1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-15 10:17:20 +00:00
freebsd/contrib/ncurses/tack/tack.1
Peter Wemm 0e3d540892 Import unmodified (but trimmed) ncurses 5.0 prerelease 990821.
This contains the full eti (panel, form, menu) extensions.
bmake glue to follow.

Obtained from:	ftp://ftp.clark.net/pub/dickey/ncurses
1999-08-24 01:06:48 +00:00

312 lines
15 KiB
Groff

.TH tack 1M ""
.ds n 5
.ds d @TERMINFO@
.SH NAME
\fBtack\fR - \fIterminfo\fR action checker
.SH SYNOPSIS
\fBtack\fR [-itV] [term]
.br
.SH DESCRIPTION
The \fBtack\fR program has three purposes:
(1) to help you build a new terminfo entry describing an unknown terminal,
(2) to test the correctness of an existing entry, and
(3) to develop the correct pad timings needed to ensure that screen updates
don't fall behind the incoming data stream.
.PP
\fBTack\fR presents a series of screen-painting and interactive
tests in ways which are intended to make any mismatches between the
terminfo entry and reality visually obvious.
\fBTack\fR also provides tools that can help in understanding how
the terminal operates.
.SS OPTIONS
.TP
.I "\-i"
Usually \fBtack\fR will send the reset and init strings to the terminal
when the program starts up. The \fI-i\fR option will inhibit the
terminal initialization.
.TP
.I "\-t"
Tell \fBtack\fR to override the terminfo settings for basic terminal
functions. When this option is set \fBtack\fR will translate
(cr) to \\r, (cud1) to \\n, (ind) to \\n, (nel) to \\r\\n,
(cub1) to \\b, (bel) to \\007, (ff) to \\f and (ht) to \\t.
.TP
.I "\-V"
Display the version information and exit.
.TP
.I "term"
Terminfo terminal name to be tested. If not present then the $TERM
environment variable will be used.
.SH OVERVIEW
Since \fBtack\fR is designed to test terminfo's it is not possible
to rely on the correctness of the terminfo data base. Because of this
the menuing system used with \fBtack\fR is vary primitive. When a
menu is printed it will scroll the entire screen. To compensate
for this verbose menu system \fBtack\fR permits menu selection
type ahead.
If you already know what action you would like \fBtack\fR to perform
then you can enter that value immediately and avoid the menu display.
When in doubt the question mark (?) is a good character to type.
A carriage return will execute the default action. These default
actions are designed to run all the standard tests.
.PP
When \fBtack\fR first comes up it will display some basic information
about the terminal. Take some time to verify this information.
If it is wrong many of the subsequent tests will fail. The most
important item is the screen size. If the screen size is wrong there
is no point in proceeding. (home) and (clear) are also critical
to the success of subsequent tests. The values of (cr) (ind)
(cub1) and (ht) may effect the tests if they are defined incorrectly.
If they are undefined \fBtack\fR will set them to reasonable defaults.
The last two entries on the display are the enquire and acknowledge strings.
These strings are taken from the user strings (u9) and (u8).
.PP
By now you must be wondering why the terminfo names are enclosed
in parenthesis. This has no profound meaning other than it makes
them stand out. The \fBtack\fR program uses this convention any time
it displays a terminfo name. Remember \fBtack\fR is designed to
rely on as little of the terminfo entry as possible.
.SH CREATING NEW ENTRIES
\fBTack\fR has a number of tools that are designed to help gather
information about the terminal. Although these functions are not
dependent on terminal type, you may wish to execute \fBtack\fR
with options \fI\-it\fR. This will turn off initialization
and default the standard entries.
.PP
These tools may be reached from the main menu by selecting
the 'tools' entry.
.PP
\fBEcho tool\fR: All data typed from the keyboard will be echoed back
to the terminal. Control characters are not translated to the up arrow format
but are sent as control characters. This allows you to test an escape
sequence and see what it actually does. You may also elect to
\fBenable hex output on echo tool\fR this will echo the characters in
hexadecimal. Once the test is running you may enter the 'lines'
or 'columns' keywords which will display a pattern that will help
you determine your screen size. A complete list of keywords will
be displayed when the test starts. Type 'help' to redisplay
the list of available commands.
