mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-24 11:29:10 +00:00
4260 lines
127 KiB
C
4260 lines
127 KiB
C
/* Subroutines shared by all languages that are variants of C.
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "toplev.h"
|
||
#include "output.h"
|
||
#include "c-pragma.h"
|
||
#include "rtl.h"
|
||
#include "ggc.h"
|
||
#include "expr.h"
|
||
#include "c-common.h"
|
||
#include "tree-inline.h"
|
||
#include "diagnostic.h"
|
||
#include "tm_p.h"
|
||
#include "obstack.h"
|
||
#include "c-lex.h"
|
||
#include "cpplib.h"
|
||
#include "target.h"
|
||
cpp_reader *parse_in; /* Declared in c-lex.h. */
|
||
|
||
#undef WCHAR_TYPE_SIZE
|
||
#define WCHAR_TYPE_SIZE TYPE_PRECISION (wchar_type_node)
|
||
|
||
/* We let tm.h override the types used here, to handle trivial differences
|
||
such as the choice of unsigned int or long unsigned int for size_t.
|
||
When machines start needing nontrivial differences in the size type,
|
||
it would be best to do something here to figure out automatically
|
||
from other information what type to use. */
|
||
|
||
#ifndef SIZE_TYPE
|
||
#define SIZE_TYPE "long unsigned int"
|
||
#endif
|
||
|
||
#ifndef WCHAR_TYPE
|
||
#define WCHAR_TYPE "int"
|
||
#endif
|
||
|
||
#ifndef PTRDIFF_TYPE
|
||
#define PTRDIFF_TYPE "long int"
|
||
#endif
|
||
|
||
#ifndef WINT_TYPE
|
||
#define WINT_TYPE "unsigned int"
|
||
#endif
|
||
|
||
#ifndef INTMAX_TYPE
|
||
#define INTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "int" \
|
||
: ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "long int" \
|
||
: "long long int"))
|
||
#endif
|
||
|
||
#ifndef UINTMAX_TYPE
|
||
#define UINTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "unsigned int" \
|
||
: ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "long unsigned int" \
|
||
: "long long unsigned int"))
|
||
#endif
|
||
|
||
/* The variant of the C language being processed. */
|
||
|
||
enum c_language_kind c_language;
|
||
|
||
/* The following symbols are subsumed in the c_global_trees array, and
|
||
listed here individually for documentation purposes.
|
||
|
||
INTEGER_TYPE and REAL_TYPE nodes for the standard data types.
|
||
|
||
tree short_integer_type_node;
|
||
tree long_integer_type_node;
|
||
tree long_long_integer_type_node;
|
||
|
||
tree short_unsigned_type_node;
|
||
tree long_unsigned_type_node;
|
||
tree long_long_unsigned_type_node;
|
||
|
||
tree boolean_type_node;
|
||
tree boolean_false_node;
|
||
tree boolean_true_node;
|
||
|
||
tree ptrdiff_type_node;
|
||
|
||
tree unsigned_char_type_node;
|
||
tree signed_char_type_node;
|
||
tree wchar_type_node;
|
||
tree signed_wchar_type_node;
|
||
tree unsigned_wchar_type_node;
|
||
|
||
tree float_type_node;
|
||
tree double_type_node;
|
||
tree long_double_type_node;
|
||
|
||
tree complex_integer_type_node;
|
||
tree complex_float_type_node;
|
||
tree complex_double_type_node;
|
||
tree complex_long_double_type_node;
|
||
|
||
tree intQI_type_node;
|
||
tree intHI_type_node;
|
||
tree intSI_type_node;
|
||
tree intDI_type_node;
|
||
tree intTI_type_node;
|
||
|
||
tree unsigned_intQI_type_node;
|
||
tree unsigned_intHI_type_node;
|
||
tree unsigned_intSI_type_node;
|
||
tree unsigned_intDI_type_node;
|
||
tree unsigned_intTI_type_node;
|
||
|
||
tree widest_integer_literal_type_node;
|
||
tree widest_unsigned_literal_type_node;
|
||
|
||
Nodes for types `void *' and `const void *'.
|
||
|
||
tree ptr_type_node, const_ptr_type_node;
|
||
|
||
Nodes for types `char *' and `const char *'.
|
||
|
||
tree string_type_node, const_string_type_node;
|
||
|
||
Type `char[SOMENUMBER]'.
|
||
Used when an array of char is needed and the size is irrelevant.
|
||
|
||
tree char_array_type_node;
|
||
|
||
Type `int[SOMENUMBER]' or something like it.
|
||
Used when an array of int needed and the size is irrelevant.
|
||
|
||
tree int_array_type_node;
|
||
|
||
Type `wchar_t[SOMENUMBER]' or something like it.
|
||
Used when a wide string literal is created.
|
||
|
||
tree wchar_array_type_node;
|
||
|
||
Type `int ()' -- used for implicit declaration of functions.
|
||
|
||
tree default_function_type;
|
||
|
||
A VOID_TYPE node, packaged in a TREE_LIST.
|
||
|
||
tree void_list_node;
|
||
|
||
The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
|
||
and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
|
||
VAR_DECLS, but C++ does.)
|
||
|
||
tree function_name_decl_node;
|
||
tree pretty_function_name_decl_node;
|
||
tree c99_function_name_decl_node;
|
||
|
||
Stack of nested function name VAR_DECLs.
|
||
|
||
tree saved_function_name_decls;
|
||
|
||
*/
|
||
|
||
tree c_global_trees[CTI_MAX];
|
||
|
||
/* Nonzero means don't recognize the non-ANSI builtin functions. */
|
||
|
||
int flag_no_builtin;
|
||
|
||
/* Nonzero means don't recognize the non-ANSI builtin functions.
|
||
-ansi sets this. */
|
||
|
||
int flag_no_nonansi_builtin;
|
||
|
||
/* Nonzero means give `double' the same size as `float'. */
|
||
|
||
int flag_short_double;
|
||
|
||
/* Nonzero means give `wchar_t' the same size as `short'. */
|
||
|
||
int flag_short_wchar;
|
||
|
||
/* Nonzero means warn about possible violations of sequence point rules. */
|
||
|
||
int warn_sequence_point;
|
||
|
||
/* Nonzero means to warn about compile-time division by zero. */
|
||
int warn_div_by_zero = 1;
|
||
|
||
/* The elements of `ridpointers' are identifier nodes for the reserved
|
||
type names and storage classes. It is indexed by a RID_... value. */
|
||
tree *ridpointers;
|
||
|
||
tree (*make_fname_decl) PARAMS ((tree, int));
|
||
|
||
/* If non-NULL, the address of a language-specific function that
|
||
returns 1 for language-specific statement codes. */
|
||
int (*lang_statement_code_p) PARAMS ((enum tree_code));
|
||
|
||
/* If non-NULL, the address of a language-specific function that takes
|
||
any action required right before expand_function_end is called. */
|
||
void (*lang_expand_function_end) PARAMS ((void));
|
||
|
||
/* Nonzero means the expression being parsed will never be evaluated.
|
||
This is a count, since unevaluated expressions can nest. */
|
||
int skip_evaluation;
|
||
|
||
/* Information about how a function name is generated. */
|
||
struct fname_var_t
|
||
{
|
||
tree *const decl; /* pointer to the VAR_DECL. */
|
||
const unsigned rid; /* RID number for the identifier. */
|
||
const int pretty; /* How pretty is it? */
|
||
};
|
||
|
||
/* The three ways of getting then name of the current function. */
|
||
|
||
const struct fname_var_t fname_vars[] =
|
||
{
|
||
/* C99 compliant __func__, must be first. */
|
||
{&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
|
||
/* GCC __FUNCTION__ compliant. */
|
||
{&function_name_decl_node, RID_FUNCTION_NAME, 0},
|
||
/* GCC __PRETTY_FUNCTION__ compliant. */
|
||
{&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
|
||
{NULL, 0, 0},
|
||
};
|
||
|
||
static int constant_fits_type_p PARAMS ((tree, tree));
|
||
|
||
/* Keep a stack of if statements. We record the number of compound
|
||
statements seen up to the if keyword, as well as the line number
|
||
and file of the if. If a potentially ambiguous else is seen, that
|
||
fact is recorded; the warning is issued when we can be sure that
|
||
the enclosing if statement does not have an else branch. */
|
||
typedef struct
|
||
{
|
||
int compstmt_count;
|
||
int line;
|
||
const char *file;
|
||
int needs_warning;
|
||
tree if_stmt;
|
||
} if_elt;
|
||
|
||
static if_elt *if_stack;
|
||
|
||
/* Amount of space in the if statement stack. */
|
||
static int if_stack_space = 0;
|
||
|
||
/* Stack pointer. */
|
||
static int if_stack_pointer = 0;
|
||
|
||
/* Record the start of an if-then, and record the start of it
|
||
for ambiguous else detection.
|
||
|
||
COND is the condition for the if-then statement.
|
||
|
||
IF_STMT is the statement node that has already been created for
|
||
this if-then statement. It is created before parsing the
|
||
condition to keep line number information accurate. */
|
||
|
||
void
|
||
c_expand_start_cond (cond, compstmt_count, if_stmt)
|
||
tree cond;
|
||
int compstmt_count;
|
||
tree if_stmt;
|
||
{
|
||
/* Make sure there is enough space on the stack. */
|
||
if (if_stack_space == 0)
|
||
{
|
||
if_stack_space = 10;
|
||
if_stack = (if_elt *) xmalloc (10 * sizeof (if_elt));
|
||
}
|
||
else if (if_stack_space == if_stack_pointer)
|
||
{
|
||
if_stack_space += 10;
|
||
if_stack = (if_elt *) xrealloc (if_stack, if_stack_space * sizeof (if_elt));
|
||
}
|
||
|
||
IF_COND (if_stmt) = cond;
|
||
add_stmt (if_stmt);
|
||
|
||
/* Record this if statement. */
|
||
if_stack[if_stack_pointer].compstmt_count = compstmt_count;
|
||
if_stack[if_stack_pointer].file = input_filename;
|
||
if_stack[if_stack_pointer].line = lineno;
|
||
if_stack[if_stack_pointer].needs_warning = 0;
|
||
if_stack[if_stack_pointer].if_stmt = if_stmt;
|
||
if_stack_pointer++;
|
||
}
|
||
|
||
/* Called after the then-clause for an if-statement is processed. */
|
||
|
||
void
|
||
c_finish_then ()
|
||
{
|
||
tree if_stmt = if_stack[if_stack_pointer - 1].if_stmt;
|
||
RECHAIN_STMTS (if_stmt, THEN_CLAUSE (if_stmt));
|
||
}
|
||
|
||
/* Record the end of an if-then. Optionally warn if a nested
|
||
if statement had an ambiguous else clause. */
|
||
|
||
void
|
||
c_expand_end_cond ()
|
||
{
|
||
if_stack_pointer--;
|
||
if (if_stack[if_stack_pointer].needs_warning)
|
||
warning_with_file_and_line (if_stack[if_stack_pointer].file,
|
||
if_stack[if_stack_pointer].line,
|
||
"suggest explicit braces to avoid ambiguous `else'");
|
||
last_expr_type = NULL_TREE;
|
||
}
|
||
|
||
/* Called between the then-clause and the else-clause
|
||
of an if-then-else. */
|
||
|
||
void
|
||
c_expand_start_else ()
|
||
{
|
||
/* An ambiguous else warning must be generated for the enclosing if
|
||
statement, unless we see an else branch for that one, too. */
|
||
if (warn_parentheses
|
||
&& if_stack_pointer > 1
|
||
&& (if_stack[if_stack_pointer - 1].compstmt_count
|
||
== if_stack[if_stack_pointer - 2].compstmt_count))
|
||
if_stack[if_stack_pointer - 2].needs_warning = 1;
|
||
|
||
/* Even if a nested if statement had an else branch, it can't be
|
||
ambiguous if this one also has an else. So don't warn in that
|
||
case. Also don't warn for any if statements nested in this else. */
|
||
if_stack[if_stack_pointer - 1].needs_warning = 0;
|
||
if_stack[if_stack_pointer - 1].compstmt_count--;
|
||
}
|
||
|
||
/* Called after the else-clause for an if-statement is processed. */
|
||
|
||
void
|
||
c_finish_else ()
|
||
{
|
||
tree if_stmt = if_stack[if_stack_pointer - 1].if_stmt;
|
||
RECHAIN_STMTS (if_stmt, ELSE_CLAUSE (if_stmt));
|
||
}
|
||
|
||
/* Begin an if-statement. Returns a newly created IF_STMT if
|
||
appropriate.
|
||
|
||
Unlike the C++ front-end, we do not call add_stmt here; it is
|
||
probably safe to do so, but I am not very familiar with this
|
||
code so I am being extra careful not to change its behavior
|
||
beyond what is strictly necessary for correctness. */
|
||
|
||
tree
|
||
c_begin_if_stmt ()
|
||
{
|
||
tree r;
|
||
r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
|
||
return r;
|
||
}
|
||
|
||
/* Begin a while statement. Returns a newly created WHILE_STMT if
|
||
appropriate.
