1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-26 11:47:31 +00:00
freebsd/sys/netipx/spx_usrreq.c
Gleb Smirnoff eb1b1807af Mechanically substitute flags from historic mbuf allocator with
malloc(9) flags within sys.

Exceptions:

- sys/contrib not touched
- sys/mbuf.h edited manually
2012-12-05 08:04:20 +00:00

1794 lines
42 KiB
C

/*-
* Copyright (c) 1984, 1985, 1986, 1987, 1993
* The Regents of the University of California.
* Copyright (c) 2004-2009 Robert N. M. Watson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 1995, Mike Mitchell
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)spx_usrreq.h
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/systm.h>
#include <net/route.h>
#include <netinet/tcp_fsm.h>
#include <netipx/ipx.h>
#include <netipx/ipx_pcb.h>
#include <netipx/ipx_var.h>
#include <netipx/spx.h>
#include <netipx/spx_debug.h>
#include <netipx/spx_timer.h>
#include <netipx/spx_var.h>
#include <security/mac/mac_framework.h>
/*
* SPX protocol implementation.
*/
static struct mtx spx_mtx; /* Protects only spx_iss. */
static u_short spx_iss;
u_short spx_newchecks[50];
static int spx_hardnosed;
static int traceallspxs = 0;
struct spx_istat spx_istat;
#define SPX_LOCK_INIT() mtx_init(&spx_mtx, "spx_mtx", NULL, MTX_DEF)
#define SPX_LOCK() mtx_lock(&spx_mtx)
#define SPX_UNLOCK() mtx_unlock(&spx_mtx)
static const int spx_backoff[SPX_MAXRXTSHIFT+1] =
{ 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };
static void spx_close(struct spxpcb *cb);
static void spx_disconnect(struct spxpcb *cb);
static void spx_drop(struct spxpcb *cb, int errno);
static void spx_setpersist(struct spxpcb *cb);
static void spx_template(struct spxpcb *cb);
static void spx_timers(struct spxpcb *cb, int timer);
static void spx_usrclosed(struct spxpcb *cb);
static void spx_usr_abort(struct socket *so);
static int spx_accept(struct socket *so, struct sockaddr **nam);
static int spx_attach(struct socket *so, int proto, struct thread *td);
static int spx_bind(struct socket *so, struct sockaddr *nam, struct thread *td);
static void spx_usr_close(struct socket *so);
static int spx_connect(struct socket *so, struct sockaddr *nam,
struct thread *td);
static void spx_detach(struct socket *so);
static void spx_pcbdetach(struct ipxpcb *ipxp);
static int spx_usr_disconnect(struct socket *so);
static int spx_listen(struct socket *so, int backlog, struct thread *td);
static int spx_rcvd(struct socket *so, int flags);
static int spx_rcvoob(struct socket *so, struct mbuf *m, int flags);
static int spx_send(struct socket *so, int flags, struct mbuf *m,
struct sockaddr *addr, struct mbuf *control,
struct thread *td);
static int spx_shutdown(struct socket *so);
static int spx_sp_attach(struct socket *so, int proto, struct thread *td);
struct pr_usrreqs spx_usrreqs = {
.pru_abort = spx_usr_abort,
.pru_accept = spx_accept,
.pru_attach = spx_attach,
.pru_bind = spx_bind,
.pru_connect = spx_connect,
.pru_control = ipx_control,
.pru_detach = spx_detach,
.pru_disconnect = spx_usr_disconnect,
.pru_listen = spx_listen,
.pru_peeraddr = ipx_peeraddr,
.pru_rcvd = spx_rcvd,
.pru_rcvoob = spx_rcvoob,
.pru_send = spx_send,
.pru_shutdown = spx_shutdown,
.pru_sockaddr = ipx_sockaddr,
.pru_close = spx_usr_close,
};
struct pr_usrreqs spx_usrreq_sps = {
.pru_abort = spx_usr_abort,
.pru_accept = spx_accept,
.pru_attach = spx_sp_attach,
.pru_bind = spx_bind,
.pru_connect = spx_connect,
.pru_control = ipx_control,
.pru_detach = spx_detach,
.pru_disconnect = spx_usr_disconnect,
.pru_listen = spx_listen,
.pru_peeraddr = ipx_peeraddr,
.pru_rcvd = spx_rcvd,
.pru_rcvoob = spx_rcvoob,
.pru_send = spx_send,
.pru_shutdown = spx_shutdown,
.pru_sockaddr = ipx_sockaddr,
.pru_close = spx_usr_close,
};
void
spx_init(void)
{
SPX_LOCK_INIT();
spx_iss = 1; /* WRONG !! should fish it out of TODR */
}
void
spx_input(struct mbuf *m, struct ipxpcb *ipxp)
{
struct spxpcb *cb;
struct spx *si = mtod(m, struct spx *);
struct socket *so;
struct spx spx_savesi;
int dropsocket = 0;
short ostate = 0;
spxstat.spxs_rcvtotal++;
KASSERT(ipxp != NULL, ("spx_input: ipxpcb == NULL"));
/*
* spx_input() assumes that the caller will hold both the pcb list
* lock and also the ipxp lock. spx_input() will release both before
* returning, and may in fact trade in the ipxp lock for another pcb
* lock following sonewconn().
*/
IPX_LIST_LOCK_ASSERT();
IPX_LOCK_ASSERT(ipxp);
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_input: cb == NULL"));
if (ipxp->ipxp_flags & IPXP_DROPPED)
goto drop;
if (m->m_len < sizeof(*si)) {
if ((m = m_pullup(m, sizeof(*si))) == NULL) {
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
spxstat.spxs_rcvshort++;
return;
}
si = mtod(m, struct spx *);
}
si->si_seq = ntohs(si->si_seq);
si->si_ack = ntohs(si->si_ack);
si->si_alo = ntohs(si->si_alo);
so = ipxp->ipxp_socket;
KASSERT(so != NULL, ("spx_input: so == NULL"));
#ifdef MAC
if (mac_socket_check_deliver(so, m) != 0)
goto drop;
#endif
if (so->so_options & SO_DEBUG || traceallspxs) {
ostate = cb->s_state;
spx_savesi = *si;
}
if (so->so_options & SO_ACCEPTCONN) {
struct spxpcb *ocb = cb;
so = sonewconn(so, 0);
if (so == NULL)
goto drop;
/*
* This is ugly, but ....
*
* Mark socket as temporary until we're committed to keeping
* it. The code at ``drop'' and ``dropwithreset'' check the
* flag dropsocket to see if the temporary socket created
* here should be discarded. We mark the socket as
* discardable until we're committed to it below in
* TCPS_LISTEN.
*
* XXXRW: In the new world order of real kernel parallelism,
* temporarily allocating the socket when we're "not sure"
* seems like a bad idea, as we might race to remove it if
* the listen socket is closed...?
*
* We drop the lock of the listen socket ipxp, and acquire
* the lock of the new socket ippx.
*/
dropsocket++;
IPX_UNLOCK(ipxp);
ipxp = (struct ipxpcb *)so->so_pcb;
IPX_LOCK(ipxp);
ipxp->ipxp_laddr = si->si_dna;
cb = ipxtospxpcb(ipxp);
cb->s_mtu = ocb->s_mtu; /* preserve sockopts */
cb->s_flags = ocb->s_flags; /* preserve sockopts */
cb->s_flags2 = ocb->s_flags2; /* preserve sockopts */
cb->s_state = TCPS_LISTEN;
}
IPX_LOCK_ASSERT(ipxp);
/*
* Packet received on connection. Reset idle time and keep-alive
* timer.
*/
cb->s_idle = 0;
cb->s_timer[SPXT_KEEP] = SPXTV_KEEP;
switch (cb->s_state) {
case TCPS_LISTEN:{
struct sockaddr_ipx *sipx, ssipx;
struct ipx_addr laddr;
/*
* If somebody here was carying on a conversation and went
* away, and his pen pal thinks he can still talk, we get the
* misdirected packet.
*/
if (spx_hardnosed && (si->si_did != 0 || si->si_seq != 0)) {
spx_istat.gonawy++;
goto dropwithreset;
}
sipx = &ssipx;
bzero(sipx, sizeof *sipx);
sipx->sipx_len = sizeof(*sipx);
sipx->sipx_family = AF_IPX;
sipx->sipx_addr = si->si_sna;
laddr = ipxp->ipxp_laddr;
if (ipx_nullhost(laddr))
ipxp->ipxp_laddr = si->si_dna;
if (ipx_pcbconnect(ipxp, (struct sockaddr *)sipx, &thread0)) {
ipxp->ipxp_laddr = laddr;
spx_istat.noconn++;
goto drop;
}
spx_template(cb);
dropsocket = 0; /* committed to socket */
cb->s_did = si->si_sid;
cb->s_rack = si->si_ack;
cb->s_ralo = si->si_alo;
#define THREEWAYSHAKE
#ifdef THREEWAYSHAKE
cb->s_state = TCPS_SYN_RECEIVED;
cb->s_force = 1 + SPXT_KEEP;
spxstat.spxs_accepts++;
cb->s_timer[SPXT_KEEP] = SPXTV_KEEP;
}
break;
case TCPS_SYN_RECEIVED: {
/*
* This state means that we have heard a response to our
* acceptance of their connection. It is probably logically
* unnecessary in this implementation.
*/
if (si->si_did != cb->s_sid) {
spx_istat.wrncon++;
goto drop;
}
#endif
ipxp->ipxp_fport = si->si_sport;
cb->s_timer[SPXT_REXMT] = 0;
cb->s_timer[SPXT_KEEP] = SPXTV_KEEP;
soisconnected(so);
cb->s_state = TCPS_ESTABLISHED;
spxstat.spxs_accepts++;
}
break;
case TCPS_SYN_SENT:
/*
* This state means that we have gotten a response to our
* attempt to establish a connection. We fill in the data
* from the other side, telling us which port to respond to,
* instead of the well-known one we might have sent to in the
* first place. We also require that this is a response to
* our connection id.
*/
if (si->si_did != cb->s_sid) {
spx_istat.notme++;
goto drop;
}
spxstat.spxs_connects++;
cb->s_did = si->si_sid;
cb->s_rack = si->si_ack;
cb->s_ralo = si->si_alo;
cb->s_dport = ipxp->ipxp_fport = si->si_sport;
cb->s_timer[SPXT_REXMT] = 0;
cb->s_flags |= SF_ACKNOW;
soisconnected(so);
cb->s_state = TCPS_ESTABLISHED;
/*
* Use roundtrip time of connection request for initial rtt.
*/
if (cb->s_rtt) {
cb->s_srtt = cb->s_rtt << 3;
cb->s_rttvar = cb->s_rtt << 1;
SPXT_RANGESET(cb->s_rxtcur,
((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
SPXTV_MIN, SPXTV_REXMTMAX);
cb->s_rtt = 0;
}
}
if (so->so_options & SO_DEBUG || traceallspxs)
spx_trace(SA_INPUT, (u_char)ostate, cb, &spx_savesi, 0);
m->m_len -= sizeof(struct ipx);
m->m_pkthdr.len -= sizeof(struct ipx);
m->m_data += sizeof(struct ipx);
if (spx_reass(cb, m, si))
m_freem(m);
if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT)))
spx_output(cb, NULL);
cb->s_flags &= ~(SF_WIN|SF_RXT);
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
return;
dropwithreset:
IPX_LOCK_ASSERT(ipxp);
if (cb == NULL || (cb->s_ipxpcb->ipxp_socket->so_options & SO_DEBUG ||
traceallspxs))
spx_trace(SA_DROP, (u_char)ostate, cb, &spx_savesi, 0);
IPX_UNLOCK(ipxp);
if (dropsocket) {
struct socket *head;
ACCEPT_LOCK();
KASSERT((so->so_qstate & SQ_INCOMP) != 0,
("spx_input: nascent socket not SQ_INCOMP on soabort()"));
head = so->so_head;
TAILQ_REMOVE(&head->so_incomp, so, so_list);
head->so_incqlen--;
so->so_qstate &= ~SQ_INCOMP;
so->so_head = NULL;
ACCEPT_UNLOCK();
soabort(so);
}
IPX_LIST_UNLOCK();
m_freem(m);
return;
drop:
IPX_LOCK_ASSERT(ipxp);
if (cb->s_ipxpcb->ipxp_socket->so_options & SO_DEBUG || traceallspxs)
spx_trace(SA_DROP, (u_char)ostate, cb, &spx_savesi, 0);
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
m_freem(m);
}
void
spx_ctlinput(int cmd, struct sockaddr *arg_as_sa, void *dummy)
{
/* Currently, nothing. */
}
int
spx_output(struct spxpcb *cb, struct mbuf *m0)
{
struct socket *so = cb->s_ipxpcb->ipxp_socket;
struct mbuf *m = NULL;
struct spx *si = NULL;
struct sockbuf *sb = &so->so_snd;
int len = 0, win, rcv_win;
short span, off, recordp = 0;
u_short alo;
int error = 0, sendalot;
#ifdef notdef
int idle;
#endif
struct mbuf *mprev;
IPX_LOCK_ASSERT(cb->s_ipxpcb);
if (m0 != NULL) {
int mtu = cb->s_mtu;
int datalen;
/*
* Make sure that packet isn't too big.
*/
for (m = m0; m != NULL; m = m->m_next) {
mprev = m;
len += m->m_len;
if (m->m_flags & M_EOR)
recordp = 1;
}
datalen = (cb->s_flags & SF_HO) ?
len - sizeof(struct spxhdr) : len;
if (datalen > mtu) {
if (cb->s_flags & SF_PI) {
m_freem(m0);
return (EMSGSIZE);
} else {
int oldEM = cb->s_cc & SPX_EM;
cb->s_cc &= ~SPX_EM;
while (len > mtu) {
m = m_copym(m0, 0, mtu, M_NOWAIT);
if (m == NULL) {
cb->s_cc |= oldEM;
m_freem(m0);
return (ENOBUFS);
}
if (cb->s_flags & SF_NEWCALL) {
struct mbuf *mm = m;
spx_newchecks[7]++;
while (mm != NULL) {
mm->m_flags &= ~M_EOR;
mm = mm->m_next;
}
}
error = spx_output(cb, m);
if (error) {
cb->s_cc |= oldEM;
m_freem(m0);
return (error);
}
m_adj(m0, mtu);
len -= mtu;
}
cb->s_cc |= oldEM;
}
}
/*
* Force length even, by adding a "garbage byte" if
* necessary.
*/
if (len & 1) {
m = mprev;
if (M_TRAILINGSPACE(m) >= 1)
m->m_len++;
else {
struct mbuf *m1 = m_get(M_NOWAIT, MT_DATA);
if (m1 == NULL) {
m_freem(m0);
return (ENOBUFS);
}
m1->m_len = 1;
*(mtod(m1, u_char *)) = 0;
m->m_next = m1;
}
}
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL) {
m_freem(m0);
return (ENOBUFS);
}
/*
* Fill in mbuf with extended SP header and addresses and
* length put into network format.
*/
MH_ALIGN(m, sizeof(struct spx));
m->m_len = sizeof(struct spx);
m->m_next = m0;
si = mtod(m, struct spx *);
si->si_i = cb->s_ipx;
si->si_s = cb->s_shdr;
if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) {
struct spxhdr *sh;
if (m0->m_len < sizeof(*sh)) {
if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) {
m_free(m);
m_freem(m0);
return (EINVAL);
}
m->m_next = m0;
}
sh = mtod(m0, struct spxhdr *);
si->si_dt = sh->spx_dt;
si->si_cc |= sh->spx_cc & SPX_EM;
m0->m_len -= sizeof(*sh);
m0->m_data += sizeof(*sh);
len -= sizeof(*sh);
}
len += sizeof(*si);
if ((cb->s_flags2 & SF_NEWCALL) && recordp) {
si->si_cc |= SPX_EM;
spx_newchecks[8]++;
}
if (cb->s_oobflags & SF_SOOB) {
/*
* Per jqj@cornell: Make sure OB packets convey
* exactly 1 byte. If the packet is 1 byte or
* larger, we have already guaranted there to be at
* least one garbage byte for the checksum, and extra
* bytes shouldn't hurt!
*/
if (len > sizeof(*si)) {
si->si_cc |= SPX_OB;
len = (1 + sizeof(*si));
}
}
si->si_len = htons((u_short)len);
m->m_pkthdr.len = ((len - 1) | 1) + 1;
/*
* Queue stuff up for output.
*/
sbappendrecord(sb, m);
cb->s_seq++;
}
#ifdef notdef
idle = (cb->s_smax == (cb->s_rack - 1));
#endif
again:
sendalot = 0;
off = cb->s_snxt - cb->s_rack;
win = min(cb->s_swnd, (cb->s_cwnd / CUNIT));
/*
* If in persist timeout with window of 0, send a probe. Otherwise,
* if window is small but non-zero and timer expired, send what we
* can and go into transmit state.
*/
if (cb->s_force == 1 + SPXT_PERSIST) {
if (win != 0) {
cb->s_timer[SPXT_PERSIST] = 0;
cb->s_rxtshift = 0;
}
}
span = cb->s_seq - cb->s_rack;
len = min(span, win) - off;
if (len < 0) {
/*
* Window shrank after we went into it. If window shrank to
* 0, cancel pending restransmission and pull s_snxt back to
* (closed) window. We will enter persist state below. If
* the widndow didn't close completely, just wait for an ACK.