.PP
\fBReply tool\fR: This tool acts much like the echo tool, but
control characters that are sent from the terminal more than one character
after a carriage return will be expanded to the up arrow format. For example
on a standard ANSI terminal you may type:
CR ESC [ c
and the response will be echoed as something like:
^[ [ ? 6 c
.PP
\fBANSI sgr display\fR: This test assumes you have an ANSI terminal. It
goes through attribute numbers 0 to 79, displaying each in turn and using that
SGR number to write the text. This shows you which of the SGR
modes are actually implemented by the terminal. Note: some terminals (such as
Tektronix color) use the private use characters to augment the functionality of
the SGR command. These private use characters may be interjected into the
escape sequence by typing the character ( <, =, >, ? ) after the original
display has been shown.
.PP
\fBANSI status reports\fR: This test queries the terminal in standard
ANSI/VT-100 fashion. The results of this test may help
determine what options are supported by your terminal.
.PP
\fBANSI character sets\fR: This test displays the character sets
available on a ANSI/VT-100 style terminal.
Character sets on a real VT-100 terminal are usually defined
with smacs=\\E(0 and rmacs=\\E(B. The first character after the
escape defines the font bank. The second character defines the
character set. This test allows you to view any of the possible
combinations. Private use character sets are defined by the digits.
Standard character sets are located in the alphabetic range.
.SH VERIFYING AN EXISTING ENTRY
.PP
You can verify the correctness of an entry with the `begin testing'
function. This entry is the default action and will be chosen
if you hit carriage return (or enter). This will bring up a
secondary menu that allows you to select more specific tests.
.PP
The general philosophy of the program is, for each capability, to send an
appropriate test pattern to the terminal then send a description of
what the user should expect. Occasionally (as when checking function-key
capabilities) the program will ask you to enter input for it to check.
.PP
If the test fails then you have the option of dynamically changing
the terminfo entry and re-running the test. This is done with
the 'edit terminfo' menu item. The edit submenu allows you to change
the offending terminfo entry and immediately retest the capability.
The edit menu lets you do other things with the terminfo, such as;
display the entire terminfo entry,
display which caps have been tested and display which caps cannot
be tested. This menu also allows you to write the newly modified
terminfo to disc. If you have made any modifications to the
terminfo \fBtack\fR will ask you if you want to save the file
to disc before it exits. The filename will be the same as the terminal name.
After the program exits you can run the tic(1M) compiler on the
new terminfo to install it in the terminfo data base.
.PP
.SH CORRECTING PAD TIMINGS
.SS Theory of Overruns and Padding
.PP
Some terminals require significant amounts of time (that is, more than one
transmitted-character interval) to do screen updates that change large
portions of the screen, such as screen clears, line insertions,
line deletions, and scrolls (including scrolls triggered by line feeds
or a write to the lowest, right-hand-most cell of the screen).
.PP
If the computer continues to send characters to the terminal while one
of these time-consuming operations is going on, the screen may be garbled.
Since the length of a character transmission time varies inversely with
transmission speed in cps, entries which function at lower speeds may
break at higher speeds.
.PP
Similar problems result if the host machine is simply sending characters at a
sustained rate faster than the terminal can buffer and process them. In either
case, when the terminal cannot process them and can't tell the host to stop
soon enough, it will just drop them. The dropped characters could be text,
escape sequences or the escape character itself, causing some really
strange-looking displays. This kind of glitch is called an \fIoverrun\fR.
.PP
In terminfo entries, you can attach a \fBpad time\fR to each string capability
that is a number of milliseconds to delay after sending it. This will give
the terminal time to catch up and avoid overruns.
.PP
If you are running a software terminal emulator, or you are on an X pseudo-tty,
or your terminal is on an RS-232C line which correctly handles RTS/CTS
hardware flow control, then pads are not strictly necessary. However, some
display packages (such as ncurses(3X)) use the pad counts to calculate
the fastest way to implement certain functions.
For example: scrolling the screen may be faster than deleting the top line.
.PP
One common way to avoid overruns is with XON/XOFF handshaking.
But even this handshake may have problems at high baud rates.
This is a result of the way XON/XOFF works. The terminal tells
the host to stop with an XOFF. When the host gets this character, it stops
sending. However, there is a small amount of time between the stop request and
the actual stop. During this window, the terminal must continue to accept
characters even though it has told the host to stop. If the terminal sends
the stop request too late, then its internal buffer will overflow. If it sends
the stop character too early, then the terminal is not getting the most
efficient use out of its internal buffers. In a real application at high baud
rates, a terminal could get a dozen or more characters before the host gets
around to suspending transmission. Connecting the terminal over a network
will make the problem much worse.
.PP
(RTS/CTS handshaking does not have this problem because the UARTs are
signal-connected and the "stop flow" is done at the lowest level, without
software intervention).