|
||
|
||
Unlike the C++ front-end, we do not call add_stmt here; it is
|
||
probably safe to do so, but I am not very familiar with this
|
||
code so I am being extra careful not to change its behavior
|
||
beyond what is strictly necessary for correctness. */
|
||
|
||
tree
|
||
c_begin_while_stmt ()
|
||
{
|
||
tree r;
|
||
r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
|
||
return r;
|
||
}
|
||
|
||
void
|
||
c_finish_while_stmt_cond (cond, while_stmt)
|
||
tree while_stmt;
|
||
tree cond;
|
||
{
|
||
WHILE_COND (while_stmt) = cond;
|
||
}
|
||
|
||
/* Push current bindings for the function name VAR_DECLS. */
|
||
|
||
void
|
||
start_fname_decls ()
|
||
{
|
||
unsigned ix;
|
||
tree saved = NULL_TREE;
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
{
|
||
tree decl = *fname_vars[ix].decl;
|
||
|
||
if (decl)
|
||
{
|
||
saved = tree_cons (decl, build_int_2 (ix, 0), saved);
|
||
*fname_vars[ix].decl = NULL_TREE;
|
||
}
|
||
}
|
||
if (saved || saved_function_name_decls)
|
||
/* Normally they'll have been NULL, so only push if we've got a
|
||
stack, or they are non-NULL. */
|
||
saved_function_name_decls = tree_cons (saved, NULL_TREE,
|
||
saved_function_name_decls);
|
||
}
|
||
|
||
/* Finish up the current bindings, adding them into the
|
||
current function's statement tree. This is done by wrapping the
|
||
function's body in a COMPOUND_STMT containing these decls too. This
|
||
must be done _before_ finish_stmt_tree is called. If there is no
|
||
current function, we must be at file scope and no statements are
|
||
involved. Pop the previous bindings. */
|
||
|
||
void
|
||
finish_fname_decls ()
|
||
{
|
||
unsigned ix;
|
||
tree body = NULL_TREE;
|
||
tree stack = saved_function_name_decls;
|
||
|
||
for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
|
||
body = chainon (TREE_VALUE (stack), body);
|
||
|
||
if (body)
|
||
{
|
||
/* They were called into existence, so add to statement tree. */
|
||
body = chainon (body,
|
||
TREE_CHAIN (DECL_SAVED_TREE (current_function_decl)));
|
||
body = build_stmt (COMPOUND_STMT, body);
|
||
|
||
COMPOUND_STMT_NO_SCOPE (body) = 1;
|
||
TREE_CHAIN (DECL_SAVED_TREE (current_function_decl)) = body;
|
||
}
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
*fname_vars[ix].decl = NULL_TREE;
|
||
|
||
if (stack)
|
||
{
|
||
/* We had saved values, restore them. */
|
||
tree saved;
|
||
|
||
for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
|
||
{
|
||
tree decl = TREE_PURPOSE (saved);
|
||
unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));
|
||
|
||
*fname_vars[ix].decl = decl;
|
||
}
|
||
stack = TREE_CHAIN (stack);
|
||
}
|
||
saved_function_name_decls = stack;
|
||
}
|
||
|
||
/* Return the text name of the current function, suitable prettified
|
||
by PRETTY_P. */
|
||
|
||
const char *
|
||
fname_as_string (pretty_p)
|
||
int pretty_p;
|
||
{
|
||
const char *name = NULL;
|
||
|
||
if (pretty_p)
|
||
name = (current_function_decl
|
||
? (*decl_printable_name) (current_function_decl, 2)
|
||
: "top level");
|
||
else if (current_function_decl && DECL_NAME (current_function_decl))
|
||
name = IDENTIFIER_POINTER (DECL_NAME (current_function_decl));
|
||
else
|
||
name = "";
|
||
return name;
|
||
}
|
||
|
||
/* Return the text name of the current function, formatted as
|
||
required by the supplied RID value. */
|
||
|
||
const char *
|
||
fname_string (rid)
|
||
unsigned rid;
|
||
{
|
||
unsigned ix;
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
if (fname_vars[ix].rid == rid)
|
||
break;
|
||
return fname_as_string (fname_vars[ix].pretty);
|
||
}
|
||
|
||
/* Return the VAR_DECL for a const char array naming the current
|
||
function. If the VAR_DECL has not yet been created, create it
|
||
now. RID indicates how it should be formatted and IDENTIFIER_NODE
|
||
ID is its name (unfortunately C and C++ hold the RID values of
|
||
keywords in different places, so we can't derive RID from ID in
|
||
this language independent code. */
|
||
|
||
tree
|
||
fname_decl (rid, id)
|
||
unsigned rid;
|
||
tree id;
|
||
{
|
||
unsigned ix;
|
||
tree decl = NULL_TREE;
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
if (fname_vars[ix].rid == rid)
|
||
break;
|
||
|
||
decl = *fname_vars[ix].decl;
|
||
if (!decl)
|
||
{
|
||
tree saved_last_tree = last_tree;
|
||
|
||
decl = (*make_fname_decl) (id, fname_vars[ix].pretty);
|
||
if (last_tree != saved_last_tree)
|
||
{
|
||
/* We created some statement tree for the decl. This belongs
|
||
at the start of the function, so remove it now and reinsert
|
||
it after the function is complete. */
|
||
tree stmts = TREE_CHAIN (saved_last_tree);
|
||
|
||
TREE_CHAIN (saved_last_tree) = NULL_TREE;
|
||
last_tree = saved_last_tree;
|
||
saved_function_name_decls = tree_cons (decl, stmts,
|
||
saved_function_name_decls);
|
||
}
|
||
*fname_vars[ix].decl = decl;
|
||
}
|
||
if (!ix && !current_function_decl)
|
||
pedwarn_with_decl (decl, "`%s' is not defined outside of function scope");
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Given a chain of STRING_CST nodes,
|
||
concatenate them into one STRING_CST
|
||
and give it a suitable array-of-chars data type. */
|
||
|
||
tree
|
||
combine_strings (strings)
|
||
tree strings;
|
||
{
|
||
tree value, t;
|
||
int length = 1;
|
||
int wide_length = 0;
|
||
int wide_flag = 0;
|
||
int wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
|
||
int nchars;
|
||
const int nchars_max = flag_isoc99 ? 4095 : 509;
|
||
|
||
if (TREE_CHAIN (strings))
|
||
{
|
||
/* More than one in the chain, so concatenate. */
|
||
char *p, *q;
|
||
|
||
/* Don't include the \0 at the end of each substring,
|
||
except for the last one.
|
||
Count wide strings and ordinary strings separately. */
|
||
for (t = strings; t; t = TREE_CHAIN (t))
|
||
{
|
||
if (TREE_TYPE (t) == wchar_array_type_node)
|
||
{
|
||
wide_length += (TREE_STRING_LENGTH (t) - wchar_bytes);
|
||
wide_flag = 1;
|
||
}
|
||
else
|
||
{
|
||
length += (TREE_STRING_LENGTH (t) - 1);
|
||
if (C_ARTIFICIAL_STRING_P (t) && !in_system_header)
|
||
warning ("concatenation of string literals with __FUNCTION__ is deprecated");
|
||
}
|
||
}
|
||
|
||
/* If anything is wide, the non-wides will be converted,
|
||
which makes them take more space. */
|
||
if (wide_flag)
|
||
length = length * wchar_bytes + wide_length;
|
||
|
||
p = xmalloc (length);
|
||
|
||
/* Copy the individual strings into the new combined string.
|
||
If the combined string is wide, convert the chars to ints
|
||
for any individual strings that are not wide. */
|
||
|
||
q = p;
|
||
for (t = strings; t; t = TREE_CHAIN (t))
|
||
{
|
||
int len = (TREE_STRING_LENGTH (t)
|
||
- ((TREE_TYPE (t) == wchar_array_type_node)
|
||
? wchar_bytes : 1));
|
||
if ((TREE_TYPE (t) == wchar_array_type_node) == wide_flag)
|
||
{
|
||
memcpy (q, TREE_STRING_POINTER (t), len);
|
||
q += len;
|
||
}
|
||
else
|
||
{
|
||
int i, j;
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (BYTES_BIG_ENDIAN)
|
||
{
|
||
for (j=0; j<(WCHAR_TYPE_SIZE / BITS_PER_UNIT)-1; j++)
|
||
*q++ = 0;
|
||
*q++ = TREE_STRING_POINTER (t)[i];
|
||
}
|
||
else
|
||
{
|
||
*q++ = TREE_STRING_POINTER (t)[i];
|
||
for (j=0; j<(WCHAR_TYPE_SIZE / BITS_PER_UNIT)-1; j++)
|
||
*q++ = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (wide_flag)
|
||
{
|
||
int i;
|
||
for (i = 0; i < wchar_bytes; i++)
|
||
*q++ = 0;
|
||
}
|
||
else
|
||
*q = 0;
|
||
|
||
value = build_string (length, p);
|
||
free (p);
|
||
}
|
||
else
|
||
{
|
||
value = strings;
|
||
length = TREE_STRING_LENGTH (value);
|
||
if (TREE_TYPE (value) == wchar_array_type_node)
|
||
wide_flag = 1;
|
||
}
|
||
|
||
/* Compute the number of elements, for the array type. */
|
||
nchars = wide_flag ? length / wchar_bytes : length;
|
||
|
||
if (pedantic && nchars - 1 > nchars_max && c_language == clk_c)
|
||
pedwarn ("string length `%d' is greater than the length `%d' ISO C%d compilers are required to support",
|
||
nchars - 1, nchars_max, flag_isoc99 ? 99 : 89);
|
||
|
||
/* Create the array type for the string constant.
|
||
-Wwrite-strings says make the string constant an array of const char
|
||
so that copying it to a non-const pointer will get a warning.
|
||
For C++, this is the standard behavior. */
|
||
if (flag_const_strings
|
||
&& (! flag_traditional && ! flag_writable_strings))
|
||
{
|
||
tree elements
|
||
= build_type_variant (wide_flag ? wchar_type_node : char_type_node,
|
||
1, 0);
|
||
TREE_TYPE (value)
|
||
= build_array_type (elements,
|
||
build_index_type (build_int_2 (nchars - 1, 0)));
|
||
}
|
||
else
|
||
TREE_TYPE (value)
|
||
= build_array_type (wide_flag ? wchar_type_node : char_type_node,
|
||
build_index_type (build_int_2 (nchars - 1, 0)));
|
||
|
||
TREE_CONSTANT (value) = 1;
|
||
TREE_READONLY (value) = ! flag_writable_strings;
|
||
TREE_STATIC (value) = 1;
|
||
return value;
|
||
}
|
||
|
||
static int is_valid_printf_arglist PARAMS ((tree));
|
||
static rtx c_expand_builtin PARAMS ((tree, rtx, enum machine_mode, enum expand_modifier));
|
||
static rtx c_expand_builtin_printf PARAMS ((tree, rtx, enum machine_mode,
|
||
enum expand_modifier, int, int));
|
||
static rtx c_expand_builtin_fprintf PARAMS ((tree, rtx, enum machine_mode,
|
||
enum expand_modifier, int, int));
|
||
|
||
/* Print a warning if a constant expression had overflow in folding.
|
||
Invoke this function on every expression that the language
|
||
requires to be a constant expression.
|
||
Note the ANSI C standard says it is erroneous for a
|
||
constant expression to overflow. */
|
||
|
||
void
|
||
constant_expression_warning (value)
|
||
tree value;
|
||
{
|
||
if ((TREE_CODE (value) == INTEGER_CST || TREE_CODE (value) == REAL_CST
|
||
|| TREE_CODE (value) == VECTOR_CST
|
||
|| TREE_CODE (value) == COMPLEX_CST)
|
||
&& TREE_CONSTANT_OVERFLOW (value) && pedantic)
|
||
pedwarn ("overflow in constant expression");
|
||
}
|
||
|
||
/* Print a warning if an expression had overflow in folding.
|
||
Invoke this function on every expression that
|
||
(1) appears in the source code, and
|
||
(2) might be a constant expression that overflowed, and
|
||
(3) is not already checked by convert_and_check;
|
||
however, do not invoke this function on operands of explicit casts. */
|
||
|
||
void
|
||
overflow_warning (value)
|
||
tree value;
|
||
{
|
||
if ((TREE_CODE (value) == INTEGER_CST
|
||
|| (TREE_CODE (value) == COMPLEX_CST
|
||
&& TREE_CODE (TREE_REALPART (value)) == INTEGER_CST))
|
||
&& TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning ("integer overflow in expression");
|
||
}
|
||
else if ((TREE_CODE (value) == REAL_CST
|
||
|| (TREE_CODE (value) == COMPLEX_CST
|
||
&& TREE_CODE (TREE_REALPART (value)) == REAL_CST))
|
||
&& TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning ("floating point overflow in expression");
|
||
}
|
||
else if (TREE_CODE (value) == VECTOR_CST && TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning ("vector overflow in expression");
|
||
}
|
||
}
|
||
|
||
/* Print a warning if a large constant is truncated to unsigned,
|
||
or if -Wconversion is used and a constant < 0 is converted to unsigned.
|
||
Invoke this function on every expression that might be implicitly
|
||
converted to an unsigned type. */
|
||
|
||
void
|
||
unsigned_conversion_warning (result, operand)
|
||
tree result, operand;
|
||
{
|
||
if (TREE_CODE (operand) == INTEGER_CST
|
||
&& TREE_CODE (TREE_TYPE (result)) == INTEGER_TYPE
|
||
&& TREE_UNSIGNED (TREE_TYPE (result))
|
||
&& skip_evaluation == 0
|
||
&& !int_fits_type_p (operand, TREE_TYPE (result)))
|
||
{
|
||
if (!int_fits_type_p (operand, signed_type (TREE_TYPE (result))))
|
||
/* This detects cases like converting -129 or 256 to unsigned char. */
|
||
warning ("large integer implicitly truncated to unsigned type");
|
||
else if (warn_conversion)
|
||
warning ("negative integer implicitly converted to unsigned type");
|
||
}
|
||
}
|
||
|
||
/* Nonzero if constant C has a value that is permissible
|
||
for type TYPE (an INTEGER_TYPE). */
|
||
|
||
static int
|
||
constant_fits_type_p (c, type)
|
||
tree c, type;
|
||
{
|
||
if (TREE_CODE (c) == INTEGER_CST)
|
||
return int_fits_type_p (c, type);
|
||
|
||
c = convert (type, c);
|
||
return !TREE_OVERFLOW (c);
|
||
}
|
||
|
||
/* Convert EXPR to TYPE, warning about conversion problems with constants.
|
||
Invoke this function on every expression that is converted implicitly,
|
||
i.e. because of language rules and not because of an explicit cast. */
|
||
|
||
tree
|
||
convert_and_check (type, expr)
|
||
tree type, expr;
|
||
{
|
||
tree t = convert (type, expr);
|
||
if (TREE_CODE (t) == INTEGER_CST)
|
||
{
|
||
if (TREE_OVERFLOW (t))
|
||
{
|
||
TREE_OVERFLOW (t) = 0;
|
||
|
||
/* Do not diagnose overflow in a constant expression merely
|
||
because a conversion overflowed. */
|
||
TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (expr);
|
||
|
||
/* No warning for converting 0x80000000 to int. */
|
||
if (!(TREE_UNSIGNED (type) < TREE_UNSIGNED (TREE_TYPE (expr))
|
||
&& TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (expr))))
|
||
/* If EXPR fits in the unsigned version of TYPE,
|
||
don't warn unless pedantic. */
|
||
if ((pedantic
|
||
|| TREE_UNSIGNED (type)
|
||
|| ! constant_fits_type_p (expr, unsigned_type (type)))
|
||
&& skip_evaluation == 0)
|
||
warning ("overflow in implicit constant conversion");
|
||
}
|
||
else
|
||
unsigned_conversion_warning (t, expr);
|
||
}
|
||
return t;
|
||
}
|
||
|
||
/* A node in a list that describes references to variables (EXPR), which are
|
||
either read accesses if WRITER is zero, or write accesses, in which case
|
||
WRITER is the parent of EXPR. */
|
||
struct tlist
|
||
{
|
||
struct tlist *next;
|
||
tree expr, writer;
|
||
};
|
||
|
||
/* Used to implement a cache the results of a call to verify_tree. We only
|
||
use this for SAVE_EXPRs. */
|
||
struct tlist_cache
|
||
{
|
||
struct tlist_cache *next;
|
||
struct tlist *cache_before_sp;
|
||
struct tlist *cache_after_sp;
|
||
tree expr;
|
||
};
|
||
|
||
/* Obstack to use when allocating tlist structures, and corresponding
|
||
firstobj. */
|
||
static struct obstack tlist_obstack;
|
||
static char *tlist_firstobj = 0;
|
||
|
||
/* Keep track of the identifiers we've warned about, so we can avoid duplicate
|
||
warnings. */
|
||
static struct tlist *warned_ids;
|
||
/* SAVE_EXPRs need special treatment. We process them only once and then
|
||
cache the results. */
|
||
static struct tlist_cache *save_expr_cache;
|
||
|
||
static void add_tlist PARAMS ((struct tlist **, struct tlist *, tree, int));
|
||
static void merge_tlist PARAMS ((struct tlist **, struct tlist *, int));
|
||
static void verify_tree PARAMS ((tree, struct tlist **, struct tlist **, tree));
|
||
static int warning_candidate_p PARAMS ((tree));
|
||
static void warn_for_collisions PARAMS ((struct tlist *));
|
||
static void warn_for_collisions_1 PARAMS ((tree, tree, struct tlist *, int));
|
||
static struct tlist *new_tlist PARAMS ((struct tlist *, tree, tree));
|
||
static void verify_sequence_points PARAMS ((tree));
|
||
|
||
/* Create a new struct tlist and fill in its fields. */
|
||
static struct tlist *
|
||
new_tlist (next, t, writer)
|
||
struct tlist *next;
|
||
tree t;
|
||
tree writer;
|
||
{
|
||
struct tlist *l;
|
||
l = (struct tlist *) obstack_alloc (&tlist_obstack, sizeof *l);
|
||
l->next = next;
|
||
l->expr = t;
|
||
l->writer = writer;
|
||
return l;
|
||
}
|
||
|
||
/* Add duplicates of the nodes found in ADD to the list *TO. If EXCLUDE_WRITER
|
||
is nonnull, we ignore any node we find which has a writer equal to it. */
|
||
|
||
static void
|
||
add_tlist (to, add, exclude_writer, copy)
|
||
struct tlist **to;
|
||
struct tlist *add;
|
||
tree exclude_writer;
|
||
int copy;
|
||
{
|
||
while (add)
|
||
{
|
||
struct tlist *next = add->next;
|
||
if (! copy)
|
||
add->next = *to;
|
||
if (! exclude_writer || add->writer != exclude_writer)
|
||
*to = copy ? new_tlist (*to, add->expr, add->writer) : add;
|
||
add = next;
|
||
}
|
||
}
|
||
|
||
/* Merge the nodes of ADD into TO. This merging process is done so that for
|
||
each variable that already exists in TO, no new node is added; however if
|
||
there is a write access recorded in ADD, and an occurrence on TO is only
|
||
a read access, then the occurrence in TO will be modified to record the
|
||
write. */
|
||
|
||
static void
|
||
merge_tlist (to, add, copy)
|
||
struct tlist **to;
|
||
struct tlist *add;
|
||
int copy;
|
||
{
|
||
struct tlist **end = to;
|
||
|
||
while (*end)
|
||
end = &(*end)->next;
|
||
|
||
while (add)
|
||
{
|
||
int found = 0;
|
||
struct tlist *tmp2;
|
||
struct tlist *next = add->next;
|
||
|
||
for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
|
||
if (tmp2->expr == add->expr)
|
||
{
|
||
found = 1;
|
||
if (! tmp2->writer)
|
||
tmp2->writer = add->writer;
|
||
}
|
||
if (! found)
|
||
{
|
||
*end = copy ? add : new_tlist (NULL, add->expr, add->writer);
|
||
end = &(*end)->next;
|
||
*end = 0;
|
||
}
|
||
add = next;
|
||
}
|
||
}
|
||
|
||
/* WRITTEN is a variable, WRITER is its parent. Warn if any of the variable
|
||
references in list LIST conflict with it, excluding reads if ONLY writers
|
||
is nonzero. */
|
||
|
||
static void
|
||
warn_for_collisions_1 (written, writer, list, only_writes)
|
||
tree written, writer;
|
||
struct tlist *list;
|
||
int only_writes;
|
||
{
|
||
struct tlist *tmp;
|
||
|
||
/* Avoid duplicate warnings. */
|
||
for (tmp = warned_ids; tmp; tmp = tmp->next)
|
||
if (tmp->expr == written)
|
||
return;
|
||
|
||
while (list)
|
||
{
|
||
if (list->expr == written
|
||
&& list->writer != writer
|
||
&& (! only_writes || list->writer))
|
||
{
|
||
warned_ids = new_tlist (warned_ids, written, NULL_TREE);
|
||
warning ("operation on `%s' may be undefined",
|
||
IDENTIFIER_POINTER (DECL_NAME (list->expr)));
|
||
}
|
||
list = list->next;
|
||
}
|
||
}
|
||
|
||
/* Given a list LIST of references to variables, find whether any of these
|
||
can cause conflicts due to missing sequence points. */
|
||
|
||
static void
|
||
warn_for_collisions (list)
|
||
struct tlist *list;
|
||
{
|
||
struct tlist *tmp;
|
||
|
||
for (tmp = list; tmp; tmp = tmp->next)
|
||
{
|
||
if (tmp->writer)
|
||
warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if X is a tree that can be verified by the sequence point
|
||
warnings. */
|
||
static int
|
||
warning_candidate_p (x)
|
||
tree x;
|
||
{
|
||
return TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == PARM_DECL;
|
||
}
|
||
|
||
/* Walk the tree X, and record accesses to variables. If X is written by the
|
||
parent tree, WRITER is the parent.
|
||
We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP. If this
|
||
expression or its only operand forces a sequence point, then everything up
|
||
to the sequence point is stored in PBEFORE_SP. Everything else gets stored
|
||
in PNO_SP.
|
||
Once we return, we will have emitted warnings if any subexpression before
|
||
such a sequence point could be undefined. On a higher level, however, the
|
||
sequence point may not be relevant, and we'll merge the two lists.
|
||
|
||
Example: (b++, a) + b;
|
||
The call that processes the COMPOUND_EXPR will store the increment of B
|
||
in PBEFORE_SP, and the use of A in PNO_SP. The higher-level call that
|
||
processes the PLUS_EXPR will need to merge the two lists so that
|
||
eventually, all accesses end up on the same list (and we'll warn about the
|
||
unordered subexpressions b++ and b.
|
||
|
||
A note on merging. If we modify the former example so that our expression
|
||
becomes
|
||
(b++, b) + a
|
||
care must be taken not simply to add all three expressions into the final
|
||
PNO_SP list. The function merge_tlist takes care of that by merging the
|
||
before-SP list of the COMPOUND_EXPR into its after-SP list in a special
|
||
way, so that no more than one access to B is recorded. */
|
||
|
||
static void
|
||
verify_tree (x, pbefore_sp, pno_sp, writer)
|
||
tree x;
|
||
struct tlist **pbefore_sp, **pno_sp;
|
||
tree writer;
|
||
{
|
||
struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
|
||
enum tree_code code;
|
||
char class;
|
||
|
||
/* X may be NULL if it is the operand of an empty statement expression
|
||
({ }). */
|
||
if (x == NULL)
|
||
return;
|
||
|
||
restart:
|
||
code = TREE_CODE (x);
|
||
class = TREE_CODE_CLASS (code);
|
||
|
||
if (warning_candidate_p (x))
|
||
{
|
||
*pno_sp = new_tlist (*pno_sp, x, writer);
|
||
return;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case CONSTRUCTOR:
|
||
return;
|
||
|
||
case COMPOUND_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
tmp_before = tmp_nosp = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
merge_tlist (pbefore_sp, tmp_nosp, 0);
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, pno_sp, NULL_TREE);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
return;
|
||
|
||
case COND_EXPR:
|
||
tmp_before = tmp_list2 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
|
||
warn_for_collisions (tmp_list2);
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
merge_tlist (pbefore_sp, tmp_list2, 1);
|
||
|
||
tmp_list3 = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
|
||
tmp_list3 = tmp_list2 = 0;
|
||
verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
|
||
warn_for_collisions (tmp_list2);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
/* Rather than add both tmp_nosp and tmp_list2, we have to merge the
|
||
two first, to avoid warning for (a ? b++ : b++). */
|
||
merge_tlist (&tmp_nosp, tmp_list2, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
return;
|
||
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
|
||
return;
|
||
|
||
case MODIFY_EXPR:
|
||
tmp_before = tmp_nosp = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
|
||
/* Expressions inside the LHS are not ordered wrt. the sequence points
|
||
in the RHS. Example:
|
||
*a = (a++, 2)
|
||
Despite the fact that the modification of "a" is in the before_sp
|
||
list (tmp_before), it conflicts with the use of "a" in the LHS.
|
||
We can handle this by adding the contents of tmp_list3
|
||
to those of tmp_before, and redoing the collision warnings for that
|
||
list. */
|
||
add_tlist (&tmp_before, tmp_list3, x, 1);
|
||
warn_for_collisions (tmp_before);
|
||
/* Exclude the LHS itself here; we first have to merge it into the
|
||
tmp_nosp list. This is done to avoid warning for "a = a"; if we
|
||
didn't exclude the LHS, we'd get it twice, once as a read and once
|
||
as a write. */
|
||
add_tlist (pno_sp, tmp_list3, x, 0);
|
||
warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);
|
||
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
if (warning_candidate_p (TREE_OPERAND (x, 0)))
|
||
merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
|
||
return;
|
||
|
||
case CALL_EXPR:
|
||
/* We need to warn about conflicts among arguments and conflicts between
|
||
args and the function address. Side effects of the function address,
|
||
however, are not ordered by the sequence point of the call. */
|
||
tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
if (TREE_OPERAND (x, 1))
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list2, &tmp_list3, NULL_TREE);
|
||
merge_tlist (&tmp_list3, tmp_list2, 0);
|
||
add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
|
||
add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
|
||
warn_for_collisions (tmp_before);
|
||
add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
|
||
return;
|
||
|
||
case TREE_LIST:
|
||
/* Scan all the list, e.g. indices of multi dimensional array. */
|
||
while (x)
|
||
{
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
merge_tlist (&tmp_nosp, tmp_before, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
x = TREE_CHAIN (x);
|
||
}
|
||
return;
|
||
|
||
case SAVE_EXPR:
|
||
{
|
||
struct tlist_cache *t;
|
||
for (t = save_expr_cache; t; t = t->next)
|
||
if (t->expr == x)
|
||
break;
|
||
|
||
if (! t)
|
||
{
|
||
t = (struct tlist_cache *) obstack_alloc (&tlist_obstack,
|
||
sizeof *t);
|
||
t->next = save_expr_cache;
|
||
t->expr = x;
|
||
save_expr_cache = t;
|
||
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
|
||
tmp_list3 = 0;
|
||
while (tmp_nosp)
|
||
{
|
||
struct tlist *t = tmp_nosp;
|
||
tmp_nosp = t->next;
|
||
merge_tlist (&tmp_list3, t, 0);
|
||
}
|
||
t->cache_before_sp = tmp_before;
|
||
t->cache_after_sp = tmp_list3;
|
||
}
|
||
merge_tlist (pbefore_sp, t->cache_before_sp, 1);
|
||
add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
|
||
return;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (class == '1')
|
||
{
|
||
if (first_rtl_op (code) == 0)
|
||
return;
|
||
x = TREE_OPERAND (x, 0);
|
||
writer = 0;
|
||
goto restart;
|
||
}
|
||
|
||
switch (class)
|
||
{
|
||
case 'r':
|
||
case '<':
|
||
case '2':
|
||
case 'b':
|
||
case 'e':
|
||
case 's':
|
||
case 'x':
|
||
{
|
||
int lp;
|
||
int max = first_rtl_op (TREE_CODE (x));
|
||
for (lp = 0; lp < max; lp++)
|
||
{
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
merge_tlist (&tmp_nosp, tmp_before, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to warn for undefined behaviour in EXPR due to missing sequence
|
||
points. */
|
||
|
||
static void
|
||
verify_sequence_points (expr)
|
||
tree expr;
|
||
{
|
||
struct tlist *before_sp = 0, *after_sp = 0;
|
||
|
||
warned_ids = 0;
|
||
save_expr_cache = 0;
|
||
if (tlist_firstobj == 0)
|
||
{
|
||
gcc_obstack_init (&tlist_obstack);
|
||
tlist_firstobj = obstack_alloc (&tlist_obstack, 0);
|
||
}
|
||
|
||
verify_tree (expr, &before_sp, &after_sp, 0);
|
||
warn_for_collisions (after_sp);
|
||
obstack_free (&tlist_obstack, tlist_firstobj);
|
||
}
|
||
|
||
tree
|
||
c_expand_expr_stmt (expr)
|
||
tree expr;
|
||
{
|
||
/* Do default conversion if safe and possibly important,
|
||
in case within ({...}). */
|
||
if ((TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE
|
||
&& (flag_isoc99 || lvalue_p (expr)))
|
||
|| TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE)
|
||
expr = default_conversion (expr);
|
||
|
||
if (warn_sequence_point)
|
||
verify_sequence_points (expr);
|
||
|
||
if (TREE_TYPE (expr) != error_mark_node
|
||
&& !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
|
||
&& TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
|
||
error ("expression statement has incomplete type");
|
||
|
||
last_expr_type = TREE_TYPE (expr);
|
||
return add_stmt (build_stmt (EXPR_STMT, expr));
|
||
}
|
||
|
||
/* Validate the expression after `case' and apply default promotions. */
|
||
|
||
tree
|
||
check_case_value (value)
|
||
tree value;
|
||
{
|
||
if (value == NULL_TREE)
|
||
return value;
|
||
|
||
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
|
||
STRIP_TYPE_NOPS (value);
|
||
/* In C++, the following is allowed:
|
||
|
||
const int i = 3;
|
||
switch (...) { case i: ... }
|
||
|
||
So, we try to reduce the VALUE to a constant that way. */
|
||
if (c_language == clk_cplusplus)
|
||
{
|
||
value = decl_constant_value (value);
|
||
STRIP_TYPE_NOPS (value);
|
||
value = fold (value);
|
||
}
|
||
|
||
if (TREE_CODE (value) != INTEGER_CST
|
||
&& value != error_mark_node)
|
||
{
|
||
error ("case label does not reduce to an integer constant");
|
||
value = error_mark_node;
|
||
}
|
||
else
|
||
/* Promote char or short to int. */
|
||
value = default_conversion (value);
|
||
|
||
constant_expression_warning (value);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Return an integer type with BITS bits of precision,
|
||
that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
|
||
|
||
tree
|
||
type_for_size (bits, unsignedp)
|
||
unsigned bits;
|
||
int unsignedp;
|
||
{
|
||
if (bits == TYPE_PRECISION (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
|
||
if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
|
||
return (unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node);
|
||
|
||
if (bits <= TYPE_PRECISION (intQI_type_node))
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intHI_type_node))
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intSI_type_node))
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intDI_type_node))
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a data type that has machine mode MODE.
|
||
If the mode is an integer,
|
||
then UNSIGNEDP selects between signed and unsigned types. */
|
||
|
||
tree
|
||
type_for_mode (mode, unsignedp)
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
{
|
||
if (mode == TYPE_MODE (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
|
||
if (mode == TYPE_MODE (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_long_integer_type_node))
|
||
return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (widest_integer_literal_type_node))
|
||
return unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node;
|
||
|
||
if (mode == QImode)
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
|
||
if (mode == HImode)
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
|
||
if (mode == SImode)
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
|
||
if (mode == DImode)
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (mode == TYPE_MODE (intTI_type_node))
|
||
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
|
||
#endif
|
||
|
||
if (mode == TYPE_MODE (float_type_node))
|
||
return float_type_node;
|
||
|
||
if (mode == TYPE_MODE (double_type_node))
|
||
return double_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_double_type_node))
|
||
return long_double_type_node;
|
||
|
||
if (mode == TYPE_MODE (build_pointer_type (char_type_node)))
|
||
return build_pointer_type (char_type_node);
|
||
|
||
if (mode == TYPE_MODE (build_pointer_type (integer_type_node)))
|
||
return build_pointer_type (integer_type_node);
|
||
|
||
#ifdef VECTOR_MODE_SUPPORTED_P
|
||
if (VECTOR_MODE_SUPPORTED_P (mode))
|
||
{
|
||
switch (mode)
|
||
{
|
||
case V16QImode:
|
||
return unsignedp ? unsigned_V16QI_type_node : V16QI_type_node;
|
||
case V8HImode:
|
||
return unsignedp ? unsigned_V8HI_type_node : V8HI_type_node;
|
||
case V4SImode:
|
||
return unsignedp ? unsigned_V4SI_type_node : V4SI_type_node;
|
||
case V2SImode:
|
||
return unsignedp ? unsigned_V2SI_type_node : V2SI_type_node;
|
||
case V4HImode:
|
||
return unsignedp ? unsigned_V4HI_type_node : V4HI_type_node;
|
||
case V8QImode:
|
||
return unsignedp ? unsigned_V8QI_type_node : V8QI_type_node;
|
||
case V16SFmode:
|
||
return V16SF_type_node;
|
||
case V4SFmode:
|
||
return V4SF_type_node;
|
||
case V2SFmode:
|
||
return V2SF_type_node;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return an unsigned type the same as TYPE in other respects. */
|
||
tree
|
||
unsigned_type (type)
|
||
tree type;
|
||
{
|
||
tree type1 = TYPE_MAIN_VARIANT (type);
|
||
if (type1 == signed_char_type_node || type1 == char_type_node)
|
||
return unsigned_char_type_node;
|
||
if (type1 == integer_type_node)
|
||
return unsigned_type_node;
|
||
if (type1 == short_integer_type_node)
|
||
return short_unsigned_type_node;
|
||
if (type1 == long_integer_type_node)
|
||
return long_unsigned_type_node;
|
||
if (type1 == long_long_integer_type_node)
|
||
return long_long_unsigned_type_node;
|
||
if (type1 == widest_integer_literal_type_node)
|
||
return widest_unsigned_literal_type_node;
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (type1 == intTI_type_node)
|
||
return unsigned_intTI_type_node;
|
||
#endif
|
||
if (type1 == intDI_type_node)
|
||
return unsigned_intDI_type_node;
|
||
if (type1 == intSI_type_node)
|
||
return unsigned_intSI_type_node;
|
||
if (type1 == intHI_type_node)
|
||
return unsigned_intHI_type_node;
|
||
if (type1 == intQI_type_node)
|
||
return unsigned_intQI_type_node;
|
||
|
||
return signed_or_unsigned_type (1, type);
|
||
}
|
||
|
||
/* Return a signed type the same as TYPE in other respects. */
|
||
|
||
tree
|
||
signed_type (type)
|
||
tree type;
|
||
{
|
||
tree type1 = TYPE_MAIN_VARIANT (type);
|
||
if (type1 == unsigned_char_type_node || type1 == char_type_node)
|
||
return signed_char_type_node;
|
||
if (type1 == unsigned_type_node)
|
||
return integer_type_node;
|
||
if (type1 == short_unsigned_type_node)
|
||
return short_integer_type_node;
|
||
if (type1 == long_unsigned_type_node)
|
||
return long_integer_type_node;
|
||
if (type1 == long_long_unsigned_type_node)
|
||
return long_long_integer_type_node;
|
||
if (type1 == widest_unsigned_literal_type_node)
|
||
return widest_integer_literal_type_node;
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (type1 == unsigned_intTI_type_node)
|
||
return intTI_type_node;
|
||
#endif
|
||
if (type1 == unsigned_intDI_type_node)
|
||
return intDI_type_node;
|
||
if (type1 == unsigned_intSI_type_node)
|
||
return intSI_type_node;
|
||
if (type1 == unsigned_intHI_type_node)
|
||
return intHI_type_node;
|
||
if (type1 == unsigned_intQI_type_node)
|
||
return intQI_type_node;
|
||
|
||
return signed_or_unsigned_type (0, type);
|
||
}
|
||
|
||
/* Return a type the same as TYPE except unsigned or
|
||
signed according to UNSIGNEDP. */
|
||
|
||
tree
|
||
signed_or_unsigned_type (unsignedp, type)
|
||
int unsignedp;
|
||
tree type;
|
||
{
|
||
if (! INTEGRAL_TYPE_P (type)
|
||
|| TREE_UNSIGNED (type) == unsignedp)
|
||
return type;
|
||
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (widest_integer_literal_type_node))
|
||
return (unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node);
|
||
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intTI_type_node))
|
||
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
|
||
#endif
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intDI_type_node))
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intSI_type_node))
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intHI_type_node))
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
if (TYPE_PRECISION (type) == TYPE_PRECISION (intQI_type_node))
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Return the minimum number of bits needed to represent VALUE in a
|
||
signed or unsigned type, UNSIGNEDP says which. */
|
||
|
||
unsigned int
|
||
min_precision (value, unsignedp)
|
||
tree value;
|
||
int unsignedp;
|
||
{
|
||
int log;
|
||
|
||
/* If the value is negative, compute its negative minus 1. The latter
|
||
adjustment is because the absolute value of the largest negative value
|
||
is one larger than the largest positive value. This is equivalent to
|
||
a bit-wise negation, so use that operation instead. */
|
||
|
||
if (tree_int_cst_sgn (value) < 0)
|
||
value = fold (build1 (BIT_NOT_EXPR, TREE_TYPE (value), value));
|
||
|
||
/* Return the number of bits needed, taking into account the fact
|
||
that we need one more bit for a signed than unsigned type. */
|
||
|
||
if (integer_zerop (value))
|
||
log = 0;
|
||
else
|
||
log = tree_floor_log2 (value);
|
||
|
||
return log + 1 + ! unsignedp;
|
||
}
|
||
|
||
/* Print an error message for invalid operands to arith operation CODE.
|
||
NOP_EXPR is used as a special case (see truthvalue_conversion). */
|
||
|
||
void
|
||
binary_op_error (code)
|
||
enum tree_code code;
|
||
{
|
||
const char *opname;
|
||
|
||
switch (code)
|
||
{
|
||
case NOP_EXPR:
|
||
error ("invalid truth-value expression");
|
||
return;
|
||
|
||
case PLUS_EXPR:
|
||
opname = "+"; break;
|
||
case MINUS_EXPR:
|
||
opname = "-"; break;
|
||
case MULT_EXPR:
|
||
opname = "*"; break;
|
||
case MAX_EXPR:
|
||
opname = "max"; break;
|
||
case MIN_EXPR:
|
||
opname = "min"; break;
|
||
case EQ_EXPR:
|
||
opname = "=="; break;
|
||
case NE_EXPR:
|
||
opname = "!="; break;
|
||
case LE_EXPR:
|
||
opname = "<="; break;
|
||
case GE_EXPR:
|
||
opname = ">="; break;
|
||
case LT_EXPR:
|
||
opname = "<"; break;
|
||
case GT_EXPR:
|
||
opname = ">"; break;
|
||
case LSHIFT_EXPR:
|
||
opname = "<<"; break;
|
||
case RSHIFT_EXPR:
|
||
opname = ">>"; break;
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
opname = "%"; break;
|
||
case TRUNC_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
opname = "/"; break;
|
||
case BIT_AND_EXPR:
|
||
opname = "&"; break;
|
||
case BIT_IOR_EXPR:
|
||
opname = "|"; break;
|
||
case TRUTH_ANDIF_EXPR:
|
||
opname = "&&"; break;
|
||
case TRUTH_ORIF_EXPR:
|
||
opname = "||"; break;
|
||
case BIT_XOR_EXPR:
|
||
opname = "^"; break;
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
opname = "rotate"; break;
|
||
default:
|
||
opname = "unknown"; break;
|
||
}
|
||
error ("invalid operands to binary %s", opname);
|
||
}
|
||
|
||
/* Subroutine of build_binary_op, used for comparison operations.
|
||
See if the operands have both been converted from subword integer types
|
||
and, if so, perhaps change them both back to their original type.
|
||
This function is also responsible for converting the two operands
|
||
to the proper common type for comparison.
|
||
|
||
The arguments of this function are all pointers to local variables
|
||
of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
|
||
RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.
|
||
|
||
If this function returns nonzero, it means that the comparison has
|
||
a constant value. What this function returns is an expression for
|
||
that value. */
|
||
|
||
tree
|
||
shorten_compare (op0_ptr, op1_ptr, restype_ptr, rescode_ptr)
|
||
tree *op0_ptr, *op1_ptr;
|
||
tree *restype_ptr;
|
||
enum tree_code *rescode_ptr;
|
||
{
|
||
tree type;
|
||
tree op0 = *op0_ptr;
|
||
tree op1 = *op1_ptr;
|
||
int unsignedp0, unsignedp1;
|
||
int real1, real2;
|
||
tree primop0, primop1;
|
||
enum tree_code code = *rescode_ptr;
|
||
|
||
/* Throw away any conversions to wider types
|
||
already present in the operands. */
|
||
|
||
primop0 = get_narrower (op0, &unsignedp0);
|
||
primop1 = get_narrower (op1, &unsignedp1);
|
||
|
||
/* Handle the case that OP0 does not *contain* a conversion
|
||
but it *requires* conversion to FINAL_TYPE. */
|
||
|
||
if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
|
||
unsignedp0 = TREE_UNSIGNED (TREE_TYPE (op0));
|
||
if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
|
||
unsignedp1 = TREE_UNSIGNED (TREE_TYPE (op1));
|
||
|
||
/* If one of the operands must be floated, we cannot optimize. */
|
||
real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
|
||
real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;
|
||
|
||
/* If first arg is constant, swap the args (changing operation
|
||
so value is preserved), for canonicalization. Don't do this if
|
||
the second arg is 0. */
|
||
|
||
if (TREE_CONSTANT (primop0)
|
||
&& ! integer_zerop (primop1) && ! real_zerop (primop1))
|
||
{
|
||
tree tem = primop0;
|
||
int temi = unsignedp0;
|
||
primop0 = primop1;
|
||
primop1 = tem;
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
*op0_ptr = op0;
|
||
*op1_ptr = op1;
|
||
unsignedp0 = unsignedp1;
|
||
unsignedp1 = temi;
|
||
temi = real1;
|
||
real1 = real2;
|
||
real2 = temi;
|
||
|
||
switch (code)
|
||
{
|
||
case LT_EXPR:
|
||
code = GT_EXPR;
|
||
break;
|
||
case GT_EXPR:
|
||
code = LT_EXPR;
|
||
break;
|
||
case LE_EXPR:
|
||
code = GE_EXPR;
|
||
break;
|
||
case GE_EXPR:
|
||
code = LE_EXPR;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
*rescode_ptr = code;
|
||
}
|
||
|
||
/* If comparing an integer against a constant more bits wide,
|
||
maybe we can deduce a value of 1 or 0 independent of the data.
|
||
Or else truncate the constant now
|
||
rather than extend the variable at run time.
|
||
|
||
This is only interesting if the constant is the wider arg.
|
||
Also, it is not safe if the constant is unsigned and the
|
||
variable arg is signed, since in this case the variable
|
||
would be sign-extended and then regarded as unsigned.
|
||
Our technique fails in this case because the lowest/highest
|
||
possible unsigned results don't follow naturally from the
|
||
lowest/highest possible values of the variable operand.
|
||
For just EQ_EXPR and NE_EXPR there is another technique that
|
||
could be used: see if the constant can be faithfully represented
|
||
in the other operand's type, by truncating it and reextending it
|
||
and see if that preserves the constant's value. */
|
||
|
||
if (!real1 && !real2
|
||
&& TREE_CODE (primop1) == INTEGER_CST
|
||
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
|
||
{
|
||
int min_gt, max_gt, min_lt, max_lt;
|
||
tree maxval, minval;
|
||
/* 1 if comparison is nominally unsigned. */
|
||
int unsignedp = TREE_UNSIGNED (*restype_ptr);
|
||
tree val;
|
||
|
||
type = signed_or_unsigned_type (unsignedp0, TREE_TYPE (primop0));
|
||
|
||
/* If TYPE is an enumeration, then we need to get its min/max
|
||
values from it's underlying integral type, not the enumerated
|
||
type itself. */
|
||
if (TREE_CODE (type) == ENUMERAL_TYPE)
|
||
type = type_for_size (TYPE_PRECISION (type), unsignedp0);
|
||
|
||
maxval = TYPE_MAX_VALUE (type);
|
||
minval = TYPE_MIN_VALUE (type);
|
||
|
||
if (unsignedp && !unsignedp0)
|
||
*restype_ptr = signed_type (*restype_ptr);
|
||
|
||
if (TREE_TYPE (primop1) != *restype_ptr)
|
||
primop1 = convert (*restype_ptr, primop1);
|
||
if (type != *restype_ptr)
|
||
{
|
||
minval = convert (*restype_ptr, minval);
|
||
maxval = convert (*restype_ptr, maxval);
|
||
}
|
||
|
||
if (unsignedp && unsignedp0)
|
||
{
|
||
min_gt = INT_CST_LT_UNSIGNED (primop1, minval);
|
||
max_gt = INT_CST_LT_UNSIGNED (primop1, maxval);
|
||
min_lt = INT_CST_LT_UNSIGNED (minval, primop1);
|
||
max_lt = INT_CST_LT_UNSIGNED (maxval, primop1);
|
||
}
|
||
else
|
||
{
|
||
min_gt = INT_CST_LT (primop1, minval);
|
||
max_gt = INT_CST_LT (primop1, maxval);
|
||
min_lt = INT_CST_LT (minval, primop1);
|
||
max_lt = INT_CST_LT (maxval, primop1);
|
||
}
|
||
|
||
val = 0;
|
||
/* This used to be a switch, but Genix compiler can't handle that. */
|
||
if (code == NE_EXPR)
|
||
{
|
||
if (max_lt || min_gt)
|
||
val = boolean_true_node;
|
||
}
|
||
else if (code == EQ_EXPR)
|
||
{
|
||
if (max_lt || min_gt)
|
||
val = boolean_false_node;
|
||
}
|
||
else if (code == LT_EXPR)
|
||
{
|
||
if (max_lt)
|
||
val = boolean_true_node;
|
||
if (!min_lt)
|
||
val = boolean_false_node;
|
||
}
|
||
else if (code == GT_EXPR)
|
||
{
|
||
if (min_gt)
|
||
val = boolean_true_node;
|
||
if (!max_gt)
|
||
val = boolean_false_node;
|
||
}
|
||
else if (code == LE_EXPR)
|
||
{
|
||
if (!max_gt)
|
||
val = boolean_true_node;
|
||
if (min_gt)
|
||
val = boolean_false_node;
|
||
}
|
||
else if (code == GE_EXPR)
|
||
{
|
||
if (!min_lt)
|
||
val = boolean_true_node;
|
||
if (max_lt)
|
||
val = boolean_false_node;
|
||
}
|
||
|
||
/* If primop0 was sign-extended and unsigned comparison specd,
|
||
we did a signed comparison above using the signed type bounds.
|
||
But the comparison we output must be unsigned.
|
||
|
||
Also, for inequalities, VAL is no good; but if the signed
|
||
comparison had *any* fixed result, it follows that the
|
||
unsigned comparison just tests the sign in reverse
|
||
(positive values are LE, negative ones GE).
|
||
So we can generate an unsigned comparison
|
||
against an extreme value of the signed type. */
|
||
|
||
if (unsignedp && !unsignedp0)
|
||
{
|
||
if (val != 0)
|
||
switch (code)
|
||
{
|
||
case LT_EXPR:
|
||
case GE_EXPR:
|
||
primop1 = TYPE_MIN_VALUE (type);
|
||
val = 0;
|
||
break;
|
||
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
primop1 = TYPE_MAX_VALUE (type);
|
||
val = 0;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
type = unsigned_type (type);
|
||
}
|
||
|
||
if (!max_gt && !unsignedp0 && TREE_CODE (primop0) != INTEGER_CST)
|
||
{
|
||
/* This is the case of (char)x >?< 0x80, which people used to use
|
||
expecting old C compilers to change the 0x80 into -0x80. */
|
||
if (val == boolean_false_node)
|
||
warning ("comparison is always false due to limited range of data type");
|
||
if (val == boolean_true_node)
|
||
warning ("comparison is always true due to limited range of data type");
|
||
}
|
||
|
||
if (!min_lt && unsignedp0 && TREE_CODE (primop0) != INTEGER_CST)
|
||
{
|
||
/* This is the case of (unsigned char)x >?< -1 or < 0. */
|
||
if (val == boolean_false_node)
|
||
warning ("comparison is always false due to limited range of data type");
|
||
if (val == boolean_true_node)
|
||
warning ("comparison is always true due to limited range of data type");
|
||
}
|
||
|
||
if (val != 0)
|
||
{
|
||
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
|
||
if (TREE_SIDE_EFFECTS (primop0))
|
||
return build (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
|
||
return val;
|
||
}
|
||
|
||
/* Value is not predetermined, but do the comparison
|
||
in the type of the operand that is not constant.
|
||
TYPE is already properly set. */
|
||
}
|
||
else if (real1 && real2
|
||
&& (TYPE_PRECISION (TREE_TYPE (primop0))
|
||
== TYPE_PRECISION (TREE_TYPE (primop1))))
|
||
type = TREE_TYPE (primop0);
|
||
|
||
/* If args' natural types are both narrower than nominal type
|
||
and both extend in the same manner, compare them
|
||
in the type of the wider arg.
|
||
Otherwise must actually extend both to the nominal
|
||
common type lest different ways of extending
|
||
alter the result.
|
||
(eg, (short)-1 == (unsigned short)-1 should be 0.) */
|
||
|
||
else if (unsignedp0 == unsignedp1 && real1 == real2
|
||
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
|
||
&& TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
|
||
{
|
||
type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
|
||
type = signed_or_unsigned_type (unsignedp0
|
||
|| TREE_UNSIGNED (*restype_ptr),
|
||
type);
|
||
/* Make sure shorter operand is extended the right way
|
||
to match the longer operand. */
|
||
primop0 = convert (signed_or_unsigned_type (unsignedp0, TREE_TYPE (primop0)),
|
||
primop0);
|
||
primop1 = convert (signed_or_unsigned_type (unsignedp1, TREE_TYPE (primop1)),
|
||
primop1);
|
||
}
|
||
else
|
||
{
|
||
/* Here we must do the comparison on the nominal type
|
||
using the args exactly as we received them. */
|
||
type = *restype_ptr;
|
||
primop0 = op0;
|
||
primop1 = op1;
|
||
|
||
if (!real1 && !real2 && integer_zerop (primop1)
|
||
&& TREE_UNSIGNED (*restype_ptr))
|
||
{
|
||
tree value = 0;
|
||
switch (code)
|
||
{
|
||
case GE_EXPR:
|
||
/* All unsigned values are >= 0, so we warn if extra warnings
|
||
are requested. However, if OP0 is a constant that is
|
||
>= 0, the signedness of the comparison isn't an issue,
|
||
so suppress the warning. */
|
||
if (extra_warnings && !in_system_header
|
||
&& ! (TREE_CODE (primop0) == INTEGER_CST
|
||
&& ! TREE_OVERFLOW (convert (signed_type (type),
|
||
primop0))))
|
||
warning ("comparison of unsigned expression >= 0 is always true");
|
||
value = boolean_true_node;
|
||
break;
|
||
|
||
case LT_EXPR:
|
||
if (extra_warnings && !in_system_header
|
||
&& ! (TREE_CODE (primop0) == INTEGER_CST
|
||
&& ! TREE_OVERFLOW (convert (signed_type (type),
|
||
primop0))))
|
||
warning ("comparison of unsigned expression < 0 is always false");
|
||
value = boolean_false_node;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (value != 0)
|
||
{
|
||
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
|
||
if (TREE_SIDE_EFFECTS (primop0))
|
||
return build (COMPOUND_EXPR, TREE_TYPE (value),
|
||
primop0, value);
|
||
return value;
|
||
}
|
||
}
|
||
}
|
||
|
||
*op0_ptr = convert (type, primop0);
|
||
*op1_ptr = convert (type, primop1);
|
||
|
||
*restype_ptr = boolean_type_node;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a tree for the sum or difference (RESULTCODE says which)
|
||
of pointer PTROP and integer INTOP. */
|
||
|
||
tree
|
||
pointer_int_sum (resultcode, ptrop, intop)
|
||
enum tree_code resultcode;
|
||
tree ptrop, intop;
|
||
{
|
||
tree size_exp;
|
||
|
||
tree result;
|
||
tree folded;
|
||
|
||
/* The result is a pointer of the same type that is being added. */
|
||
|
||
tree result_type = TREE_TYPE (ptrop);
|
||
|
||
if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer of type `void *' used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to a function used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == METHOD_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to member function used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == OFFSET_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to a member used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else
|
||
size_exp = size_in_bytes (TREE_TYPE (result_type));
|
||
|
||
/* If what we are about to multiply by the size of the elements
|
||
contains a constant term, apply distributive law
|
||
and multiply that constant term separately.
|
||
This helps produce common subexpressions. */
|
||
|
||
if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
|
||
&& ! TREE_CONSTANT (intop)
|
||
&& TREE_CONSTANT (TREE_OPERAND (intop, 1))
|
||
&& TREE_CONSTANT (size_exp)
|
||
/* If the constant comes from pointer subtraction,
|
||
skip this optimization--it would cause an error. */
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
|
||
/* If the constant is unsigned, and smaller than the pointer size,
|
||
then we must skip this optimization. This is because it could cause
|
||
an overflow error if the constant is negative but INTOP is not. */
|
||
&& (! TREE_UNSIGNED (TREE_TYPE (intop))
|
||
|| (TYPE_PRECISION (TREE_TYPE (intop))
|
||
== TYPE_PRECISION (TREE_TYPE (ptrop)))))
|
||
{
|
||
enum tree_code subcode = resultcode;
|
||
tree int_type = TREE_TYPE (intop);
|
||
if (TREE_CODE (intop) == MINUS_EXPR)
|
||
subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
|
||
/* Convert both subexpression types to the type of intop,
|
||
because weird cases involving pointer arithmetic
|
||
can result in a sum or difference with different type args. */
|
||
ptrop = build_binary_op (subcode, ptrop,
|
||
convert (int_type, TREE_OPERAND (intop, 1)), 1);
|
||
intop = convert (int_type, TREE_OPERAND (intop, 0));
|
||
}
|
||
|
||
/* Convert the integer argument to a type the same size as sizetype
|
||
so the multiply won't overflow spuriously. */
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
|
||
|| TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
|
||
intop = convert (type_for_size (TYPE_PRECISION (sizetype),
|
||
TREE_UNSIGNED (sizetype)), intop);
|
||
|
||
/* Replace the integer argument with a suitable product by the object size.
|
||
Do this multiplication as signed, then convert to the appropriate
|
||
pointer type (actually unsigned integral). */
|
||
|
||
intop = convert (result_type,
|
||
build_binary_op (MULT_EXPR, intop,
|
||
convert (TREE_TYPE (intop), size_exp), 1));
|
||
|
||
/* Create the sum or difference. */
|
||
|
||
result = build (resultcode, result_type, ptrop, intop);
|
||
|
||
folded = fold (result);
|
||
if (folded == result)
|
||
TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
|
||
return folded;
|
||
}
|
||
|
||
/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
|
||
or validate its data type for an `if' or `while' statement or ?..: exp.
|
||
|
||
This preparation consists of taking the ordinary
|
||
representation of an expression expr and producing a valid tree
|
||
boolean expression describing whether expr is nonzero. We could
|
||
simply always do build_binary_op (NE_EXPR, expr, boolean_false_node, 1),
|
||
but we optimize comparisons, &&, ||, and !.
|
||
|
||
The resulting type should always be `boolean_type_node'. */
|
||
|
||
tree
|
||
truthvalue_conversion (expr)
|
||
tree expr;
|
||
{
|
||
if (TREE_CODE (expr) == ERROR_MARK)
|
||
return expr;
|
||
|
||
#if 0 /* This appears to be wrong for C++. */
|
||
/* These really should return error_mark_node after 2.4 is stable.
|
||
But not all callers handle ERROR_MARK properly. */
|
||
switch (TREE_CODE (TREE_TYPE (expr)))
|
||
{
|
||
case RECORD_TYPE:
|
||
error ("struct type value used where scalar is required");
|
||
return boolean_false_node;
|
||
|
||
case UNION_TYPE:
|
||
error ("union type value used where scalar is required");
|
||
return boolean_false_node;
|
||
|
||
case ARRAY_TYPE:
|
||
error ("array type value used where scalar is required");
|
||
return boolean_false_node;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case EQ_EXPR:
|
||
case NE_EXPR: case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case TRUTH_NOT_EXPR:
|
||
TREE_TYPE (expr) = boolean_type_node;
|
||
return expr;
|
||
|
||
case ERROR_MARK:
|
||
return expr;
|
||
|
||
case INTEGER_CST:
|
||
return integer_zerop (expr) ? boolean_false_node : boolean_true_node;
|
||
|
||
case REAL_CST:
|
||
return real_zerop (expr) ? boolean_false_node : boolean_true_node;
|
||
|
||
case ADDR_EXPR:
|
||
/* If we are taking the address of an external decl, it might be zero
|
||
if it is weak, so we cannot optimize. */
|
||
if (DECL_P (TREE_OPERAND (expr, 0))
|
||
&& DECL_EXTERNAL (TREE_OPERAND (expr, 0)))
|
||
break;
|
||
|
||
if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 0)))
|
||
return build (COMPOUND_EXPR, boolean_type_node,
|
||
TREE_OPERAND (expr, 0), boolean_true_node);
|
||
else
|
||
return boolean_true_node;
|
||
|
||
case COMPLEX_EXPR:
|
||
return build_binary_op ((TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
|
||
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
|
||
truthvalue_conversion (TREE_OPERAND (expr, 0)),
|
||
truthvalue_conversion (TREE_OPERAND (expr, 1)),
|
||
0);
|
||
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
case FLOAT_EXPR:
|
||
case FFS_EXPR:
|
||
/* These don't change whether an object is non-zero or zero. */
|
||
return truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
/* These don't change whether an object is zero or non-zero, but
|
||
we can't ignore them if their second arg has side-effects. */
|
||
if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
|
||
return build (COMPOUND_EXPR, boolean_type_node, TREE_OPERAND (expr, 1),
|
||
truthvalue_conversion (TREE_OPERAND (expr, 0)));
|
||
else
|
||
return truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
|
||
case COND_EXPR:
|
||
/* Distribute the conversion into the arms of a COND_EXPR. */
|
||
return fold (build (COND_EXPR, boolean_type_node, TREE_OPERAND (expr, 0),
|
||
truthvalue_conversion (TREE_OPERAND (expr, 1)),
|
||
truthvalue_conversion (TREE_OPERAND (expr, 2))));
|
||
|
||
case CONVERT_EXPR:
|
||
/* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
|
||
since that affects how `default_conversion' will behave. */
|
||
if (TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE
|
||
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE)
|
||
break;
|
||
/* fall through... */
|
||
case NOP_EXPR:
|
||
/* If this is widening the argument, we can ignore it. */
|
||
if (TYPE_PRECISION (TREE_TYPE (expr))
|
||
>= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
|
||
return truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
break;
|
||
|
||
case MINUS_EXPR:
|
||
/* With IEEE arithmetic, x - x may not equal 0, so we can't optimize
|
||
this case. */
|
||
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
|
||
&& TREE_CODE (TREE_TYPE (expr)) == REAL_TYPE)
|
||
break;
|
||
/* fall through... */
|
||
case BIT_XOR_EXPR:
|
||
/* This and MINUS_EXPR can be changed into a comparison of the
|
||
two objects. */
|
||
if (TREE_TYPE (TREE_OPERAND (expr, 0))
|
||
== TREE_TYPE (TREE_OPERAND (expr, 1)))
|
||
return build_binary_op (NE_EXPR, TREE_OPERAND (expr, 0),
|
||
TREE_OPERAND (expr, 1), 1);
|
||
return build_binary_op (NE_EXPR, TREE_OPERAND (expr, 0),
|
||
fold (build1 (NOP_EXPR,
|
||
TREE_TYPE (TREE_OPERAND (expr, 0)),
|
||
TREE_OPERAND (expr, 1))), 1);
|
||
|
||
case BIT_AND_EXPR:
|
||
if (integer_onep (TREE_OPERAND (expr, 1))
|
||
&& TREE_TYPE (expr) != boolean_type_node)
|
||
/* Using convert here would cause infinite recursion. */
|
||
return build1 (NOP_EXPR, boolean_type_node, expr);
|
||
break;
|
||
|
||
case MODIFY_EXPR:
|
||
if (warn_parentheses && C_EXP_ORIGINAL_CODE (expr) == MODIFY_EXPR)
|
||
warning ("suggest parentheses around assignment used as truth value");
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
|
||
{
|
||
tree tem = save_expr (expr);
|
||
return (build_binary_op
|
||
((TREE_SIDE_EFFECTS (expr)
|
||
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
|
||
truthvalue_conversion (build_unary_op (REALPART_EXPR, tem, 0)),
|
||
truthvalue_conversion (build_unary_op (IMAGPART_EXPR, tem, 0)),
|
||
0));
|
||
}
|
||
|
||
return build_binary_op (NE_EXPR, expr, integer_zero_node, 1);
|
||
}
|
||
|
||
static tree builtin_function_2 PARAMS ((const char *, const char *, tree, tree,
|
||
int, enum built_in_class, int, int,
|
||
int));
|
||
|
||
/* Make a variant type in the proper way for C/C++, propagating qualifiers
|
||
down to the element type of an array. */
|
||
|
||
tree
|
||
c_build_qualified_type (type, type_quals)
|
||
tree type;
|
||
int type_quals;
|
||
{
|
||
/* A restrict-qualified pointer type must be a pointer to object or
|
||
incomplete type. Note that the use of POINTER_TYPE_P also allows
|
||
REFERENCE_TYPEs, which is appropriate for C++. Unfortunately,
|
||
the C++ front-end also use POINTER_TYPE for pointer-to-member
|
||
values, so even though it should be illegal to use `restrict'
|
||
with such an entity we don't flag that here. Thus, special case
|
||
code for that case is required in the C++ front-end. */
|
||
if ((type_quals & TYPE_QUAL_RESTRICT)
|
||
&& (!POINTER_TYPE_P (type)
|
||
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
|
||
{
|
||
error ("invalid use of `restrict'");
|
||
type_quals &= ~TYPE_QUAL_RESTRICT;
|
||
}
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
return build_array_type (c_build_qualified_type (TREE_TYPE (type),
|
||
type_quals),
|
||
TYPE_DOMAIN (type));
|
||
return build_qualified_type (type, type_quals);
|
||
}
|
||
|
||
/* Apply the TYPE_QUALS to the new DECL. */
|
||
|
||
void
|
||
c_apply_type_quals_to_decl (type_quals, decl)
|
||
int type_quals;
|
||
tree decl;
|
||
{
|
||
if ((type_quals & TYPE_QUAL_CONST)
|
||
|| (TREE_TYPE (decl)
|
||
&& TREE_CODE (TREE_TYPE (decl)) == REFERENCE_TYPE))
|
||
TREE_READONLY (decl) = 1;
|
||
if (type_quals & TYPE_QUAL_VOLATILE)
|
||
{
|
||
TREE_SIDE_EFFECTS (decl) = 1;
|
||
TREE_THIS_VOLATILE (decl) = 1;
|
||
}
|
||
if (type_quals & TYPE_QUAL_RESTRICT)
|
||
{
|
||
if (!TREE_TYPE (decl)
|
||
|| !POINTER_TYPE_P (TREE_TYPE (decl))
|
||
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (TREE_TYPE (decl))))
|
||
error ("invalid use of `restrict'");
|
||
else if (flag_strict_aliasing)
|
||
/* Indicate we need to make a unique alias set for this pointer.
|
||
We can't do it here because it might be pointing to an
|
||
incomplete type. */
|
||
DECL_POINTER_ALIAS_SET (decl) = -2;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return the typed-based alias set for T, which may be an expression
|
||
or a type. Return -1 if we don't do anything special. */
|
||
|
||
HOST_WIDE_INT
|
||
c_common_get_alias_set (t)
|
||
tree t;
|
||
{
|
||
tree u;
|
||
|
||
/* We know nothing about vector types */
|
||
if (TREE_CODE (t) == VECTOR_TYPE)
|
||
return 0;
|
||
|
||
/* Permit type-punning when accessing a union, provided the access
|
||
is directly through the union. For example, this code does not
|
||
permit taking the address of a union member and then storing
|
||
through it. Even the type-punning allowed here is a GCC
|
||
extension, albeit a common and useful one; the C standard says
|
||
that such accesses have implementation-defined behavior. */
|
||
for (u = t;
|
||
TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
|
||
u = TREE_OPERAND (u, 0))
|
||
if (TREE_CODE (u) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
|
||
return 0;
|
||
|
||
/* If this is a char *, the ANSI C standard says it can alias
|
||
anything. Note that all references need do this. */
|
||
if (TREE_CODE_CLASS (TREE_CODE (t)) == 'r'
|
||
&& TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (TREE_TYPE (t)) == TYPE_PRECISION (char_type_node))
|
||
return 0;
|
||
|
||
/* That's all the expressions we handle specially. */
|
||
if (! TYPE_P (t))
|
||
return -1;
|
||
|
||
/* The C standard specifically allows aliasing between signed and
|
||
unsigned variants of the same type. We treat the signed
|
||
variant as canonical. */
|
||
if (TREE_CODE (t) == INTEGER_TYPE && TREE_UNSIGNED (t))
|
||
{
|
||
tree t1 = signed_type (t);
|
||
|
||
/* t1 == t can happen for boolean nodes which are always unsigned. */
|
||
if (t1 != t)
|
||
return get_alias_set (t1);
|
||
}
|
||
else if (POINTER_TYPE_P (t))
|
||
{
|
||
tree t1;
|
||
|
||
/* Unfortunately, there is no canonical form of a pointer type.
|
||
In particular, if we have `typedef int I', then `int *', and
|
||
`I *' are different types. So, we have to pick a canonical
|
||
representative. We do this below.
|
||
|
||
Technically, this approach is actually more conservative that
|
||
it needs to be. In particular, `const int *' and `int *'
|
||
should be in different alias sets, according to the C and C++
|
||
standard, since their types are not the same, and so,
|
||
technically, an `int **' and `const int **' cannot point at
|
||
the same thing.
|
||
|
||
But, the standard is wrong. In particular, this code is
|
||
legal C++:
|
||
|
||
int *ip;
|
||
int **ipp = &ip;
|
||
const int* const* cipp = &ipp;
|
||
|
||
And, it doesn't make sense for that to be legal unless you
|
||
can dereference IPP and CIPP. So, we ignore cv-qualifiers on
|
||
the pointed-to types. This issue has been reported to the
|
||
C++ committee. */
|
||
t1 = build_type_no_quals (t);
|
||
if (t1 != t)
|
||
return get_alias_set (t1);
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Implement the __alignof keyword: Return the minimum required
|
||
alignment of TYPE, measured in bytes. */
|
||
|
||
tree
|
||
c_alignof (type)
|
||
tree type;
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
tree t;
|
||
|
||
/* In C++, sizeof applies to the referent. Handle alignof the same way. */
|
||
if (code == REFERENCE_TYPE)
|
||
{
|
||
type = TREE_TYPE (type);
|
||
code = TREE_CODE (type);
|
||
}
|
||
|
||
if (code == FUNCTION_TYPE)
|
||
t = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
|
||
else if (code == VOID_TYPE || code == ERROR_MARK)
|
||
t = size_one_node;
|
||
else if (!COMPLETE_TYPE_P (type))
|
||
{
|
||
error ("__alignof__ applied to an incomplete type");
|
||
t = size_zero_node;
|
||
}
|
||
else
|
||
t = size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
|
||
|
||
return fold (build1 (NOP_EXPR, c_size_type_node, t));
|
||
}
|
||
|
||
/* Implement the __alignof keyword: Return the minimum required
|
||
alignment of EXPR, measured in bytes. For VAR_DECL's and
|
||
FIELD_DECL's return DECL_ALIGN (which can be set from an
|
||
"aligned" __attribute__ specification). */
|
||
|
||
tree
|
||
c_alignof_expr (expr)
|
||
tree expr;
|
||
{
|
||
tree t;
|
||
|
||
if (TREE_CODE (expr) == VAR_DECL)
|
||
t = size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
|
||
|
||
else if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
|
||
{
|
||
error ("`__alignof' applied to a bit-field");
|
||
t = size_one_node;
|
||
}
|
||
else if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
|
||
t = size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
|
||
|
||
else if (TREE_CODE (expr) == INDIRECT_REF)
|
||
{
|
||
tree t = TREE_OPERAND (expr, 0);
|
||
tree best = t;
|
||
int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
|
||
while (TREE_CODE (t) == NOP_EXPR
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
|
||
{
|
||
int thisalign;
|
||
|
||
t = TREE_OPERAND (t, 0);
|
||
thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
if (thisalign > bestalign)
|
||
best = t, bestalign = thisalign;
|
||
}
|
||
return c_alignof (TREE_TYPE (TREE_TYPE (best)));
|
||
}
|
||
else
|
||
return c_alignof (TREE_TYPE (expr));
|
||
|
||
return fold (build1 (NOP_EXPR, c_size_type_node, t));
|
||
}
|
||
|
||
/* Give the specifications for the format attributes, used by C and all
|
||
descendents. */
|
||
|
||
static const struct attribute_spec c_format_attribute_table[] =
|
||
{
|
||
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
{ "format", 3, 3, false, true, true,
|
||
handle_format_attribute },
|
||
{ "format_arg", 1, 1, false, true, true,
|
||
handle_format_arg_attribute },
|
||
{ NULL, 0, 0, false, false, false, NULL }
|
||
};
|
||
|
||
/* Build tree nodes and builtin functions common to both C and C++ language
|
||
frontends. */
|
||
|
||
void
|
||
c_common_nodes_and_builtins ()
|
||
{
|
||
enum builtin_type
|
||
{
|
||
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
|
||
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
|
||
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
|
||
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
|
||
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
|
||
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
|
||
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
|
||
#include "builtin-types.def"
|
||
#undef DEF_PRIMITIVE_TYPE
|
||
#undef DEF_FUNCTION_TYPE_0
|
||
#undef DEF_FUNCTION_TYPE_1
|
||
#undef DEF_FUNCTION_TYPE_2
|
||
#undef DEF_FUNCTION_TYPE_3
|
||
#undef DEF_FUNCTION_TYPE_4
|
||
#undef DEF_FUNCTION_TYPE_VAR_0
|
||
#undef DEF_FUNCTION_TYPE_VAR_1
|
||
#undef DEF_FUNCTION_TYPE_VAR_2
|
||
#undef DEF_POINTER_TYPE
|
||
BT_LAST
|
||
};
|
||
|
||
typedef enum builtin_type builtin_type;
|
||
|
||
tree builtin_types[(int) BT_LAST];
|
||
int wchar_type_size;
|
||
tree array_domain_type;
|
||
/* Either char* or void*. */
|
||
tree traditional_ptr_type_node;
|
||
/* Either const char* or const void*. */
|
||
tree traditional_cptr_type_node;
|
||
tree traditional_len_type_node;
|
||
tree va_list_ref_type_node;
|
||
tree va_list_arg_type_node;
|
||
|
||
/* We must initialize this before any builtin functions (which might have
|
||
attributes) are declared. (c_common_init is too late.) */
|
||
format_attribute_table = c_format_attribute_table;
|
||
|
||
/* Define `int' and `char' first so that dbx will output them first. */
|
||
record_builtin_type (RID_INT, NULL, integer_type_node);
|
||
record_builtin_type (RID_CHAR, "char", char_type_node);
|
||
|
||
/* `signed' is the same as `int'. FIXME: the declarations of "signed",
|
||
"unsigned long", "long long unsigned" and "unsigned short" were in C++
|
||
but not C. Are the conditionals here needed? */
|
||
if (c_language == clk_cplusplus)
|
||
record_builtin_type (RID_SIGNED, NULL, integer_type_node);
|
||
record_builtin_type (RID_LONG, "long int", long_integer_type_node);
|
||
record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
|
||
record_builtin_type (RID_MAX, "long unsigned int",
|
||
long_unsigned_type_node);
|
||
if (c_language == clk_cplusplus)
|
||
record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
|
||
record_builtin_type (RID_MAX, "long long int",
|
||
long_long_integer_type_node);
|
||
record_builtin_type (RID_MAX, "long long unsigned int",
|
||
long_long_unsigned_type_node);
|
||
if (c_language == clk_cplusplus)
|
||
record_builtin_type (RID_MAX, "long long unsigned",
|
||
long_long_unsigned_type_node);
|
||
record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
|
||
record_builtin_type (RID_MAX, "short unsigned int",
|
||
short_unsigned_type_node);
|
||
if (c_language == clk_cplusplus)
|
||
record_builtin_type (RID_MAX, "unsigned short",
|
||
short_unsigned_type_node);
|
||
|
||
/* Define both `signed char' and `unsigned char'. */
|
||
record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
|
||
record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);
|
||
|
||
/* These are types that type_for_size and type_for_mode use. */
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE, intQI_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE, intHI_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE, intSI_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE, intDI_type_node));
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("__int128_t"), intTI_type_node));
|
||
#endif
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE, unsigned_intQI_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE, unsigned_intHI_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE, unsigned_intSI_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE, unsigned_intDI_type_node));
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("__uint128_t"), unsigned_intTI_type_node));
|
||
#endif
|
||
|
||
/* Create the widest literal types. */
|
||
widest_integer_literal_type_node
|
||
= make_signed_type (HOST_BITS_PER_WIDE_INT * 2);
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
widest_integer_literal_type_node));
|
||
|
||
widest_unsigned_literal_type_node
|
||
= make_unsigned_type (HOST_BITS_PER_WIDE_INT * 2);
|
||
pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
widest_unsigned_literal_type_node));
|
||
|
||
/* `unsigned long' is the standard type for sizeof.
|
||
Note that stddef.h uses `unsigned long',
|
||
and this must agree, even if long and int are the same size. */
|
||
c_size_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (SIZE_TYPE)));
|
||
signed_size_type_node = signed_type (c_size_type_node);
|
||
if (flag_traditional)
|
||
c_size_type_node = signed_size_type_node;
|
||
set_sizetype (c_size_type_node);
|
||
|
||
build_common_tree_nodes_2 (flag_short_double);
|
||
|
||
record_builtin_type (RID_FLOAT, NULL, float_type_node);
|
||
record_builtin_type (RID_DOUBLE, NULL, double_type_node);
|
||
record_builtin_type (RID_MAX, "long double", long_double_type_node);
|
||
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("complex int"),
|
||
complex_integer_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("complex float"),
|
||
complex_float_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("complex double"),
|
||
complex_double_type_node));
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("complex long double"),
|
||
complex_long_double_type_node));
|
||
|
||
record_builtin_type (RID_VOID, NULL, void_type_node);
|
||
|
||
void_zero_node = build_int_2 (0, 0);
|
||
TREE_TYPE (void_zero_node) = void_type_node;
|
||
|
||
void_list_node = build_void_list_node ();
|
||
|
||
/* Make a type to be the domain of a few array types
|
||
whose domains don't really matter.
|
||
200 is small enough that it always fits in size_t
|
||
and large enough that it can hold most function names for the
|
||
initializations of __FUNCTION__ and __PRETTY_FUNCTION__. */
|
||
array_domain_type = build_index_type (size_int (200));
|
||
|
||
/* Make a type for arrays of characters.