*/
len = 0;
if (win == 0) {
cb->s_timer[SPXT_REXMT] = 0;
cb->s_snxt = cb->s_rack;
}
}
if (len > 1)
sendalot = 1;
rcv_win = sbspace(&so->so_rcv);
/*
* Send if we owe peer an ACK.
*/
if (cb->s_oobflags & SF_SOOB) {
/*
* Must transmit this out of band packet.
*/
cb->s_oobflags &= ~ SF_SOOB;
sendalot = 1;
spxstat.spxs_sndurg++;
goto found;
}
if (cb->s_flags & SF_ACKNOW)
goto send;
if (cb->s_state < TCPS_ESTABLISHED)
goto send;
/*
* Silly window can't happen in spx. Code from TCP deleted.
*/
if (len)
goto send;
/*
* Compare available window to amount of window known to peer (as
* advertised window less next expected input.) If the difference is
* at least two packets or at least 35% of the mximum possible
* window, then want to send a window update to peer.
*/
if (rcv_win > 0) {
u_short delta = 1 + cb->s_alo - cb->s_ack;
int adv = rcv_win - (delta * cb->s_mtu);
if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) ||
(100 * adv / so->so_rcv.sb_hiwat >= 35)) {
spxstat.spxs_sndwinup++;
cb->s_flags |= SF_ACKNOW;
goto send;
}
}
/*
* Many comments from tcp_output.c are appropriate here including ...
* If send window is too small, there is data to transmit, and no
* retransmit or persist is pending, then go to persist state. If
* nothing happens soon, send when timer expires: if window is
* non-zero, transmit what we can, otherwise send a probe.
*/
if (so->so_snd.sb_cc && cb->s_timer[SPXT_REXMT] == 0 &&
cb->s_timer[SPXT_PERSIST] == 0) {
cb->s_rxtshift = 0;
spx_setpersist(cb);
}
/*
* No reason to send a packet, just return.
*/
cb->s_outx = 1;
return (0);
send:
/*
* Find requested packet.
*/
si = NULL;
m = NULL;
if (len > 0) {
cb->s_want = cb->s_snxt;
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
si = mtod(m, struct spx *);
if (SSEQ_LEQ(cb->s_snxt, si->si_seq))
break;
}
found:
if (si != NULL) {
if (si->si_seq != cb->s_snxt) {
spxstat.spxs_sndvoid++;
si = NULL;
m = NULL;
} else
cb->s_snxt++;
}
}
/*
* Update window.
*/
if (rcv_win < 0)
rcv_win = 0;
alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu));
if (SSEQ_LT(alo, cb->s_alo))
alo = cb->s_alo;
if (m != NULL) {
/*
* Must make a copy of this packet for ipx_output to monkey
* with.
*/
m = m_copy(m, 0, M_COPYALL);
if (m == NULL)
return (ENOBUFS);
si = mtod(m, struct spx *);
if (SSEQ_LT(si->si_seq, cb->s_smax))
spxstat.spxs_sndrexmitpack++;
else
spxstat.spxs_sndpack++;
} else if (cb->s_force || cb->s_flags & SF_ACKNOW) {
/*
* Must send an acknowledgement or a probe.
*/
if (cb->s_force)
spxstat.spxs_sndprobe++;
if (cb->s_flags & SF_ACKNOW)
spxstat.spxs_sndacks++;
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
/*
* Fill in mbuf with extended SP header and addresses and
* length put into network format.
*/
MH_ALIGN(m, sizeof(struct spx));
m->m_len = sizeof(*si);
m->m_pkthdr.len = sizeof(*si);
si = mtod(m, struct spx *);
si->si_i = cb->s_ipx;
si->si_s = cb->s_shdr;
si->si_seq = cb->s_smax + 1;
si->si_len = htons(sizeof(*si));
si->si_cc |= SPX_SP;
} else {
cb->s_outx = 3;
if (so->so_options & SO_DEBUG || traceallspxs)
spx_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
return (0);
}
/*
* Stuff checksum and output datagram.
*/
if ((si->si_cc & SPX_SP) == 0) {
if (cb->s_force != (1 + SPXT_PERSIST) ||
cb->s_timer[SPXT_PERSIST] == 0) {
/*
* If this is a new packet and we are not currently
* timing anything, time this one.
*/
if (SSEQ_LT(cb->s_smax, si->si_seq)) {
cb->s_smax = si->si_seq;
if (cb->s_rtt == 0) {
spxstat.spxs_segstimed++;
cb->s_rtseq = si->si_seq;
cb->s_rtt = 1;
}
}
/*
* Set rexmt timer if not currently set, initial
* value for retransmit timer is smoothed round-trip
* time + 2 * round-trip time variance. Initialize
* shift counter which is used for backoff of
* retransmit time.
*/
if (cb->s_timer[SPXT_REXMT] == 0 &&
cb->s_snxt != cb->s_rack) {
cb->s_timer[SPXT_REXMT] = cb->s_rxtcur;
if (cb->s_timer[SPXT_PERSIST]) {
cb->s_timer[SPXT_PERSIST] = 0;
cb->s_rxtshift = 0;
}
}
} else if (SSEQ_LT(cb->s_smax, si->si_seq))
cb->s_smax = si->si_seq;
} else if (cb->s_state < TCPS_ESTABLISHED) {
if (cb->s_rtt == 0)
cb->s_rtt = 1; /* Time initial handshake */
if (cb->s_timer[SPXT_REXMT] == 0)
cb->s_timer[SPXT_REXMT] = cb->s_rxtcur;
}
/*
* Do not request acks when we ack their data packets or when we do a
* gratuitous window update.
*/
if (((si->si_cc & SPX_SP) == 0) || cb->s_force)
si->si_cc |= SPX_SA;
si->si_seq = htons(si->si_seq);
si->si_alo = htons(alo);
si->si_ack = htons(cb->s_ack);
if (ipxcksum)
si->si_sum = ipx_cksum(m, ntohs(si->si_len));
else
si->si_sum = 0xffff;
cb->s_outx = 4;
if (so->so_options & SO_DEBUG || traceallspxs)
spx_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
#ifdef MAC
mac_socket_create_mbuf(so, m);
#endif
if (so->so_options & SO_DONTROUTE)
error = ipx_outputfl(m, NULL, IPX_ROUTETOIF);
else
error = ipx_outputfl(m, &cb->s_ipxpcb->ipxp_route, 0);
if (error)
return (error);
spxstat.spxs_sndtotal++;
/*
* Data sent (as far as we can tell). If this advertises a larger
* window than any other segment, then remember the size of the
* advertized window. Any pending ACK has now been sent.
*/
cb->s_force = 0;
cb->s_flags &= ~(SF_ACKNOW|SF_DELACK);
if (SSEQ_GT(alo, cb->s_alo))
cb->s_alo = alo;
if (sendalot)
goto again;
cb->s_outx = 5;
return (0);
}
static int spx_do_persist_panics = 0;
static void
spx_setpersist(struct spxpcb *cb)
{
int t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
IPX_LOCK_ASSERT(cb->s_ipxpcb);
if (cb->s_timer[SPXT_REXMT] && spx_do_persist_panics)
panic("spx_output REXMT");
/*
* Start/restart persistance timer.
*/
SPXT_RANGESET(cb->s_timer[SPXT_PERSIST],
t*spx_backoff[cb->s_rxtshift],
SPXTV_PERSMIN, SPXTV_PERSMAX);
if (cb->s_rxtshift < SPX_MAXRXTSHIFT)
cb->s_rxtshift++;
}
int
spx_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct spxhdr spxhdr;
struct ipxpcb *ipxp;
struct spxpcb *cb;
int mask, error;
short soptval;
u_short usoptval;
int optval;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_ctloutput: ipxp == NULL"));
/*
* This will have to be changed when we do more general stacking of
* protocols.
*/
if (sopt->sopt_level != IPXPROTO_SPX)
return (ipx_ctloutput(so, sopt));
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
IPX_UNLOCK(ipxp);
return (ECONNRESET);
}
IPX_LOCK(ipxp);
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_ctloutput: cb == NULL"));
error = 0;
switch (sopt->sopt_dir) {
case SOPT_GET:
switch (sopt->sopt_name) {
case SO_HEADERS_ON_INPUT:
mask = SF_HI;
goto get_flags;
case SO_HEADERS_ON_OUTPUT:
mask = SF_HO;
get_flags:
soptval = cb->s_flags & mask;
IPX_UNLOCK(ipxp);
error = sooptcopyout(sopt, &soptval,
sizeof(soptval));
break;
case SO_MTU:
usoptval = cb->s_mtu;
IPX_UNLOCK(ipxp);
error = sooptcopyout(sopt, &usoptval,
sizeof(usoptval));
break;
case SO_LAST_HEADER:
spxhdr = cb->s_rhdr;
IPX_UNLOCK(ipxp);
error = sooptcopyout(sopt, &spxhdr, sizeof(spxhdr));
break;
case SO_DEFAULT_HEADERS:
spxhdr = cb->s_shdr;
IPX_UNLOCK(ipxp);
error = sooptcopyout(sopt, &spxhdr, sizeof(spxhdr));
break;
default:
IPX_UNLOCK(ipxp);
error = ENOPROTOOPT;
}
break;
case SOPT_SET:
/*
* XXX Why are these shorts on get and ints on set? That
* doesn't make any sense...
*
* XXXRW: Note, when we re-acquire the ipxp lock, we should
* re-check that it's not dropped.
*/
IPX_UNLOCK(ipxp);
switch (sopt->sopt_name) {
case SO_HEADERS_ON_INPUT:
mask = SF_HI;
goto set_head;
case SO_HEADERS_ON_OUTPUT:
mask = SF_HO;
set_head:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
IPX_LOCK(ipxp);
if (cb->s_flags & SF_PI) {
if (optval)
cb->s_flags |= mask;
else
cb->s_flags &= ~mask;
} else error = EINVAL;
IPX_UNLOCK(ipxp);
break;
case SO_MTU:
error = sooptcopyin(sopt, &usoptval, sizeof usoptval,
sizeof usoptval);
if (error)
break;
/* Unlocked write. */
cb->s_mtu = usoptval;
break;
#ifdef SF_NEWCALL
case SO_NEWCALL:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
IPX_LOCK(ipxp);
if (optval) {
cb->s_flags2 |= SF_NEWCALL;
spx_newchecks[5]++;
} else {
cb->s_flags2 &= ~SF_NEWCALL;
spx_newchecks[6]++;
}
IPX_UNLOCK(ipxp);
break;
#endif
case SO_DEFAULT_HEADERS:
{
struct spxhdr sp;
error = sooptcopyin(sopt, &sp, sizeof sp,
sizeof sp);
if (error)
break;
IPX_LOCK(ipxp);
cb->s_dt = sp.spx_dt;
cb->s_cc = sp.spx_cc & SPX_EM;
IPX_UNLOCK(ipxp);
}
break;
default:
error = ENOPROTOOPT;
}
break;
default:
panic("spx_ctloutput: bad socket option direction");
}
return (error);
}
static void
spx_usr_abort(struct socket *so)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_usr_abort: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_usr_abort: cb == NULL"));
IPX_LIST_LOCK();
IPX_LOCK(ipxp);
spx_drop(cb, ECONNABORTED);
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
}
/*
* Accept a connection. Essentially all the work is done at higher levels;
* just return the address of the peer, storing through addr.
*/
static int
spx_accept(struct socket *so, struct sockaddr **nam)
{
struct ipxpcb *ipxp;
struct sockaddr_ipx *sipx, ssipx;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_accept: ipxp == NULL"));
sipx = &ssipx;
bzero(sipx, sizeof *sipx);
sipx->sipx_len = sizeof *sipx;
sipx->sipx_family = AF_IPX;
IPX_LOCK(ipxp);
sipx->sipx_addr = ipxp->ipxp_faddr;
IPX_UNLOCK(ipxp);
*nam = sodupsockaddr((struct sockaddr *)sipx, M_WAITOK);
return (0);
}
static int
spx_attach(struct socket *so, int proto, struct thread *td)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
struct mbuf *mm;
struct sockbuf *sb;
int error;
ipxp = sotoipxpcb(so);
KASSERT(ipxp == NULL, ("spx_attach: ipxp != NULL"));
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, (u_long) 3072, (u_long) 3072);
if (error)
return (error);
}
cb = malloc(sizeof *cb, M_PCB, M_NOWAIT | M_ZERO);
if (cb == NULL)
return (ENOBUFS);
mm = m_getclr(M_NOWAIT, MT_DATA);
if (mm == NULL) {
free(cb, M_PCB);
return (ENOBUFS);
}
IPX_LIST_LOCK();
error = ipx_pcballoc(so, &ipxpcb_list, td);
if (error) {
IPX_LIST_UNLOCK();
m_free(mm);
free(cb, M_PCB);
return (error);
}
ipxp = sotoipxpcb(so);
ipxp->ipxp_flags |= IPXP_SPX;
cb->s_state = TCPS_LISTEN;
cb->s_smax = -1;
cb->s_swl1 = -1;
spx_reass_init(cb);
cb->s_ipxpcb = ipxp;
cb->s_mtu = 576 - sizeof(struct spx);
sb = &so->so_snd;
cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu;
cb->s_ssthresh = cb->s_cwnd;
cb->s_cwmx = sbspace(sb) * CUNIT / (2 * sizeof(struct spx));
/*
* Above is recomputed when connecting to account for changed
* buffering or mtu's.
*/
cb->s_rtt = SPXTV_SRTTBASE;
cb->s_rttvar = SPXTV_SRTTDFLT << 2;
SPXT_RANGESET(cb->s_rxtcur,
((SPXTV_SRTTBASE >> 2) + (SPXTV_SRTTDFLT << 2)) >> 1,
SPXTV_MIN, SPXTV_REXMTMAX);
ipxp->ipxp_pcb = (caddr_t)cb;
IPX_LIST_UNLOCK();
return (0);
}
static void
spx_pcbdetach(struct ipxpcb *ipxp)
{
struct spxpcb *cb;
IPX_LOCK_ASSERT(ipxp);
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_pcbdetach: cb == NULL"));
spx_reass_flush(cb);
free(cb, M_PCB);
ipxp->ipxp_pcb = NULL;
}
static int
spx_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct ipxpcb *ipxp;
int error;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_bind: ipxp == NULL"));
IPX_LIST_LOCK();
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
error = EINVAL;
goto out;
}
error = ipx_pcbbind(ipxp, nam, td);
out:
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
return (error);
}
static void
spx_usr_close(struct socket *so)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_usr_close: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_usr_close: cb == NULL"));
IPX_LIST_LOCK();
IPX_LOCK(ipxp);
if (cb->s_state > TCPS_LISTEN)
spx_disconnect(cb);
else
spx_close(cb);
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
}
/*
* Initiate connection to peer. Enter SYN_SENT state, and mark socket as
* connecting. Start keep-alive timer, setup prototype header, send initial
* system packet requesting connection.
*/
static int
spx_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
int error;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_connect: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_connect: cb == NULL"));
IPX_LIST_LOCK();
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
error = EINVAL;
goto spx_connect_end;
}
if (ipxp->ipxp_lport == 0) {
error = ipx_pcbbind(ipxp, NULL, td);
if (error)
goto spx_connect_end;
}
error = ipx_pcbconnect(ipxp, nam, td);
if (error)
goto spx_connect_end;
soisconnecting(so);
spxstat.spxs_connattempt++;
cb->s_state = TCPS_SYN_SENT;
cb->s_did = 0;
spx_template(cb);
cb->s_timer[SPXT_KEEP] = SPXTV_KEEP;
cb->s_force = 1 + SPXTV_KEEP;
/*
* Other party is required to respond to the port I send from, but he
* is not required to answer from where I am sending to, so allow
* wildcarding. Original port I am sending to is still saved in
* cb->s_dport.
*/
ipxp->ipxp_fport = 0;
error = spx_output(cb, NULL);
spx_connect_end:
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
return (error);
}
static void
spx_detach(struct socket *so)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
/*
* XXXRW: Should assert appropriately detached.
*/
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_detach: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_detach: cb == NULL"));
IPX_LIST_LOCK();
IPX_LOCK(ipxp);
spx_pcbdetach(ipxp);
ipx_pcbdetach(ipxp);
ipx_pcbfree(ipxp);
IPX_LIST_UNLOCK();
}
/*
* We may decide later to implement connection closing handshaking at the spx
* level optionally. Here is the hook to do it:
*/
static int
spx_usr_disconnect(struct socket *so)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
int error;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_usr_disconnect: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_usr_disconnect: cb == NULL"));
IPX_LIST_LOCK();
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
error = EINVAL;
goto out;
}
spx_disconnect(cb);
error = 0;
out:
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
return (error);
}
static int
spx_listen(struct socket *so, int backlog, struct thread *td)
{
int error;
struct ipxpcb *ipxp;
struct spxpcb *cb;
error = 0;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_listen: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_listen: cb == NULL"));
IPX_LIST_LOCK();
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
error = EINVAL;
goto out;
}
SOCK_LOCK(so);
error = solisten_proto_check(so);
if (error == 0 && ipxp->ipxp_lport == 0)
error = ipx_pcbbind(ipxp, NULL, td);
if (error == 0) {
cb->s_state = TCPS_LISTEN;
solisten_proto(so, backlog);
}
SOCK_UNLOCK(so);
out:
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
return (error);
}
/*
* After a receive, possibly send acknowledgment updating allocation.
*/
static int
spx_rcvd(struct socket *so, int flags)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
int error;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_rcvd: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_rcvd: cb == NULL"));
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
error = EINVAL;
goto out;
}
cb->s_flags |= SF_RVD;
spx_output(cb, NULL);
cb->s_flags &= ~SF_RVD;
error = 0;
out:
IPX_UNLOCK(ipxp);
return (error);
}
static int
spx_rcvoob(struct socket *so, struct mbuf *m, int flags)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
int error;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_rcvoob: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_rcvoob: cb == NULL"));
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
error = EINVAL;
goto out;
}
SOCKBUF_LOCK(&so->so_rcv);
if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark ||
(so->so_rcv.sb_state & SBS_RCVATMARK)) {
SOCKBUF_UNLOCK(&so->so_rcv);
m->m_len = 1;
*mtod(m, caddr_t) = cb->s_iobc;
error = 0;
goto out;
}
SOCKBUF_UNLOCK(&so->so_rcv);
error = EINVAL;
out:
IPX_UNLOCK(ipxp);
return (error);
}
static int
spx_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *controlp, struct thread *td)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
int error;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_send: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_send: cb == NULL"));
error = 0;
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
error = ECONNRESET;
goto spx_send_end;
}
if (flags & PRUS_OOB) {
if (sbspace(&so->so_snd) < -512) {
error = ENOBUFS;
goto spx_send_end;
}
cb->s_oobflags |= SF_SOOB;
}
if (controlp != NULL) {
u_short *p = mtod(controlp, u_short *);
spx_newchecks[2]++;
if ((p[0] == 5) && (p[1] == 1)) { /* XXXX, for testing */
cb->s_shdr.spx_dt = *(u_char *)(&p[2]);
spx_newchecks[3]++;
}
m_freem(controlp);
}
controlp = NULL;
error = spx_output(cb, m);
m = NULL;
spx_send_end:
IPX_UNLOCK(ipxp);
if (controlp != NULL)
m_freem(controlp);
if (m != NULL)
m_freem(m);
return (error);
}
static int
spx_shutdown(struct socket *so)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
int error;
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_shutdown: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_shutdown: cb == NULL"));
socantsendmore(so);
IPX_LIST_LOCK();
IPX_LOCK(ipxp);
if (ipxp->ipxp_flags & IPXP_DROPPED) {
error = EINVAL;
goto out;
}
spx_usrclosed(cb);
error = 0;
out:
IPX_UNLOCK(ipxp);
IPX_LIST_UNLOCK();
return (error);
}
static int
spx_sp_attach(struct socket *so, int proto, struct thread *td)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
int error;
KASSERT(so->so_pcb == NULL, ("spx_sp_attach: so_pcb != NULL"));
error = spx_attach(so, proto, td);
if (error)
return (error);
ipxp = sotoipxpcb(so);
KASSERT(ipxp != NULL, ("spx_sp_attach: ipxp == NULL"));
cb = ipxtospxpcb(ipxp);
KASSERT(cb != NULL, ("spx_sp_attach: cb == NULL"));
IPX_LOCK(ipxp);
cb->s_flags |= (SF_HI | SF_HO | SF_PI);
IPX_UNLOCK(ipxp);
return (0);
}
/*
* Create template to be used to send spx packets on a connection. Called
* after host entry created, fills in a skeletal spx header (choosing
* connection id), minimizing the amount of work necessary when the
* connection is used.
*/
static void
spx_template(struct spxpcb *cb)
{
struct ipxpcb *ipxp = cb->s_ipxpcb;
struct sockbuf *sb = &(ipxp->ipxp_socket->so_snd);
IPX_LOCK_ASSERT(ipxp);
cb->s_ipx.ipx_pt = IPXPROTO_SPX;
cb->s_ipx.ipx_sna = ipxp->ipxp_laddr;
cb->s_ipx.ipx_dna = ipxp->ipxp_faddr;
SPX_LOCK();
cb->s_sid = htons(spx_iss);
spx_iss += SPX_ISSINCR/2;
SPX_UNLOCK();
cb->s_alo = 1;
cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu;
/*
* Try to expand fast to full complement of large packets.
*/
cb->s_ssthresh = cb->s_cwnd;
cb->s_cwmx = (sbspace(sb) * CUNIT) / (2 * sizeof(struct spx));
/*
* But allow for lots of little packets as well.
*/
cb->s_cwmx = max(cb->s_cwmx, cb->s_cwnd);
}
/*
* Close a SPIP control block. Wake up any sleepers. We used to free any
* queued packets, but now we defer that until the pcb is discarded.
*/
void
spx_close(struct spxpcb *cb)
{
struct ipxpcb *ipxp = cb->s_ipxpcb;
struct socket *so = ipxp->ipxp_socket;
KASSERT(ipxp != NULL, ("spx_close: ipxp == NULL"));
IPX_LIST_LOCK_ASSERT();
IPX_LOCK_ASSERT(ipxp);
ipxp->ipxp_flags |= IPXP_DROPPED;
soisdisconnected(so);
spxstat.spxs_closed++;
}
/*
* Someday we may do level 3 handshaking to close a connection or send a
* xerox style error. For now, just close. cb will always be invalid after
* this call.
*/
static void
spx_usrclosed(struct spxpcb *cb)
{
IPX_LIST_LOCK_ASSERT();
IPX_LOCK_ASSERT(cb->s_ipxpcb);
spx_close(cb);
}
/*
* cb will always be invalid after this call.
*/
static void
spx_disconnect(struct spxpcb *cb)
{
IPX_LIST_LOCK_ASSERT();
IPX_LOCK_ASSERT(cb->s_ipxpcb);
spx_close(cb);
}
/*
* Drop connection, reporting the specified error. cb will always be invalid
* after this call.
*/
static void
spx_drop(struct spxpcb *cb, int errno)
{
struct socket *so = cb->s_ipxpcb->ipxp_socket;
IPX_LIST_LOCK_ASSERT();
IPX_LOCK_ASSERT(cb->s_ipxpcb);
/*
* Someday, in the xerox world we will generate error protocol
* packets announcing that the socket has gone away.
*/
if (TCPS_HAVERCVDSYN(cb->s_state)) {
spxstat.spxs_drops++;
cb->s_state = TCPS_CLOSED;
/*tcp_output(cb);*/
} else
spxstat.spxs_conndrops++;
so->so_error = errno;
spx_close(cb);
}
/*
* Fast timeout routine for processing delayed acks.
*/
void
spx_fasttimo(void)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
IPX_LIST_LOCK();
LIST_FOREACH(ipxp, &ipxpcb_list, ipxp_list) {
IPX_LOCK(ipxp);
if (!(ipxp->ipxp_flags & IPXP_SPX) ||
(ipxp->ipxp_flags & IPXP_DROPPED)) {
IPX_UNLOCK(ipxp);
continue;
}
cb = ipxtospxpcb(ipxp);
if (cb->s_flags & SF_DELACK) {
cb->s_flags &= ~SF_DELACK;
cb->s_flags |= SF_ACKNOW;
spxstat.spxs_delack++;
spx_output(cb, NULL);
}
IPX_UNLOCK(ipxp);
}
IPX_LIST_UNLOCK();
}
/*
* spx protocol timeout routine called every 500 ms. Updates the timers in
* all active pcb's and causes finite state machine actions if timers expire.
*/
void
spx_slowtimo(void)
{
struct ipxpcb *ipxp;
struct spxpcb *cb;
int i;
/*
* Search through tcb's and update active timers. Once, timers could
* free ipxp's, but now we do that only when detaching a socket.
*/
IPX_LIST_LOCK();
LIST_FOREACH(ipxp, &ipxpcb_list, ipxp_list) {
IPX_LOCK(ipxp);
if (!(ipxp->ipxp_flags & IPXP_SPX) ||
(ipxp->ipxp_flags & IPXP_DROPPED)) {
IPX_UNLOCK(ipxp);
continue;
}
cb = (struct spxpcb *)ipxp->ipxp_pcb;
KASSERT(cb != NULL, ("spx_slowtimo: cb == NULL"));
for (i = 0; i < SPXT_NTIMERS; i++) {
if (cb->s_timer[i] && --cb->s_timer[i] == 0) {
spx_timers(cb, i);
if (ipxp->ipxp_flags & IPXP_DROPPED)
break;
}
}
if (!(ipxp->ipxp_flags & IPXP_DROPPED)) {
cb->s_idle++;
if (cb->s_rtt)
cb->s_rtt++;
}
IPX_UNLOCK(ipxp);
}
IPX_LIST_UNLOCK();
SPX_LOCK();
spx_iss += SPX_ISSINCR/PR_SLOWHZ; /* increment iss */
SPX_UNLOCK();
}
/*
* SPX timer processing.
*/
static void
spx_timers(struct spxpcb *cb, int timer)
{
long rexmt;
int win;
IPX_LIST_LOCK_ASSERT();
IPX_LOCK_ASSERT(cb->s_ipxpcb);
cb->s_force = 1 + timer;
switch (timer) {
case SPXT_2MSL:
/*
* 2 MSL timeout in shutdown went off. TCP deletes
* connection control block.
*/
printf("spx: SPXT_2MSL went off for no reason\n");
cb->s_timer[timer] = 0;
break;
case SPXT_REXMT:
/*
* Retransmission timer went off. Message has not been acked
* within retransmit interval. Back off to a longer
* retransmit interval and retransmit one packet.
*/
if (++cb->s_rxtshift > SPX_MAXRXTSHIFT) {
cb->s_rxtshift = SPX_MAXRXTSHIFT;
spxstat.spxs_timeoutdrop++;
spx_drop(cb, ETIMEDOUT);
break;
}
spxstat.spxs_rexmttimeo++;
rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
rexmt *= spx_backoff[cb->s_rxtshift];
SPXT_RANGESET(cb->s_rxtcur, rexmt, SPXTV_MIN, SPXTV_REXMTMAX);
cb->s_timer[SPXT_REXMT] = cb->s_rxtcur;
/*
* If we have backed off fairly far, our srtt estimate is
* probably bogus. Clobber it so we'll take the next rtt
* measurement as our srtt; move the current srtt into rttvar
* to keep the current retransmit times until then.
*/
if (cb->s_rxtshift > SPX_MAXRXTSHIFT / 4 ) {
cb->s_rttvar += (cb->s_srtt >> 2);
cb->s_srtt = 0;
}
cb->s_snxt = cb->s_rack;
/*
* If timing a packet, stop the timer.
*/
cb->s_rtt = 0;
/*
* See very long discussion in tcp_timer.c about congestion
* window and sstrhesh.
*/
win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2;
if (win < 2)
win = 2;
cb->s_cwnd = CUNIT;
cb->s_ssthresh = win * CUNIT;
spx_output(cb, NULL);
break;
case SPXT_PERSIST:
/*
* Persistance timer into zero window. Force a probe to be
* sent.
*/
spxstat.spxs_persisttimeo++;
spx_setpersist(cb);
spx_output(cb, NULL);
break;
case SPXT_KEEP:
/*
* Keep-alive timer went off; send something or drop
* connection if idle for too long.
*/
spxstat.spxs_keeptimeo++;
if (cb->s_state < TCPS_ESTABLISHED)
goto dropit;
if (cb->s_ipxpcb->ipxp_socket->so_options & SO_KEEPALIVE) {
if (cb->s_idle >= SPXTV_MAXIDLE)
goto dropit;
spxstat.spxs_keepprobe++;
spx_output(cb, NULL);
} else
cb->s_idle = 0;
cb->s_timer[SPXT_KEEP] = SPXTV_KEEP;
break;
dropit:
spxstat.spxs_keepdrops++;
spx_drop(cb, ETIMEDOUT);
break;
default:
panic("spx_timers: unknown timer %d", timer);
}
}