.PP
.SS Timing your terminal
.PP
In order to get accurate timings from your terminal \fBtack\fR
needs to know when the terminal has finished processing all the
characters that were sent. This requires a different type of handshaking
than the XON/XOFF that is supported by most terminals. \fBTack\fR
needs to send a request to the terminal and wait for its reply.
Many terminals will respond with an ACK when they receive an ENQ.
This is the preferred method since the sequence is short.
ANSI/VT-100 style terminals can mimic this handshake with the
escape sequence that requests 'primary device attributes'.
ESC [ c
The terminal will respond with a sequence like:
ESC [ ? 1 ; 0 c
\fBTack\fR assumes that (u9) is the enquire sequence and that (u8) is the
acknowledge string. A VT-100 style terminal could set u9=\\E[c
and u8=\\E[?1;0c.
Acknowledge strings fall into two categories.
1) Strings with a unique terminating character and,
2) strings of fixed length.
The acknowledge string for the VT-100 is of the first type since
it always ends with the letter 'c'. Some Tektronics terminals
have fixed length acknowledge strings. \fBTack\fR supports both
types of strings by scanning for the terminating character until
the length of the expected acknowledge string has arrived.
(u8) should be set to some typical acknowledge that will be
returned when (u9) is sent.
.PP
\fBTack\fR will test this sequence before running any of the pad
tests or the function key tests. \fBTack\fR will ask you the following:
Hit lower case g to start testing...
After it sends this message it will send the enquire string.
It will then read characters from the terminal until it sees the
letter g.
.PP
.SS Testing and Repairing Pad Timings
.PP
The pad timings in distributed terminfo entries are often incorrect. One
major motivation for this program is to make it relatively easy to tune these
timings.
.PP
You can verify and edit the pad timings for a terminal with
the `test string capabilities'
function (this is also part of the `normal test sequence' function).
.PP
The key to determining pad times is to find out the effective baud rate of
the terminal. The effective baud rate determines the number of characters
per second that the terminal can accept without either handshaking or
losing data. This rate is frequently less than the nominal cps rate on the
RS-232 line.
.PP
\fBTack\fR uses the effective baud rate to judge the duration of the test and
how much a particular escape sequence will perturb the terminal.
.PP
Each pad test has two associated variables that can be tweaked to help verify
the correctness of the pad timings. One is the pad test length. The other is
the pad multiplier, which is used if the pad prefix includes `*'. In curses
use, it is often the first parameter of the capability (if there is one).
For a capability like (dch) or (il) this will be the number of character
positions or lines affected, respectively.
.PP
\fBTack\fR will run the pad tests and display the results to the terminal.
On capabilities that have multipliers \fBtack\fR will not tell you
if the pad needs the multiplier or not. You must make this decision
yourself by rerunning the test with a different multiplier.
If the padding changes in proportion to the multiplier than the
multiplier is required. If the multiplier has little or no effect on
the suggested padding then the multiplier is not needed.
Some capabilities will take several runs to get a good feel for
the correct values. You may wish to make the test longer
to get more accurate results. System load will also effect the
results (a heavily loaded system will not stress the
terminal as much, possibly leading to pad timings that are too short).
.PP
.SH NOTE
The tests done at the beginning of the program are assumed to be correct later
in the code. In particular, \fBtack\fR displays the number of lines and
columns indicated in the terminfo entry as part of its initial output.
If these values are wrong a large number of tests will fail or give incorrect
results.
.SH FILES
.TP 12
tack.log
If logging is enabled then all characters written to the terminal
will also be written to the log file. This gives you the ability
to see how the tests were performed. This feature is disabled by default.
.TP 12
.I "term"
If you make changes to the terminfo entry \fBtack\fR will save
the new terminfo to a file. The file will have the same name
as the terminal name.
.SH SEE ALSO
\fBterminfo\fR(\*n), \fBncurses\fR(3X), \fBtic\fR(1m), \fBinfocmp\fR(1m).
You should also have the documentation supplied by the terminal
manufacturer.
.SH BUGS
If the screen size is incorrect, many of the tests will fail.
.SH AUTHOR
Concept, design, and original implementation by
Daniel Weaver <danw@znyx.com>. Portions of the code and
documentation are by Eric S. Raymond <esr@snark.thyrsus.com>.
.\"#
.\"# The following sets edit modes for GNU EMACS
.\"# Local Variables:
.\"# mode:nroff
.\"# fill-column:79
.\"# End: