overhead. So
|
|
* a full 1514 bytes is used for the above calculations.
|
|
* My testing has shown that both cards are also using this
|
|
* as their basis i.e. full payload size of the ethernet frame.
|
|
* The TCP stack caller needs to be aware of this and make the
|
|
* appropriate overhead calculations be included in its choices.
|
|
*
|
|
* Now, continuing our example, we pick a MSS size based on the
|
|
* delta between the two rates (416 - 390) divided into the rate
|
|
* we really wish to send at rounded up. That results in a MSS
|
|
* send of 17 mss's at once. The hardware then will
|
|
* run out of data in a single 17MSS send in 6,630 micro-seconds.
|
|
*
|
|
* On the other hand the software pacer will send more data
|
|
* in 7,072 micro-seconds. This means that we will refill
|
|
* the hardware 52 microseconds after it would have sent
|
|
* next if it had not ran out of data. This is a win since we are
|
|
* only sending every 7ms or so and yet all the packets are spaced on
|
|
* the wire with 94% of what they should be and only
|
|
* the last packet is delayed extra to make up for the
|
|
* difference.
|
|
*
|
|
* Note that the above formula has two important caveat.
|
|
* If we are above (b/w wise) over 100Mbps we double the result
|
|
* of the MSS calculation. The second caveat is if we are 500Mbps
|
|
* or more we just send the maximum MSS at once i.e. 45MSS. At
|
|
* the higher b/w's even the cards have limits to what times (timer granularity)
|
|
* they can insert between packets and start to send more than one
|
|
* packet at a time on the wire.
|
|
*
|
|
*/
|
|
#define COMMON_RATE 180500
|
|
const uint64_t desired_rates[] = {
|
|
122500, /* 1Mbps - rate 1 */
|
|
180500, /* 1.44Mpbs - rate 2 common rate */
|
|
375000, /* 3Mbps - rate 3 */
|
|
625000, /* 5Mbps - rate 4 */
|
|
1250000, /* 10Mbps - rate 5 */
|
|
1875000, /* 15Mbps - rate 6 */
|
|
2500000, /* 20Mbps - rate 7 */
|
|
3125000, /* 25Mbps - rate 8 */
|
|
3750000, /* 30Mbps - rate 9 */
|
|
4375000, /* 35Mbps - rate 10 */
|
|
5000000, /* 40Meg - rate 11 */
|
|
6250000, /* 50Mbps - rate 12 */
|
|
12500000, /* 100Mbps - rate 13 */
|
|
25000000, /* 200Mbps - rate 14 */
|
|
50000000, /* 400Mbps - rate 15 */
|
|
100000000, /* 800Mbps - rate 16 */
|
|
5625000, /* 45Mbps - rate 17 */
|
|
6875000, /* 55Mbps - rate 19 */
|
|
7500000, /* 60Mbps - rate 20 */
|
|
8125000, /* 65Mbps - rate 21 */
|
|
8750000, /* 70Mbps - rate 22 */
|
|
9375000, /* 75Mbps - rate 23 */
|
|
10000000, /* 80Mbps - rate 24 */
|
|
10625000, /* 85Mbps - rate 25 */
|
|
11250000, /* 90Mbps - rate 26 */
|
|
11875000, /* 95Mbps - rate 27 */
|
|
12500000, /* 100Mbps - rate 28 */
|
|
13750000, /* 110Mbps - rate 29 */
|
|
15000000, /* 120Mbps - rate 30 */
|
|
16250000, /* 130Mbps - rate 31 */
|
|
17500000, /* 140Mbps - rate 32 */
|
|
18750000, /* 150Mbps - rate 33 */
|
|
20000000, /* 160Mbps - rate 34 */
|
|
21250000, /* 170Mbps - rate 35 */
|
|
22500000, /* 180Mbps - rate 36 */
|
|
23750000, /* 190Mbps - rate 37 */
|
|
26250000, /* 210Mbps - rate 38 */
|
|
27500000, /* 220Mbps - rate 39 */
|
|
28750000, /* 230Mbps - rate 40 */
|
|
30000000, /* 240Mbps - rate 41 */
|
|
31250000, /* 250Mbps - rate 42 */
|
|
34375000, /* 275Mbps - rate 43 */
|
|
37500000, /* 300Mbps - rate 44 */
|
|
40625000, /* 325Mbps - rate 45 */
|
|
43750000, /* 350Mbps - rate 46 */
|
|
46875000, /* 375Mbps - rate 47 */
|
|
53125000, /* 425Mbps - rate 48 */
|
|
56250000, /* 450Mbps - rate 49 */
|
|
59375000, /* 475Mbps - rate 50 */
|
|
62500000, /* 500Mbps - rate 51 */
|
|
68750000, /* 550Mbps - rate 52 */
|
|
75000000, /* 600Mbps - rate 53 */
|
|
81250000, /* 650Mbps - rate 54 */
|
|
87500000, /* 700Mbps - rate 55 */
|
|
93750000, /* 750Mbps - rate 56 */
|
|
106250000, /* 850Mbps - rate 57 */
|
|
112500000, /* 900Mbps - rate 58 */
|
|
125000000, /* 1Gbps - rate 59 */
|
|
156250000, /* 1.25Gps - rate 60 */
|
|
187500000, /* 1.5Gps - rate 61 */
|
|
218750000, /* 1.75Gps - rate 62 */
|
|
250000000, /* 2Gbps - rate 63 */
|
|
281250000, /* 2.25Gps - rate 64 */
|
|
312500000, /* 2.5Gbps - rate 65 */
|
|
343750000, /* 2.75Gbps - rate 66 */
|
|
375000000, /* 3Gbps - rate 67 */
|
|
500000000, /* 4Gbps - rate 68 */
|
|
625000000, /* 5Gbps - rate 69 */
|
|
750000000, /* 6Gbps - rate 70 */
|
|
875000000, /* 7Gbps - rate 71 */
|
|
1000000000, /* 8Gbps - rate 72 */
|
|
1125000000, /* 9Gbps - rate 73 */
|
|
1250000000, /* 10Gbps - rate 74 */
|
|
1875000000, /* 15Gbps - rate 75 */
|
|
2500000000 /* 20Gbps - rate 76 */
|
|
};
|
|
|
|
#define MAX_HDWR_RATES (sizeof(desired_rates)/sizeof(uint64_t))
|
|
#define RS_ORDERED_COUNT 16 /*
|
|
* Number that are in order
|
|
* at the beginning of the table,
|
|
* over this a sort is required.
|
|
*/
|
|
#define RS_NEXT_ORDER_GROUP 16 /*
|
|
* The point in our table where
|
|
* we come fill in a second ordered
|
|
* group (index wise means -1).
|
|
*/
|
|
#define ALL_HARDWARE_RATES 1004 /*
|
|
* 1Meg - 1Gig in 1 Meg steps
|
|
* plus 100, 200k and 500k and
|
|
* 10Gig
|
|
*/
|
|
|
|
#define RS_ONE_MEGABIT_PERSEC 1000000
|
|
#define RS_ONE_GIGABIT_PERSEC 1000000000
|
|
#define RS_TEN_GIGABIT_PERSEC 10000000000
|
|
|
|
static struct head_tcp_rate_set int_rs;
|
|
static struct mtx rs_mtx;
|
|
uint32_t rs_number_alive;
|
|
uint32_t rs_number_dead;
|
|
static uint32_t rs_floor_mss = 0;
|
|
static uint32_t wait_time_floor = 8000; /* 8 ms */
|
|
static uint32_t rs_hw_floor_mss = 16;
|
|
static uint32_t num_of_waits_allowed = 1; /* How many time blocks are we willing to wait */
|
|
|
|
static uint32_t mss_divisor = RL_DEFAULT_DIVISOR;
|
|
static uint32_t even_num_segs = 1;
|
|
static uint32_t even_threshold = 4;
|
|
|
|
SYSCTL_NODE(_net_inet_tcp, OID_AUTO, rl, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"TCP Ratelimit stats");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, alive, CTLFLAG_RW,
|
|
&rs_number_alive, 0,
|
|
"Number of interfaces initialized for ratelimiting");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, dead, CTLFLAG_RW,
|
|
&rs_number_dead, 0,
|
|
"Number of interfaces departing from ratelimiting");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, floor_mss, CTLFLAG_RW,
|
|
&rs_floor_mss, 0,
|
|
"Number of MSS that will override the normal minimums (0 means don't enforce)");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, wait_floor, CTLFLAG_RW,
|
|
&wait_time_floor, 2000,
|
|
"Has b/w increases what is the wait floor we are willing to wait at the end?");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, time_blocks, CTLFLAG_RW,
|
|
&num_of_waits_allowed, 1,
|
|
"How many time blocks on the end should software pacing be willing to wait?");
|
|
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, hw_floor_mss, CTLFLAG_RW,
|
|
&rs_hw_floor_mss, 16,
|
|
"Number of mss that are a minum for hardware pacing?");
|
|
|
|
SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, divisor, CTLFLAG_RW,
|
|
&mss_divisor, RL_DEFAULT_DIVISOR,
|
|
"The value divided into bytes per second to help establish mss size");
|
|
SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, even, CTLFLAG_RW,
|
|
&even_num_segs, 1,
|
|
"Do we round mss size up to an even number of segments for delayed ack");
|
|
SYSCTL_INT(_net_inet_tcp_rl, OID_AUTO, eventhresh, CTLFLAG_RW,
|
|
&even_threshold, 4,
|
|
"At what number of mss do we start rounding up to an even number of mss?");
|
|
|
|
static void
|
|
rl_add_syctl_entries(struct sysctl_oid *rl_sysctl_root, struct tcp_rate_set *rs)
|
|
{
|
|
/*
|
|
* Add sysctl entries for thus interface.
|
|
*/
|
|
if (rs->rs_flags & RS_INTF_NO_SUP) {
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "disable", CTLFLAG_RD,
|
|
&rs->rs_disable, 0,
|
|
"Disable this interface from new hdwr limiting?");
|
|
} else {
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "disable", CTLFLAG_RW,
|
|
&rs->rs_disable, 0,
|
|
"Disable this interface from new hdwr limiting?");
|
|
}
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "minseg", CTLFLAG_RW,
|
|
&rs->rs_min_seg, 0,
|
|
"What is the minimum we need to send on this interface?");
|
|
SYSCTL_ADD_U64(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "flow_limit", CTLFLAG_RW,
|
|
&rs->rs_flow_limit, 0,
|
|
"What is the limit for number of flows (0=unlimited)?");
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "highest", CTLFLAG_RD,
|
|
&rs->rs_highest_valid, 0,
|
|
"Highest valid rate");
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "lowest", CTLFLAG_RD,
|
|
&rs->rs_lowest_valid, 0,
|
|
"Lowest valid rate");
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "flags", CTLFLAG_RD,
|
|
&rs->rs_flags, 0,
|
|
"What lags are on the entry?");
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "numrates", CTLFLAG_RD,
|
|
&rs->rs_rate_cnt, 0,
|
|
"How many rates re there?");
|
|
SYSCTL_ADD_U64(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "flows_using", CTLFLAG_RD,
|
|
&rs->rs_flows_using, 0,
|
|
"How many flows are using this interface now?");
|
|
#ifdef DETAILED_RATELIMIT_SYSCTL
|
|
if (rs->rs_rlt && rs->rs_rate_cnt > 0) {
|
|
/* Lets display the rates */
|
|
int i;
|
|
struct sysctl_oid *rl_rates;
|
|
struct sysctl_oid *rl_rate_num;
|
|
char rate_num[16];
|
|
rl_rates = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO,
|
|
"rate",
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Ratelist");
|
|
for( i = 0; i < rs->rs_rate_cnt; i++) {
|
|
sprintf(rate_num, "%d", i);
|
|
rl_rate_num = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rates),
|
|
OID_AUTO,
|
|
rate_num,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Individual Rate");
|
|
SYSCTL_ADD_U32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "flags", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].flags, 0,
|
|
"Flags on this rate");
|
|
SYSCTL_ADD_U32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "pacetime", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].time_between, 0,
|
|
"Time hardware inserts between 1500 byte sends");
|
|
SYSCTL_ADD_LONG(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "rate", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].rate,
|
|
"Rate in bytes per second");
|
|
SYSCTL_ADD_LONG(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "using", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].using,
|
|
"Number of flows using");
|
|
SYSCTL_ADD_LONG(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "enobufs", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].rs_num_enobufs,
|
|
"Number of enobufs logged on this rate");
|
|
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
rs_destroy(epoch_context_t ctx)
|
|
{
|
|
struct tcp_rate_set *rs;
|
|
bool do_free_rs;
|
|
|
|
rs = __containerof(ctx, struct tcp_rate_set, rs_epoch_ctx);
|
|
|
|
mtx_lock(&rs_mtx);
|
|
rs->rs_flags &= ~RS_FUNERAL_SCHD;
|
|
/*
|
|
* In theory its possible (but unlikely)
|
|
* that while the delete was occuring
|
|
* and we were applying the DEAD flag
|
|
* someone slipped in and found the
|
|
* interface in a lookup. While we
|
|
* decided rs_flows_using were 0 and
|
|
* scheduling the epoch_call, the other
|
|
* thread incremented rs_flow_using. This
|
|
* is because users have a pointer and
|
|
* we only use the rs_flows_using in an
|
|
* atomic fashion, i.e. the other entities
|
|
* are not protected. To assure this did
|
|
* not occur, we check rs_flows_using here
|
|
* before deleting.
|
|
*/
|
|
do_free_rs = (rs->rs_flows_using == 0);
|
|
rs_number_dead--;
|
|
mtx_unlock(&rs_mtx);
|
|
|
|
if (do_free_rs) {
|
|
sysctl_ctx_free(&rs->sysctl_ctx);
|
|
free(rs->rs_rlt, M_TCPPACE);
|
|
free(rs, M_TCPPACE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rs_defer_destroy(struct tcp_rate_set *rs)
|
|
{
|
|
|
|
mtx_assert(&rs_mtx, MA_OWNED);
|
|
|
|
/* Check if already pending. */
|
|
if (rs->rs_flags & RS_FUNERAL_SCHD)
|
|
return;
|
|
|
|
rs_number_dead++;
|
|
|
|
/* Set flag to only defer once. */
|
|
rs->rs_flags |= RS_FUNERAL_SCHD;
|
|
NET_EPOCH_CALL(rs_destroy, &rs->rs_epoch_ctx);
|
|
}
|
|
|
|
#ifdef INET
|
|
extern counter_u64_t rate_limit_new;
|
|
extern counter_u64_t rate_limit_chg;
|
|
extern counter_u64_t rate_limit_set_ok;
|
|
extern counter_u64_t rate_limit_active;
|
|
extern counter_u64_t rate_limit_alloc_fail;
|
|
#endif
|
|
|
|
static int
|
|
rl_attach_txrtlmt(struct ifnet *ifp,
|
|
uint32_t flowtype,
|
|
int flowid,
|
|
uint64_t cfg_rate,
|
|
struct m_snd_tag **tag)
|
|
{
|
|
int error;
|
|
union if_snd_tag_alloc_params params = {
|
|
.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
|
|
.rate_limit.hdr.flowid = flowid,
|
|
.rate_limit.hdr.flowtype = flowtype,
|
|
.rate_limit.max_rate = cfg_rate,
|
|
.rate_limit.flags = M_NOWAIT,
|
|
};
|
|
|
|
error = m_snd_tag_alloc(ifp, ¶ms, tag);
|
|
#ifdef INET
|
|
if (error == 0) {
|
|
counter_u64_add(rate_limit_set_ok, 1);
|
|
counter_u64_add(rate_limit_active, 1);
|
|
} else if (error != EOPNOTSUPP)
|
|
counter_u64_add(rate_limit_alloc_fail, 1);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
populate_canned_table(struct tcp_rate_set *rs, const uint64_t *rate_table_act)
|
|
{
|
|
/*
|
|
* The internal table is "special", it
|
|
* is two seperate ordered tables that
|
|
* must be merged. We get here when the
|
|
* adapter specifies a number of rates that
|
|
* covers both ranges in the table in some
|
|
* form.
|
|
*/
|
|
int i, at_low, at_high;
|
|
uint8_t low_disabled = 0, high_disabled = 0;
|
|
|
|
for(i = 0, at_low = 0, at_high = RS_NEXT_ORDER_GROUP; i < rs->rs_rate_cnt; i++) {
|
|
rs->rs_rlt[i].flags = 0;
|
|
rs->rs_rlt[i].time_between = 0;
|
|
if ((low_disabled == 0) &&
|
|
(high_disabled ||
|
|
(rate_table_act[at_low] < rate_table_act[at_high]))) {
|
|
rs->rs_rlt[i].rate = rate_table_act[at_low];
|
|
at_low++;
|
|
if (at_low == RS_NEXT_ORDER_GROUP)
|
|
low_disabled = 1;
|
|
} else if (high_disabled == 0) {
|
|
rs->rs_rlt[i].rate = rate_table_act[at_high];
|
|
at_high++;
|
|
if (at_high == MAX_HDWR_RATES)
|
|
high_disabled = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct tcp_rate_set *
|
|
rt_setup_new_rs(struct ifnet *ifp, int *error)
|
|
{
|
|
struct tcp_rate_set *rs;
|
|
const uint64_t *rate_table_act;
|
|
uint64_t lentim, res;
|
|
size_t sz;
|
|
uint32_t hash_type;
|
|
int i;
|
|
struct if_ratelimit_query_results rl;
|
|
struct sysctl_oid *rl_sysctl_root;
|
|
struct epoch_tracker et;
|
|
/*
|
|
* We expect to enter with the
|
|
* mutex locked.
|
|
*/
|
|
|
|
if (ifp->if_ratelimit_query == NULL) {
|
|
/*
|
|
* We can do nothing if we cannot
|
|
* get a query back from the driver.
|
|
*/
|
|
printf("Warning:No query functions for %s:%d-- failed\n",
|
|
ifp->if_dname, ifp->if_dunit);
|
|
return (NULL);
|
|
}
|
|
rs = malloc(sizeof(struct tcp_rate_set), M_TCPPACE, M_NOWAIT | M_ZERO);
|
|
if (rs == NULL) {
|
|
if (error)
|
|
*error = ENOMEM;
|
|
printf("Warning:No memory for malloc of tcp_rate_set\n");
|
|
return (NULL);
|
|
}
|
|
memset(&rl, 0, sizeof(rl));
|
|
rl.flags = RT_NOSUPPORT;
|
|
ifp->if_ratelimit_query(ifp, &rl);
|
|
if (rl.flags & RT_IS_UNUSABLE) {
|
|
/*
|
|
* The interface does not really support
|
|
* the rate-limiting.
|
|
*/
|
|
memset(rs, 0, sizeof(struct tcp_rate_set));
|
|
rs->rs_ifp = ifp;
|
|
rs->rs_if_dunit = ifp->if_dunit;
|
|
rs->rs_flags = RS_INTF_NO_SUP;
|
|
rs->rs_disable = 1;
|
|
rs_number_alive++;
|
|
sysctl_ctx_init(&rs->sysctl_ctx);
|
|
rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
|
|
OID_AUTO,
|
|
rs->rs_ifp->if_xname,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"");
|
|
rl_add_syctl_entries(rl_sysctl_root, rs);
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
CK_LIST_INSERT_HEAD(&int_rs, rs, next);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
return (rs);
|
|
} else if ((rl.flags & RT_IS_INDIRECT) == RT_IS_INDIRECT) {
|
|
memset(rs, 0, sizeof(struct tcp_rate_set));
|
|
rs->rs_ifp = ifp;
|
|
rs->rs_if_dunit = ifp->if_dunit;
|
|
rs->rs_flags = RS_IS_DEFF;
|
|
rs_number_alive++;
|
|
sysctl_ctx_init(&rs->sysctl_ctx);
|
|
rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
|
|
OID_AUTO,
|
|
rs->rs_ifp->if_xname,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"");
|
|
rl_add_syctl_entries(rl_sysctl_root, rs);
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
CK_LIST_INSERT_HEAD(&int_rs, rs, next);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
return (rs);
|
|
} else if ((rl.flags & RT_IS_FIXED_TABLE) == RT_IS_FIXED_TABLE) {
|
|
/* Mellanox C4 likely */
|
|
rs->rs_ifp = ifp;
|
|
rs->rs_if_dunit = ifp->if_dunit;
|
|
rs->rs_rate_cnt = rl.number_of_rates;
|
|
rs->rs_min_seg = rl.min_segment_burst;
|
|
rs->rs_highest_valid = 0;
|
|
rs->rs_flow_limit = rl.max_flows;
|
|
rs->rs_flags = RS_IS_INTF | RS_NO_PRE;
|
|
rs->rs_disable = 0;
|
|
rate_table_act = rl.rate_table;
|
|
} else if ((rl.flags & RT_IS_SELECTABLE) == RT_IS_SELECTABLE) {
|
|
/* Chelsio, C5 and C6 of Mellanox? */
|
|
rs->rs_ifp = ifp;
|
|
rs->rs_if_dunit = ifp->if_dunit;
|
|
rs->rs_rate_cnt = rl.number_of_rates;
|
|
rs->rs_min_seg = rl.min_segment_burst;
|
|
rs->rs_disable = 0;
|
|
rs->rs_flow_limit = rl.max_flows;
|
|
rate_table_act = desired_rates;
|
|
if ((rs->rs_rate_cnt > MAX_HDWR_RATES) &&
|
|
(rs->rs_rate_cnt < ALL_HARDWARE_RATES)) {
|
|
/*
|
|
* Our desired table is not big
|
|
* enough, do what we can.
|
|
*/
|
|
rs->rs_rate_cnt = MAX_HDWR_RATES;
|
|
}
|
|
if (rs->rs_rate_cnt <= RS_ORDERED_COUNT)
|
|
rs->rs_flags = RS_IS_INTF;
|
|
else
|
|
rs->rs_flags = RS_IS_INTF | RS_INT_TBL;
|
|
if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)
|
|
rs->rs_rate_cnt = ALL_HARDWARE_RATES;
|
|
} else {
|
|
free(rs, M_TCPPACE);
|
|
return (NULL);
|
|
}
|
|
sz = sizeof(struct tcp_hwrate_limit_table) * rs->rs_rate_cnt;
|
|
rs->rs_rlt = malloc(sz, M_TCPPACE, M_NOWAIT);
|
|
if (rs->rs_rlt == NULL) {
|
|
if (error)
|
|
*error = ENOMEM;
|
|
bail:
|
|
free(rs, M_TCPPACE);
|
|
return (NULL);
|
|
}
|
|
if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES) {
|
|
/*
|
|
* The interface supports all
|
|
* the rates we could possibly want.
|
|
*/
|
|
uint64_t rat;
|
|
|
|
rs->rs_rlt[0].rate = 12500; /* 100k */
|
|
rs->rs_rlt[1].rate = 25000; /* 200k */
|
|
rs->rs_rlt[2].rate = 62500; /* 500k */
|
|
/* Note 125000 == 1Megabit
|
|
* populate 1Meg - 1000meg.
|
|
*/
|
|
for(i = 3, rat = 125000; i< (ALL_HARDWARE_RATES-1); i++) {
|
|
rs->rs_rlt[i].rate = rat;
|
|
rat += 125000;
|
|
}
|
|
rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate = 1250000000;
|
|
} else if (rs->rs_flags & RS_INT_TBL) {
|
|
/* We populate this in a special way */
|
|
populate_canned_table(rs, rate_table_act);
|
|
} else {
|
|
/*
|
|
* Just copy in the rates from
|
|
* the table, it is in order.
|
|
*/
|
|
for (i=0; i<rs->rs_rate_cnt; i++) {
|
|
rs->rs_rlt[i].rate = rate_table_act[i];
|
|
rs->rs_rlt[i].time_between = 0;
|
|
rs->rs_rlt[i].flags = 0;
|
|
}
|
|
}
|
|
for (i = (rs->rs_rate_cnt - 1); i >= 0; i--) {
|
|
/*
|
|
* We go backwards through the list so that if we can't get
|
|
* a rate and fail to init one, we have at least a chance of
|
|
* getting the highest one.
|
|
*/
|
|
rs->rs_rlt[i].ptbl = rs;
|
|
rs->rs_rlt[i].tag = NULL;
|
|
rs->rs_rlt[i].using = 0;
|
|
rs->rs_rlt[i].rs_num_enobufs = 0;
|
|
/*
|
|
* Calculate the time between.
|
|
*/
|
|
lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
|
|
res = lentim / rs->rs_rlt[i].rate;
|
|
if (res > 0)
|
|
rs->rs_rlt[i].time_between = res;
|
|
else
|
|
rs->rs_rlt[i].time_between = 1;
|
|
if (rs->rs_flags & RS_NO_PRE) {
|
|
rs->rs_rlt[i].flags = HDWRPACE_INITED;
|
|
rs->rs_lowest_valid = i;
|
|
} else {
|
|
int err;
|
|
|
|
if ((rl.flags & RT_IS_SETUP_REQ) &&
|
|
(ifp->if_ratelimit_query)) {
|
|
err = ifp->if_ratelimit_setup(ifp,
|
|
rs->rs_rlt[i].rate, i);
|
|
if (err)
|
|
goto handle_err;
|
|
}
|
|
#ifdef RSS
|
|
hash_type = M_HASHTYPE_RSS_TCP_IPV4;
|
|
#else
|
|
hash_type = M_HASHTYPE_OPAQUE_HASH;
|
|
#endif
|
|
err = rl_attach_txrtlmt(ifp,
|
|
hash_type,
|
|
(i + 1),
|
|
rs->rs_rlt[i].rate,
|
|
&rs->rs_rlt[i].tag);
|
|
if (err) {
|
|
handle_err:
|
|
if (i == (rs->rs_rate_cnt - 1)) {
|
|
/*
|
|
* Huh - first rate and we can't get
|
|
* it?
|
|
*/
|
|
free(rs->rs_rlt, M_TCPPACE);
|
|
if (error)
|
|
*error = err;
|
|
goto bail;
|
|
} else {
|
|
if (error)
|
|
*error = err;
|
|
}
|
|
break;
|
|
} else {
|
|
rs->rs_rlt[i].flags = HDWRPACE_INITED | HDWRPACE_TAGPRESENT;
|
|
rs->rs_lowest_valid = i;
|
|
}
|
|
}
|
|
}
|
|
/* Did we get at least 1 rate? */
|
|
if (rs->rs_rlt[(rs->rs_rate_cnt - 1)].flags & HDWRPACE_INITED)
|
|
rs->rs_highest_valid = rs->rs_rate_cnt - 1;
|
|
else {
|
|
free(rs->rs_rlt, M_TCPPACE);
|
|
goto bail;
|
|
}
|
|
rs_number_alive++;
|
|
sysctl_ctx_init(&rs->sysctl_ctx);
|
|
rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
|
|
OID_AUTO,
|
|
rs->rs_ifp->if_xname,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"");
|
|
rl_add_syctl_entries(rl_sysctl_root, rs);
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
CK_LIST_INSERT_HEAD(&int_rs, rs, next);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
return (rs);
|
|
}
|
|
|
|
/*
|
|
* For an explanation of why the argument is volatile please
|
|
* look at the comments around rt_setup_rate().
|
|
*/
|
|
static const struct tcp_hwrate_limit_table *
|
|
tcp_int_find_suitable_rate(const volatile struct tcp_rate_set *rs,
|
|
uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
|
|
{
|
|
struct tcp_hwrate_limit_table *arte = NULL, *rte = NULL;
|
|
uint64_t mbits_per_sec, ind_calc, previous_rate = 0;
|
|
int i;
|
|
|
|
mbits_per_sec = (bytes_per_sec * 8);
|
|
if (flags & RS_PACING_LT) {
|
|
if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
|
|
(rs->rs_lowest_valid <= 2)){
|
|
/*
|
|
* Smaller than 1Meg, only
|
|
* 3 entries can match it.
|
|
*/
|
|
previous_rate = 0;
|
|
for(i = rs->rs_lowest_valid; i < 3; i++) {
|
|
if (bytes_per_sec <= rs->rs_rlt[i].rate) {
|
|
rte = &rs->rs_rlt[i];
|
|
break;
|
|
} else if (rs->rs_rlt[i].flags & HDWRPACE_INITED) {
|
|
arte = &rs->rs_rlt[i];
|
|
}
|
|
previous_rate = rs->rs_rlt[i].rate;
|
|
}
|
|
goto done;
|
|
} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
|
|
(rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
|
|
/*
|
|
* Larger than 1G (the majority of
|
|
* our table.
|
|
*/
|
|
if (mbits_per_sec < RS_TEN_GIGABIT_PERSEC)
|
|
rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
else
|
|
arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
|
|
goto done;
|
|
}
|
|
/*
|
|
* If we reach here its in our table (between 1Meg - 1000Meg),
|
|
* just take the rounded down mbits per second, and add
|
|
* 1Megabit to it, from this we can calculate
|
|
* the index in the table.
|
|
*/
|
|
ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
|
|
if ((ind_calc * RS_ONE_MEGABIT_PERSEC) != mbits_per_sec)
|
|
ind_calc++;
|
|
/* our table is offset by 3, we add 2 */
|
|
ind_calc += 2;
|
|
if (ind_calc > (ALL_HARDWARE_RATES-1)) {
|
|
/* This should not happen */
|
|
ind_calc = ALL_HARDWARE_RATES-1;
|
|
}
|
|
if ((ind_calc >= rs->rs_lowest_valid) &&
|
|
(ind_calc <= rs->rs_highest_valid)) {
|
|
rte = &rs->rs_rlt[ind_calc];
|
|
if (ind_calc >= 1)
|
|
previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
|
|
}
|
|
} else if (flags & RS_PACING_EXACT_MATCH) {
|
|
if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
|
|
(rs->rs_lowest_valid <= 2)){
|
|
for(i = rs->rs_lowest_valid; i < 3; i++) {
|
|
if (bytes_per_sec == rs->rs_rlt[i].rate) {
|
|
rte = &rs->rs_rlt[i];
|
|
break;
|
|
}
|
|
}
|
|
} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
|
|
(rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
|
|
/* > 1Gbps only one rate */
|
|
if (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) {
|
|
/* Its 10G wow */
|
|
rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
}
|
|
} else {
|
|
/* Ok it must be a exact meg (its between 1G and 1Meg) */
|
|
ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
|
|
if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
|
|
/* its an exact Mbps */
|
|
ind_calc += 2;
|
|
if (ind_calc > (ALL_HARDWARE_RATES-1)) {
|
|
/* This should not happen */
|
|
ind_calc = ALL_HARDWARE_RATES-1;
|
|
}
|
|
if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED)
|
|
rte = &rs->rs_rlt[ind_calc];
|
|
}
|
|
}
|
|
} else {
|
|
/* we want greater than the requested rate */
|
|
if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
|
|
(rs->rs_lowest_valid <= 2)){
|
|
arte = &rs->rs_rlt[3]; /* set alternate to 1Meg */
|
|
for (i=2; i>=rs->rs_lowest_valid; i--) {
|
|
if (bytes_per_sec < rs->rs_rlt[i].rate) {
|
|
rte = &rs->rs_rlt[i];
|
|
if (i >= 1) {
|
|
previous_rate = rs->rs_rlt[(i-1)].rate;
|
|
}
|
|
break;
|
|
} else if ((flags & RS_PACING_GEQ) &&
|
|
(bytes_per_sec == rs->rs_rlt[i].rate)) {
|
|
rte = &rs->rs_rlt[i];
|
|
if (i >= 1) {
|
|
previous_rate = rs->rs_rlt[(i-1)].rate;
|
|
}
|
|
break;
|
|
} else {
|
|
arte = &rs->rs_rlt[i]; /* new alternate */
|
|
}
|
|
}
|
|
} else if (mbits_per_sec > RS_ONE_GIGABIT_PERSEC) {
|
|
if ((bytes_per_sec < rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
|
|
(rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
|
|
/* Our top rate is larger than the request */
|
|
rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
} else if ((flags & RS_PACING_GEQ) &&
|
|
(bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
|
|
(rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
|
|
/* It matches our top rate */
|
|
rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
} else if (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED) {
|
|
/* The top rate is an alternative */
|
|
arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
}
|
|
previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
|
|
} else {
|
|
/* Its in our range 1Meg - 1Gig */
|
|
if (flags & RS_PACING_GEQ) {
|
|
ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
|
|
if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
|
|
if (ind_calc > (ALL_HARDWARE_RATES-1)) {
|
|
/* This should not happen */
|
|
ind_calc = (ALL_HARDWARE_RATES-1);
|
|
}
|
|
rte = &rs->rs_rlt[ind_calc];
|
|
if (ind_calc >= 1)
|
|
previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
|
|
}
|
|
goto done;
|
|
}
|
|
ind_calc = (mbits_per_sec + (RS_ONE_MEGABIT_PERSEC-1))/RS_ONE_MEGABIT_PERSEC;
|
|
ind_calc += 2;
|
|
if (ind_calc > (ALL_HARDWARE_RATES-1)) {
|
|
/* This should not happen */
|
|
ind_calc = ALL_HARDWARE_RATES-1;
|
|
}
|
|
if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED) {
|
|
rte = &rs->rs_rlt[ind_calc];
|
|
if (ind_calc >= 1)
|
|
previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
if ((rte == NULL) &&
|
|
(arte != NULL) &&
|
|
(flags & RS_PACING_SUB_OK)) {
|
|
/* We can use the substitute */
|
|
rte = arte;
|
|
}
|
|
if (lower_rate)
|
|
*lower_rate = previous_rate;
|
|
return (rte);
|
|
}
|
|
|
|
/*
|
|
* For an explanation of why the argument is volatile please
|
|
* look at the comments around rt_setup_rate().
|
|
*/
|
|
static const struct tcp_hwrate_limit_table *
|
|
tcp_find_suitable_rate(const volatile struct tcp_rate_set *rs, uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
|
|
{
|
|
/**
|
|
* Hunt the rate table with the restrictions in flags and find a
|
|
* suitable rate if possible.
|
|
* RS_PACING_EXACT_MATCH - look for an exact match to rate.
|
|
* RS_PACING_GT - must be greater than.
|
|
* RS_PACING_GEQ - must be greater than or equal.
|
|
* RS_PACING_LT - must be less than.
|
|
* RS_PACING_SUB_OK - If we don't meet criteria a
|
|
* substitute is ok.
|
|
*/
|
|
int i, matched;
|
|
struct tcp_hwrate_limit_table *rte = NULL;
|
|
uint64_t previous_rate = 0;
|
|
|
|
if ((rs->rs_flags & RS_INT_TBL) &&
|
|
(rs->rs_rate_cnt >= ALL_HARDWARE_RATES)) {
|
|
/*
|
|
* Here we don't want to paw thru
|
|
* a big table, we have everything
|
|
* from 1Meg - 1000Meg in 1Meg increments.
|
|
* Use an alternate method to "lookup".
|
|
*/
|
|
return (tcp_int_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate));
|
|
}
|
|
if ((flags & RS_PACING_LT) ||
|
|
(flags & RS_PACING_EXACT_MATCH)) {
|
|
/*
|
|
* For exact and less than we go forward through the table.
|
|
* This way when we find one larger we stop (exact was a
|
|
* toss up).
|
|
*/
|
|
for (i = rs->rs_lowest_valid, matched = 0; i <= rs->rs_highest_valid; i++) {
|
|
if ((flags & RS_PACING_EXACT_MATCH) &&
|
|
(bytes_per_sec == rs->rs_rlt[i].rate)) {
|
|
rte = &rs->rs_rlt[i];
|
|
matched = 1;
|
|
if (lower_rate != NULL)
|
|
*lower_rate = previous_rate;
|
|
break;
|
|
} else if ((flags & RS_PACING_LT) &&
|
|
(bytes_per_sec <= rs->rs_rlt[i].rate)) {
|
|
rte = &rs->rs_rlt[i];
|
|
matched = 1;
|
|
if (lower_rate != NULL)
|
|
*lower_rate = previous_rate;
|
|
break;
|
|
}
|
|
previous_rate = rs->rs_rlt[i].rate;
|
|
if (bytes_per_sec > rs->rs_rlt[i].rate)
|
|
break;
|
|
}
|
|
if ((matched == 0) &&
|
|
(flags & RS_PACING_LT) &&
|
|
(flags & RS_PACING_SUB_OK)) {
|
|
/* Kick in a substitute (the lowest) */
|
|
rte = &rs->rs_rlt[rs->rs_lowest_valid];
|
|
}
|
|
} else {
|
|
/*
|
|
* Here we go backward through the table so that we can find
|
|
* the one greater in theory faster (but its probably a
|
|
* wash).
|
|
*/
|
|
for (i = rs->rs_highest_valid, matched = 0; i >= rs->rs_lowest_valid; i--) {
|
|
if (rs->rs_rlt[i].rate > bytes_per_sec) {
|
|
/* A possible candidate */
|
|
rte = &rs->rs_rlt[i];
|
|
}
|
|
if ((flags & RS_PACING_GEQ) &&
|
|
(bytes_per_sec == rs->rs_rlt[i].rate)) {
|
|
/* An exact match and we want equal */
|
|
matched = 1;
|
|
rte = &rs->rs_rlt[i];
|
|
break;
|
|
} else if (rte) {
|
|
/*
|
|
* Found one that is larger than but don't
|
|
* stop, there may be a more closer match.
|
|
*/
|
|
matched = 1;
|
|
}
|
|
if (rs->rs_rlt[i].rate < bytes_per_sec) {
|
|
/*
|
|
* We found a table entry that is smaller,
|
|
* stop there will be none greater or equal.
|
|
*/
|
|
if (lower_rate != NULL)
|
|
*lower_rate = rs->rs_rlt[i].rate;
|
|
break;
|
|
}
|
|
}
|
|
if ((matched == 0) &&
|
|
(flags & RS_PACING_SUB_OK)) {
|
|
/* Kick in a substitute (the highest) */
|
|
rte = &rs->rs_rlt[rs->rs_highest_valid];
|
|
}
|
|
}
|
|
return (rte);
|
|
}
|
|
|
|
static struct ifnet *
|
|
rt_find_real_interface(struct ifnet *ifp, struct inpcb *inp, int *error)
|
|
{
|
|
struct ifnet *tifp;
|
|
struct m_snd_tag *tag, *ntag;
|
|
union if_snd_tag_alloc_params params = {
|
|
.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
|
|
.rate_limit.hdr.flowid = inp->inp_flowid,
|
|
.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
|
|
.rate_limit.max_rate = COMMON_RATE,
|
|
.rate_limit.flags = M_NOWAIT,
|
|
};
|
|
int err;
|
|
#ifdef RSS
|
|
params.rate_limit.hdr.flowtype = ((inp->inp_vflag & INP_IPV6) ?
|
|
M_HASHTYPE_RSS_TCP_IPV6 : M_HASHTYPE_RSS_TCP_IPV4);
|
|
#else
|
|
params.rate_limit.hdr.flowtype = M_HASHTYPE_OPAQUE_HASH;
|
|
#endif
|
|
err = m_snd_tag_alloc(ifp, ¶ms, &tag);
|
|
if (err) {
|
|
/* Failed to setup a tag? */
|
|
if (error)
|
|
*error = err;
|
|
return (NULL);
|
|
}
|
|
ntag = tag;
|
|
while (ntag->sw->next_snd_tag != NULL) {
|
|
ntag = ntag->sw->next_snd_tag(ntag);
|
|
}
|
|
tifp = ntag->ifp;
|
|
m_snd_tag_rele(tag);
|
|
return (tifp);
|
|
}
|
|
|
|
static void
|
|
rl_increment_using(const struct tcp_hwrate_limit_table *rte)
|
|
{
|
|
struct tcp_hwrate_limit_table *decon_rte;
|
|
|
|
decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
|
|
atomic_add_long(&decon_rte->using, 1);
|
|
}
|
|
|
|
static void
|
|
rl_decrement_using(const struct tcp_hwrate_limit_table *rte)
|
|
{
|
|
struct tcp_hwrate_limit_table *decon_rte;
|
|
|
|
decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
|
|
atomic_subtract_long(&decon_rte->using, 1);
|
|
}
|
|
|
|
void
|
|
tcp_rl_log_enobuf(const struct tcp_hwrate_limit_table *rte)
|
|
{
|
|
struct tcp_hwrate_limit_table *decon_rte;
|
|
|
|
decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
|
|
atomic_add_long(&decon_rte->rs_num_enobufs, 1);
|
|
}
|
|
|
|
/*
|
|
* Do NOT take the __noinline out of the
|
|
* find_rs_for_ifp() function. If you do the inline
|
|
* of it for the rt_setup_rate() will show you a
|
|
* compiler bug. For some reason the compiler thinks
|
|
* the list can never be empty. The consequence of
|
|
* this will be a crash when we dereference NULL
|
|
* if an ifp is removed just has a hw rate limit
|
|
* is attempted. If you are working on the compiler
|
|
* and want to "test" this go ahead and take the noinline
|
|
* out otherwise let sleeping dogs ly until such time
|
|
* as we get a compiler fix 10/2/20 -- RRS
|
|
*/
|
|
static __noinline struct tcp_rate_set *
|
|
find_rs_for_ifp(struct ifnet *ifp)
|
|
{
|
|
struct tcp_rate_set *rs;
|
|
|
|
CK_LIST_FOREACH(rs, &int_rs, next) {
|
|
if ((rs->rs_ifp == ifp) &&
|
|
(rs->rs_if_dunit == ifp->if_dunit)) {
|
|
/* Ok we found it */
|
|
return (rs);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
static const struct tcp_hwrate_limit_table *
|
|
rt_setup_rate(struct inpcb *inp, struct ifnet *ifp, uint64_t bytes_per_sec,
|
|
uint32_t flags, int *error, uint64_t *lower_rate)
|
|
{
|
|
/* First lets find the interface if it exists */
|
|
const struct tcp_hwrate_limit_table *rte;
|
|
/*
|
|
* So why is rs volatile? This is to defeat a
|
|
* compiler bug where in the compiler is convinced
|
|
* that rs can never be NULL (which is not true). Because
|
|
* of its conviction it nicely optimizes out the if ((rs == NULL
|
|
* below which means if you get a NULL back you dereference it.
|
|
*/
|
|
volatile struct tcp_rate_set *rs;
|
|
struct epoch_tracker et;
|
|
struct ifnet *oifp = ifp;
|
|
int err;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
use_real_interface:
|
|
rs = find_rs_for_ifp(ifp);
|
|
if ((rs == NULL) ||
|
|
(rs->rs_flags & RS_INTF_NO_SUP) ||
|
|
(rs->rs_flags & RS_IS_DEAD)) {
|
|
/*
|
|
* This means we got a packet *before*
|
|
* the IF-UP was processed below, <or>
|
|
* while or after we already received an interface
|
|
* departed event. In either case we really don't
|
|
* want to do anything with pacing, in
|
|
* the departing case the packet is not
|
|
* going to go very far. The new case
|
|
* might be arguable, but its impossible
|
|
* to tell from the departing case.
|
|
*/
|
|
if (error)
|
|
*error = ENODEV;
|
|
NET_EPOCH_EXIT(et);
|
|
return (NULL);
|
|
}
|
|
|
|
if ((rs == NULL) || (rs->rs_disable != 0)) {
|
|
if (error)
|
|
*error = ENOSPC;
|
|
NET_EPOCH_EXIT(et);
|
|
return (NULL);
|
|
}
|
|
if (rs->rs_flags & RS_IS_DEFF) {
|
|
/* We need to find the real interface */
|
|
struct ifnet *tifp;
|
|
|
|
tifp = rt_find_real_interface(ifp, inp, error);
|
|
if (tifp == NULL) {
|
|
if (rs->rs_disable && error)
|
|
*error = ENOTSUP;
|
|
NET_EPOCH_EXIT(et);
|
|
return (NULL);
|
|
}
|
|
KASSERT((tifp != ifp),
|
|
("Lookup failure ifp:%p inp:%p rt_find_real_interface() returns the same interface tifp:%p?\n",
|
|
ifp, inp, tifp));
|
|
ifp = tifp;
|
|
goto use_real_interface;
|
|
}
|
|
if (rs->rs_flow_limit &&
|
|
((rs->rs_flows_using + 1) > rs->rs_flow_limit)) {
|
|
if (error)
|
|
*error = ENOSPC;
|
|
NET_EPOCH_EXIT(et);
|
|
return (NULL);
|
|
}
|
|
rte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
|
|
if (rte) {
|
|
err = in_pcbattach_txrtlmt(inp, oifp,
|
|
inp->inp_flowtype,
|
|
inp->inp_flowid,
|
|
rte->rate,
|
|
&inp->inp_snd_tag);
|
|
if (err) {
|
|
/* Failed to attach */
|
|
if (error)
|
|
*error = err;
|
|
rte = NULL;
|
|
} else {
|
|
KASSERT((inp->inp_snd_tag != NULL) ,
|
|
("Setup rate has no snd_tag inp:%p rte:%p rate:%llu rs:%p",
|
|
inp, rte, (unsigned long long)rte->rate, rs));
|
|
#ifdef INET
|
|
counter_u64_add(rate_limit_new, 1);
|
|
#endif
|
|
}
|
|
}
|
|
if (rte) {
|
|
/*
|
|
* We use an atomic here for accounting so we don't have to
|
|
* use locks when freeing.
|
|
*/
|
|
atomic_add_64(&rs->rs_flows_using, 1);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
return (rte);
|
|
}
|
|
|
|
static void
|
|
tcp_rl_ifnet_link(void *arg __unused, struct ifnet *ifp, int link_state)
|
|
{
|
|
int error;
|
|
struct tcp_rate_set *rs;
|
|
struct epoch_tracker et;
|
|
|
|
if (((ifp->if_capenable & IFCAP_TXRTLMT) == 0) ||
|
|
(link_state != LINK_STATE_UP)) {
|
|
/*
|
|
* We only care on an interface going up that is rate-limit
|
|
* capable.
|
|
*/
|
|
return;
|
|
}
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
rs = find_rs_for_ifp(ifp);
|
|
if (rs) {
|
|
/* We already have initialized this guy */
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
return;
|
|
}
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
rt_setup_new_rs(ifp, &error);
|
|
}
|
|
|
|
static void
|
|
tcp_rl_ifnet_departure(void *arg __unused, struct ifnet *ifp)
|
|
{
|
|
struct tcp_rate_set *rs;
|
|
struct epoch_tracker et;
|
|
int i;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
rs = find_rs_for_ifp(ifp);
|
|
if (rs) {
|
|
CK_LIST_REMOVE(rs, next);
|
|
rs_number_alive--;
|
|
rs->rs_flags |= RS_IS_DEAD;
|
|
for (i = 0; i < rs->rs_rate_cnt; i++) {
|
|
if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
|
|
in_pcbdetach_tag(rs->rs_rlt[i].tag);
|
|
rs->rs_rlt[i].tag = NULL;
|
|
}
|
|
rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
|
|
}
|
|
if (rs->rs_flows_using == 0)
|
|
rs_defer_destroy(rs);
|
|
}
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
void
|
|
tcp_rl_release_ifnet(struct ifnet *ifp)
|
|
{
|
|
tcp_rl_ifnet_departure(NULL, ifp);
|
|
}
|
|
|
|
static void
|
|
tcp_rl_shutdown(void *arg __unused, int howto __unused)
|
|
{
|
|
struct tcp_rate_set *rs, *nrs;
|
|
struct epoch_tracker et;
|
|
int i;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
CK_LIST_FOREACH_SAFE(rs, &int_rs, next, nrs) {
|
|
CK_LIST_REMOVE(rs, next);
|
|
rs_number_alive--;
|
|
rs->rs_flags |= RS_IS_DEAD;
|
|
for (i = 0; i < rs->rs_rate_cnt; i++) {
|
|
if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
|
|
in_pcbdetach_tag(rs->rs_rlt[i].tag);
|
|
rs->rs_rlt[i].tag = NULL;
|
|
}
|
|
rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
|
|
}
|
|
if (rs->rs_flows_using == 0)
|
|
rs_defer_destroy(rs);
|
|
}
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
const struct tcp_hwrate_limit_table *
|
|
tcp_set_pacing_rate(struct tcpcb *tp, struct ifnet *ifp,
|
|
uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
|
|
{
|
|
struct inpcb *inp = tptoinpcb(tp);
|
|
const struct tcp_hwrate_limit_table *rte;
|
|
#ifdef KERN_TLS
|
|
struct ktls_session *tls;
|
|
#endif
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if (inp->inp_snd_tag == NULL) {
|
|
/*
|
|
* We are setting up a rate for the first time.
|
|
*/
|
|
if ((ifp->if_capenable & IFCAP_TXRTLMT) == 0) {
|
|
/* Not supported by the egress */
|
|
if (error)
|
|
*error = ENODEV;
|
|
return (NULL);
|
|
}
|
|
#ifdef KERN_TLS
|
|
tls = NULL;
|
|
if (tp->t_nic_ktls_xmit != 0) {
|
|
tls = tptosocket(tp)->so_snd.sb_tls_info;
|
|
|
|
if ((ifp->if_capenable & IFCAP_TXTLS_RTLMT) == 0 ||
|
|
tls->mode != TCP_TLS_MODE_IFNET) {
|
|
if (error)
|
|
*error = ENODEV;
|
|
return (NULL);
|
|
}
|
|
}
|
|
#endif
|
|
rte = rt_setup_rate(inp, ifp, bytes_per_sec, flags, error, lower_rate);
|
|
if (rte)
|
|
rl_increment_using(rte);
|
|
#ifdef KERN_TLS
|
|
if (rte != NULL && tls != NULL && tls->snd_tag != NULL) {
|
|
/*
|
|
* Fake a route change error to reset the TLS
|
|
* send tag. This will convert the existing
|
|
* tag to a TLS ratelimit tag.
|
|
*/
|
|
MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS);
|
|
ktls_output_eagain(inp, tls);
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* We are modifying a rate, wrong interface?
|
|
*/
|
|
if (error)
|
|
*error = EINVAL;
|
|
rte = NULL;
|
|
}
|
|
if (rte != NULL) {
|
|
tp->t_pacing_rate = rte->rate;
|
|
*error = 0;
|
|
}
|
|
return (rte);
|
|
}
|
|
|
|
const struct tcp_hwrate_limit_table *
|
|
tcp_chg_pacing_rate(const struct tcp_hwrate_limit_table *crte,
|
|
struct tcpcb *tp, struct ifnet *ifp,
|
|
uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
|
|
{
|
|
struct inpcb *inp = tptoinpcb(tp);
|
|
const struct tcp_hwrate_limit_table *nrte;
|
|
const struct tcp_rate_set *rs;
|
|
#ifdef KERN_TLS
|
|
struct ktls_session *tls = NULL;
|
|
#endif
|
|
int err;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if (crte == NULL) {
|
|
/* Wrong interface */
|
|
if (error)
|
|
*error = EINVAL;
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef KERN_TLS
|
|
if (tp->t_nic_ktls_xmit) {
|
|
tls = tptosocket(tp)->so_snd.sb_tls_info;
|
|
if (tls->mode != TCP_TLS_MODE_IFNET)
|
|
tls = NULL;
|
|
else if (tls->snd_tag != NULL &&
|
|
tls->snd_tag->sw->type != IF_SND_TAG_TYPE_TLS_RATE_LIMIT) {
|
|
if (!tls->reset_pending) {
|
|
/*
|
|
* NIC probably doesn't support
|
|
* ratelimit TLS tags if it didn't
|
|
* allocate one when an existing rate
|
|
* was present, so ignore.
|
|
*/
|
|
tcp_rel_pacing_rate(crte, tp);
|
|
if (error)
|
|
*error = EOPNOTSUPP;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* The send tag is being converted, so set the
|
|
* rate limit on the inpcb tag. There is a
|
|
* race that the new NIC send tag might use
|
|
* the current rate instead of this one.
|
|
*/
|
|
tls = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
if (inp->inp_snd_tag == NULL) {
|
|
/* Wrong interface */
|
|
tcp_rel_pacing_rate(crte, tp);
|
|
if (error)
|
|
*error = EINVAL;
|
|
return (NULL);
|
|
}
|
|
rs = crte->ptbl;
|
|
if ((rs->rs_flags & RS_IS_DEAD) ||
|
|
(crte->flags & HDWRPACE_IFPDEPARTED)) {
|
|
/* Release the rate, and try anew */
|
|
|
|
tcp_rel_pacing_rate(crte, tp);
|
|
nrte = tcp_set_pacing_rate(tp, ifp,
|
|
bytes_per_sec, flags, error, lower_rate);
|
|
return (nrte);
|
|
}
|
|
nrte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
|
|
if (nrte == crte) {
|
|
/* No change */
|
|
if (error)
|
|
*error = 0;
|
|
return (crte);
|
|
}
|
|
if (nrte == NULL) {
|
|
/* Release the old rate */
|
|
if (error)
|
|
*error = ENOENT;
|
|
tcp_rel_pacing_rate(crte, tp);
|
|
return (NULL);
|
|
}
|
|
rl_decrement_using(crte);
|
|
rl_increment_using(nrte);
|
|
/* Change rates to our new entry */
|
|
#ifdef KERN_TLS
|
|
if (tls != NULL)
|
|
err = ktls_modify_txrtlmt(tls, nrte->rate);
|
|
else
|
|
#endif
|
|
err = in_pcbmodify_txrtlmt(inp, nrte->rate);
|
|
if (err) {
|
|
struct tcp_rate_set *lrs;
|
|
uint64_t pre;
|
|
|
|
rl_decrement_using(nrte);
|
|
lrs = __DECONST(struct tcp_rate_set *, rs);
|
|
pre = atomic_fetchadd_64(&lrs->rs_flows_using, -1);
|
|
/* Do we still have a snd-tag attached? */
|
|
if (inp->inp_snd_tag)
|
|
in_pcbdetach_txrtlmt(inp);
|
|
|
|
if (pre == 1) {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
/*
|
|
* Is it dead?
|
|
*/
|
|
if (lrs->rs_flags & RS_IS_DEAD)
|
|
rs_defer_destroy(lrs);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
if (error)
|
|
*error = err;
|
|
return (NULL);
|
|
} else {
|
|
#ifdef INET
|
|
counter_u64_add(rate_limit_chg, 1);
|
|
#endif
|
|
}
|
|
if (error)
|
|
*error = 0;
|
|
tp->t_pacing_rate = nrte->rate;
|
|
return (nrte);
|
|
}
|
|
|
|
void
|
|
tcp_rel_pacing_rate(const struct tcp_hwrate_limit_table *crte, struct tcpcb *tp)
|
|
{
|
|
struct inpcb *inp = tptoinpcb(tp);
|
|
const struct tcp_rate_set *crs;
|
|
struct tcp_rate_set *rs;
|
|
uint64_t pre;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
tp->t_pacing_rate = -1;
|
|
crs = crte->ptbl;
|
|
/*
|
|
* Now we must break the const
|
|
* in order to release our refcount.
|
|
*/
|
|
rs = __DECONST(struct tcp_rate_set *, crs);
|
|
rl_decrement_using(crte);
|
|
pre = atomic_fetchadd_64(&rs->rs_flows_using, -1);
|
|
if (pre == 1) {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
/*
|
|
* Is it dead?
|
|
*/
|
|
if (rs->rs_flags & RS_IS_DEAD)
|
|
rs_defer_destroy(rs);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
/*
|
|
* XXX: If this connection is using ifnet TLS, should we
|
|
* switch it to using an unlimited rate, or perhaps use
|
|
* ktls_output_eagain() to reset the send tag to a plain
|
|
* TLS tag?
|
|
*/
|
|
in_pcbdetach_txrtlmt(inp);
|
|
}
|
|
|
|
#define ONE_POINT_TWO_MEG 150000 /* 1.2 megabits in bytes */
|
|
#define ONE_HUNDRED_MBPS 12500000 /* 100Mbps in bytes per second */
|
|
#define FIVE_HUNDRED_MBPS 62500000 /* 500Mbps in bytes per second */
|
|
#define MAX_MSS_SENT 43 /* 43 mss = 43 x 1500 = 64,500 bytes */
|
|
|
|
static void
|
|
tcp_log_pacing_size(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, uint32_t new_tso,
|
|
uint64_t hw_rate, uint32_t time_between, uint32_t calc_time_between,
|
|
uint32_t segs, uint32_t res_div, uint16_t mult, uint8_t mod)
|
|
{
|
|
if (tcp_bblogging_on(tp)) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log, 0, sizeof(log));
|
|
log.u_bbr.flex1 = segsiz;
|
|
log.u_bbr.flex2 = new_tso;
|
|
log.u_bbr.flex3 = time_between;
|
|
log.u_bbr.flex4 = calc_time_between;
|
|
log.u_bbr.flex5 = segs;
|
|
log.u_bbr.flex6 = res_div;
|
|
log.u_bbr.flex7 = mult;
|
|
log.u_bbr.flex8 = mod;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.cur_del_rate = bw;
|
|
log.u_bbr.delRate = hw_rate;
|
|
TCP_LOG_EVENTP(tp, NULL,
|
|
&tptosocket(tp)->so_rcv,
|
|
&tptosocket(tp)->so_snd,
|
|
TCP_HDWR_PACE_SIZE, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
uint32_t
|
|
tcp_get_pacing_burst_size_w_divisor(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, int can_use_1mss,
|
|
const struct tcp_hwrate_limit_table *te, int *err, int divisor)
|
|
{
|
|
/*
|
|
* We use the google formula to calculate the
|
|
* TSO size. I.E.
|
|
* bw < 24Meg
|
|
* tso = 2mss
|
|
* else
|
|
* tso = min(bw/(div=1000), 64k)
|
|
*
|
|
* Note for these calculations we ignore the
|
|
* packet overhead (enet hdr, ip hdr and tcp hdr).
|
|
* We only get the google formula when we have
|
|
* divisor = 1000, which is the default for now.
|
|
*/
|
|
uint64_t lentim, res, bytes;
|
|
uint32_t new_tso, min_tso_segs;
|
|
|
|
/* It can't be zero */
|
|
if ((divisor == 0) ||
|
|
(divisor < RL_MIN_DIVISOR)) {
|
|
if (mss_divisor)
|
|
bytes = bw / mss_divisor;
|
|
else
|
|
bytes = bw / 1000;
|
|
} else
|
|
bytes = bw / divisor;
|
|
/* We can't ever send more than 65k in a TSO */
|
|
if (bytes > 0xffff) {
|
|
bytes = 0xffff;
|
|
}
|
|
/* Round up */
|
|
new_tso = (bytes + segsiz - 1) / segsiz;
|
|
/* Are we enforcing even boundaries? */
|
|
if (even_num_segs && (new_tso & 1) && (new_tso > even_threshold))
|
|
new_tso++;
|
|
if (can_use_1mss)
|
|
min_tso_segs = 1;
|
|
else
|
|
min_tso_segs = 2;
|
|
if (rs_floor_mss && (new_tso < rs_floor_mss))
|
|
new_tso = rs_floor_mss;
|
|
else if (new_tso < min_tso_segs)
|
|
new_tso = min_tso_segs;
|
|
if (new_tso > MAX_MSS_SENT)
|
|
new_tso = MAX_MSS_SENT;
|
|
new_tso *= segsiz;
|
|
tcp_log_pacing_size(tp, bw, segsiz, new_tso,
|
|
0, 0, 0, 0, 0, 0, 1);
|
|
/*
|
|
* If we are not doing hardware pacing
|
|
* then we are done.
|
|
*/
|
|
if (te == NULL) {
|
|
if (err)
|
|
*err = 0;
|
|
return(new_tso);
|
|
}
|
|
/*
|
|
* For hardware pacing we look at the
|
|
* rate you are sending at and compare
|
|
* that to the rate you have in hardware.
|
|
*
|
|
* If the hardware rate is slower than your
|
|
* software rate then you are in error and
|
|
* we will build a queue in our hardware whic
|
|
* is probably not desired, in such a case
|
|
* just return the non-hardware TSO size.
|
|
*
|
|
* If the rate in hardware is faster (which
|
|
* it should be) then look at how long it
|
|
* takes to send one ethernet segment size at
|
|
* your b/w and compare that to the time it
|
|
* takes to send at the rate you had selected.
|
|
*
|
|
* If your time is greater (which we hope it is)
|
|
* we get the delta between the two, and then
|
|
* divide that into your pacing time. This tells
|
|
* us how many MSS you can send down at once (rounded up).
|
|
*
|
|
* Note we also double this value if the b/w is over
|
|
* 100Mbps. If its over 500meg we just set you to the
|
|
* max (43 segments).
|
|
*/
|
|
if (te->rate > FIVE_HUNDRED_MBPS)
|
|
goto max;
|
|
if (te->rate == bw) {
|
|
/* We are pacing at exactly the hdwr rate */
|
|
max:
|
|
tcp_log_pacing_size(tp, bw, segsiz, new_tso,
|
|
te->rate, te->time_between, (uint32_t)0,
|
|
(segsiz * MAX_MSS_SENT), 0, 0, 3);
|
|
return (segsiz * MAX_MSS_SENT);
|
|
}
|
|
lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
|
|
res = lentim / bw;
|
|
if (res > te->time_between) {
|
|
uint32_t delta, segs, res_div;
|
|
|
|
res_div = ((res * num_of_waits_allowed) + wait_time_floor);
|
|
delta = res - te->time_between;
|
|
segs = (res_div + delta - 1)/delta;
|
|
if (segs < min_tso_segs)
|
|
segs = min_tso_segs;
|
|
if (segs < rs_hw_floor_mss)
|
|
segs = rs_hw_floor_mss;
|
|
if (segs > MAX_MSS_SENT)
|
|
segs = MAX_MSS_SENT;
|
|
segs *= segsiz;
|
|
tcp_log_pacing_size(tp, bw, segsiz, new_tso,
|
|
te->rate, te->time_between, (uint32_t)res,
|
|
segs, res_div, 1, 3);
|
|
if (err)
|
|
*err = 0;
|
|
if (segs < new_tso) {
|
|
/* unexpected ? */
|
|
return(new_tso);
|
|
} else {
|
|
return (segs);
|
|
}
|
|
} else {
|
|
/*
|
|
* Your time is smaller which means
|
|
* we will grow a queue on our
|
|
* hardware. Send back the non-hardware
|
|
* rate.
|
|
*/
|
|
tcp_log_pacing_size(tp, bw, segsiz, new_tso,
|
|
te->rate, te->time_between, (uint32_t)res,
|
|
0, 0, 0, 4);
|
|
if (err)
|
|
*err = -1;
|
|
return (new_tso);
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
tcp_hw_highest_rate_ifp(struct ifnet *ifp, struct inpcb *inp)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct tcp_rate_set *rs;
|
|
uint64_t rate_ret;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
use_next_interface:
|
|
rs = find_rs_for_ifp(ifp);
|
|
if (rs == NULL) {
|
|
/* This interface does not do ratelimiting */
|
|
rate_ret = 0;
|
|
} else if (rs->rs_flags & RS_IS_DEFF) {
|
|
/* We need to find the real interface */
|
|
struct ifnet *tifp;
|
|
|
|
tifp = rt_find_real_interface(ifp, inp, NULL);
|
|
if (tifp == NULL) {
|
|
NET_EPOCH_EXIT(et);
|
|
return (0);
|
|
}
|
|
ifp = tifp;
|
|
goto use_next_interface;
|
|
} else {
|
|
/* Lets return the highest rate this guy has */
|
|
rate_ret = rs->rs_rlt[rs->rs_highest_valid].rate;
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
return(rate_ret);
|
|
}
|
|
|
|
static eventhandler_tag rl_ifnet_departs;
|
|
static eventhandler_tag rl_ifnet_arrives;
|
|
static eventhandler_tag rl_shutdown_start;
|
|
|
|
static void
|
|
tcp_rs_init(void *st __unused)
|
|
{
|
|
CK_LIST_INIT(&int_rs);
|
|
rs_number_alive = 0;
|
|
rs_number_dead = 0;
|
|
mtx_init(&rs_mtx, "tcp_rs_mtx", "rsmtx", MTX_DEF);
|
|
rl_ifnet_departs = EVENTHANDLER_REGISTER(ifnet_departure_event,
|
|
tcp_rl_ifnet_departure,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
rl_ifnet_arrives = EVENTHANDLER_REGISTER(ifnet_link_event,
|
|
tcp_rl_ifnet_link,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
rl_shutdown_start = EVENTHANDLER_REGISTER(shutdown_pre_sync,
|
|
tcp_rl_shutdown, NULL,
|
|
SHUTDOWN_PRI_FIRST);
|
|
printf("TCP_ratelimit: Is now initialized\n");
|
|
}
|
|
|
|
SYSINIT(tcp_rl_init, SI_SUB_SMP + 1, SI_ORDER_ANY, tcp_rs_init, NULL);
|
|
#endif
|