|
||
With luck nothing will ever really depend on the length of this
|
||
array type. */
|
||
char_array_type_node
|
||
= build_array_type (char_type_node, array_domain_type);
|
||
|
||
/* Likewise for arrays of ints. */
|
||
int_array_type_node
|
||
= build_array_type (integer_type_node, array_domain_type);
|
||
|
||
string_type_node = build_pointer_type (char_type_node);
|
||
const_string_type_node
|
||
= build_pointer_type (build_qualified_type
|
||
(char_type_node, TYPE_QUAL_CONST));
|
||
|
||
traditional_ptr_type_node = ((flag_traditional &&
|
||
c_language != clk_cplusplus)
|
||
? string_type_node : ptr_type_node);
|
||
traditional_cptr_type_node = ((flag_traditional &&
|
||
c_language != clk_cplusplus)
|
||
? const_string_type_node : const_ptr_type_node);
|
||
|
||
(*targetm.init_builtins) ();
|
||
|
||
/* This is special for C++ so functions can be overloaded. */
|
||
wchar_type_node = get_identifier (flag_short_wchar
|
||
? "short unsigned int"
|
||
: WCHAR_TYPE);
|
||
wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
|
||
wchar_type_size = TYPE_PRECISION (wchar_type_node);
|
||
if (c_language == clk_cplusplus)
|
||
{
|
||
if (TREE_UNSIGNED (wchar_type_node))
|
||
wchar_type_node = make_unsigned_type (wchar_type_size);
|
||
else
|
||
wchar_type_node = make_signed_type (wchar_type_size);
|
||
record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
|
||
}
|
||
else
|
||
{
|
||
signed_wchar_type_node = signed_type (wchar_type_node);
|
||
unsigned_wchar_type_node = unsigned_type (wchar_type_node);
|
||
}
|
||
|
||
/* This is for wide string constants. */
|
||
wchar_array_type_node
|
||
= build_array_type (wchar_type_node, array_domain_type);
|
||
|
||
wint_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));
|
||
|
||
intmax_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
|
||
uintmax_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));
|
||
|
||
default_function_type = build_function_type (integer_type_node, NULL_TREE);
|
||
ptrdiff_type_node
|
||
= TREE_TYPE (identifier_global_value (get_identifier (PTRDIFF_TYPE)));
|
||
unsigned_ptrdiff_type_node = unsigned_type (ptrdiff_type_node);
|
||
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("__builtin_va_list"),
|
||
va_list_type_node));
|
||
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("__builtin_ptrdiff_t"),
|
||
ptrdiff_type_node));
|
||
|
||
pushdecl (build_decl (TYPE_DECL, get_identifier ("__builtin_size_t"),
|
||
sizetype));
|
||
|
||
if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
|
||
{
|
||
va_list_arg_type_node = va_list_ref_type_node =
|
||
build_pointer_type (TREE_TYPE (va_list_type_node));
|
||
}
|
||
else
|
||
{
|
||
va_list_arg_type_node = va_list_type_node;
|
||
va_list_ref_type_node = build_reference_type (va_list_type_node);
|
||
}
|
||
|
||
traditional_len_type_node = ((flag_traditional &&
|
||
c_language != clk_cplusplus)
|
||
? integer_type_node : sizetype);
|
||
|
||
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
|
||
builtin_types[(int) ENUM] = VALUE;
|
||
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type (builtin_types[(int) RETURN], \
|
||
void_list_node);
|
||
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type (builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
void_list_node));
|
||
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
void_list_node)));
|
||
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG3], \
|
||
void_list_node))));
|
||
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
tree_cons \
|
||
(NULL_TREE, \
|
||
builtin_types[(int) ARG3], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG4], \
|
||
void_list_node)))));
|
||
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type (builtin_types[(int) RETURN], NULL_TREE);
|
||
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type (builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
NULL_TREE));
|
||
|
||
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_function_type \
|
||
(builtin_types[(int) RETURN], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG1], \
|
||
tree_cons (NULL_TREE, \
|
||
builtin_types[(int) ARG2], \
|
||
NULL_TREE)));
|
||
#define DEF_POINTER_TYPE(ENUM, TYPE) \
|
||
builtin_types[(int) ENUM] \
|
||
= build_pointer_type (builtin_types[(int) TYPE]);
|
||
#include "builtin-types.def"
|
||
#undef DEF_PRIMITIVE_TYPE
|
||
#undef DEF_FUNCTION_TYPE_1
|
||
#undef DEF_FUNCTION_TYPE_2
|
||
#undef DEF_FUNCTION_TYPE_3
|
||
#undef DEF_FUNCTION_TYPE_4
|
||
#undef DEF_FUNCTION_TYPE_VAR_0
|
||
#undef DEF_FUNCTION_TYPE_VAR_1
|
||
#undef DEF_POINTER_TYPE
|
||
|
||
#define DEF_BUILTIN(ENUM, NAME, CLASS, \
|
||
TYPE, LIBTYPE, BOTH_P, FALLBACK_P, NONANSI_P) \
|
||
if (NAME) \
|
||
{ \
|
||
tree decl; \
|
||
\
|
||
if (strncmp (NAME, "__builtin_", strlen ("__builtin_")) != 0) \
|
||
abort (); \
|
||
\
|
||
if (!BOTH_P) \
|
||
decl = builtin_function (NAME, builtin_types[TYPE], ENUM, \
|
||
CLASS, \
|
||
(FALLBACK_P \
|
||
? (NAME + strlen ("__builtin_")) \
|
||
: NULL)); \
|
||
else \
|
||
decl = builtin_function_2 (NAME, \
|
||
NAME + strlen ("__builtin_"), \
|
||
builtin_types[TYPE], \
|
||
builtin_types[LIBTYPE], \
|
||
ENUM, \
|
||
CLASS, \
|
||
FALLBACK_P, \
|
||
NONANSI_P, \
|
||
/*noreturn_p=*/0); \
|
||
\
|
||
built_in_decls[(int) ENUM] = decl; \
|
||
}
|
||
#include "builtins.def"
|
||
#undef DEF_BUILTIN
|
||
|
||
/* Declare _exit and _Exit just to mark them as non-returning. */
|
||
builtin_function_2 (NULL, "_exit", NULL_TREE,
|
||
builtin_types[BT_FN_VOID_INT],
|
||
0, NOT_BUILT_IN, 0, 1, 1);
|
||
builtin_function_2 (NULL, "_Exit", NULL_TREE,
|
||
builtin_types[BT_FN_VOID_INT],
|
||
0, NOT_BUILT_IN, 0, !flag_isoc99, 1);
|
||
|
||
/* Declare these functions non-returning
|
||
to avoid spurious "control drops through" warnings. */
|
||
builtin_function_2 (NULL, "abort",
|
||
NULL_TREE, ((c_language == clk_cplusplus)
|
||
? builtin_types[BT_FN_VOID]
|
||
: builtin_types[BT_FN_VOID_VAR]),
|
||
0, NOT_BUILT_IN, 0, 0, 1);
|
||
|
||
builtin_function_2 (NULL, "exit",
|
||
NULL_TREE, ((c_language == clk_cplusplus)
|
||
? builtin_types[BT_FN_VOID_INT]
|
||
: builtin_types[BT_FN_VOID_VAR]),
|
||
0, NOT_BUILT_IN, 0, 0, 1);
|
||
|
||
main_identifier_node = get_identifier ("main");
|
||
|
||
/* ??? Perhaps there's a better place to do this. But it is related
|
||
to __builtin_va_arg, so it isn't that off-the-wall. */
|
||
lang_type_promotes_to = simple_type_promotes_to;
|
||
}
|
||
|
||
tree
|
||
build_va_arg (expr, type)
|
||
tree expr, type;
|
||
{
|
||
return build1 (VA_ARG_EXPR, type, expr);
|
||
}
|
||
|
||
|
||
/* Linked list of disabled built-in functions. */
|
||
|
||
typedef struct disabled_builtin
|
||
{
|
||
const char *name;
|
||
struct disabled_builtin *next;
|
||
} disabled_builtin;
|
||
static disabled_builtin *disabled_builtins = NULL;
|
||
|
||
static bool builtin_function_disabled_p PARAMS ((const char *));
|
||
|
||
/* Disable a built-in function specified by -fno-builtin-NAME. If NAME
|
||
begins with "__builtin_", give an error. */
|
||
|
||
void
|
||
disable_builtin_function (name)
|
||
const char *name;
|
||
{
|
||
if (strncmp (name, "__builtin_", strlen ("__builtin_")) == 0)
|
||
error ("cannot disable built-in function `%s'", name);
|
||
else
|
||
{
|
||
disabled_builtin *new = xmalloc (sizeof (disabled_builtin));
|
||
new->name = name;
|
||
new->next = disabled_builtins;
|
||
disabled_builtins = new;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if the built-in function NAME has been disabled, false
|
||
otherwise. */
|
||
|
||
static bool
|
||
builtin_function_disabled_p (name)
|
||
const char *name;
|
||
{
|
||
disabled_builtin *p;
|
||
for (p = disabled_builtins; p != NULL; p = p->next)
|
||
{
|
||
if (strcmp (name, p->name) == 0)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Possibly define a builtin function with one or two names. BUILTIN_NAME
|
||
is an __builtin_-prefixed name; NAME is the ordinary name; one or both
|
||
of these may be NULL (though both being NULL is useless).
|
||
BUILTIN_TYPE is the type of the __builtin_-prefixed function;
|
||
TYPE is the type of the function with the ordinary name. These
|
||
may differ if the ordinary name is declared with a looser type to avoid
|
||
conflicts with headers. FUNCTION_CODE and CLASS are as for
|
||
builtin_function. If LIBRARY_NAME_P is nonzero, NAME is passed as
|
||
the LIBRARY_NAME parameter to builtin_function when declaring BUILTIN_NAME.
|
||
If NONANSI_P is nonzero, the name NAME is treated as a non-ANSI name; if
|
||
NORETURN_P is nonzero, the function is marked as non-returning.
|
||
Returns the declaration of BUILTIN_NAME, if any, otherwise
|
||
the declaration of NAME. Does not declare NAME if flag_no_builtin,
|
||
or if NONANSI_P and flag_no_nonansi_builtin. */
|
||
|
||
static tree
|
||
builtin_function_2 (builtin_name, name, builtin_type, type, function_code,
|
||
class, library_name_p, nonansi_p, noreturn_p)
|
||
const char *builtin_name;
|
||
const char *name;
|
||
tree builtin_type;
|
||
tree type;
|
||
int function_code;
|
||
enum built_in_class class;
|
||
int library_name_p;
|
||
int nonansi_p;
|
||
int noreturn_p;
|
||
{
|
||
tree bdecl = NULL_TREE;
|
||
tree decl = NULL_TREE;
|
||
if (builtin_name != 0)
|
||
{
|
||
bdecl = builtin_function (builtin_name, builtin_type, function_code,
|
||
class, library_name_p ? name : NULL);
|
||
if (noreturn_p)
|
||
{
|
||
TREE_THIS_VOLATILE (bdecl) = 1;
|
||
TREE_SIDE_EFFECTS (bdecl) = 1;
|
||
}
|
||
}
|
||
if (name != 0 && !flag_no_builtin && !builtin_function_disabled_p (name)
|
||
&& !(nonansi_p && flag_no_nonansi_builtin))
|
||
{
|
||
decl = builtin_function (name, type, function_code, class, NULL);
|
||
if (nonansi_p)
|
||
DECL_BUILT_IN_NONANSI (decl) = 1;
|
||
if (noreturn_p)
|
||
{
|
||
TREE_THIS_VOLATILE (decl) = 1;
|
||
TREE_SIDE_EFFECTS (decl) = 1;
|
||
}
|
||
}
|
||
return (bdecl != 0 ? bdecl : decl);
|
||
}
|
||
|
||
/* Nonzero if the type T promotes to int. This is (nearly) the
|
||
integral promotions defined in ISO C99 6.3.1.1/2. */
|
||
|
||
bool
|
||
c_promoting_integer_type_p (t)
|
||
tree t;
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case INTEGER_TYPE:
|
||
return (TYPE_MAIN_VARIANT (t) == char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == signed_char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == short_integer_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
|
||
|| TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));
|
||
|
||
case ENUMERAL_TYPE:
|
||
/* ??? Technically all enumerations not larger than an int
|
||
promote to an int. But this is used along code paths
|
||
that only want to notice a size change. */
|
||
return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);
|
||
|
||
case BOOLEAN_TYPE:
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Given a type, apply default promotions wrt unnamed function arguments
|
||
and return the new type. Return NULL_TREE if no change. */
|
||
/* ??? There is a function of the same name in the C++ front end that
|
||
does something similar, but is more thorough and does not return NULL
|
||
if no change. We could perhaps share code, but it would make the
|
||
self_promoting_type property harder to identify. */
|
||
|
||
tree
|
||
simple_type_promotes_to (type)
|
||
tree type;
|
||
{
|
||
if (TYPE_MAIN_VARIANT (type) == float_type_node)
|
||
return double_type_node;
|
||
|
||
if (c_promoting_integer_type_p (type))
|
||
{
|
||
/* Traditionally, unsignedness is preserved in default promotions.
|
||
Also preserve unsignedness if not really getting any wider. */
|
||
if (TREE_UNSIGNED (type)
|
||
&& (flag_traditional
|
||
|| TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
|
||
return unsigned_type_node;
|
||
return integer_type_node;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return 1 if PARMS specifies a fixed number of parameters
|
||
and none of their types is affected by default promotions. */
|
||
|
||
int
|
||
self_promoting_args_p (parms)
|
||
tree parms;
|
||
{
|
||
tree t;
|
||
for (t = parms; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree type = TREE_VALUE (t);
|
||
|
||
if (TREE_CHAIN (t) == 0 && type != void_type_node)
|
||
return 0;
|
||
|
||
if (type == 0)
|
||
return 0;
|
||
|
||
if (TYPE_MAIN_VARIANT (type) == float_type_node)
|
||
return 0;
|
||
|
||
if (c_promoting_integer_type_p (type))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Recursively examines the array elements of TYPE, until a non-array
|
||
element type is found. */
|
||
|
||
tree
|
||
strip_array_types (type)
|
||
tree type;
|
||
{
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Recognize certain built-in functions so we can make tree-codes
|
||
other than CALL_EXPR. We do this when it enables fold-const.c
|
||
to do something useful. */
|
||
/* ??? By rights this should go in builtins.c, but only C and C++
|
||
implement build_{binary,unary}_op. Not exactly sure what bits
|
||
of functionality are actually needed from those functions, or
|
||
where the similar functionality exists in the other front ends. */
|
||
|
||
tree
|
||
expand_tree_builtin (function, params, coerced_params)
|
||
tree function, params, coerced_params;
|
||
{
|
||
enum tree_code code;
|
||
|
||
if (DECL_BUILT_IN_CLASS (function) != BUILT_IN_NORMAL)
|
||
return NULL_TREE;
|
||
|
||
switch (DECL_FUNCTION_CODE (function))
|
||
{
|
||
case BUILT_IN_ABS:
|
||
case BUILT_IN_LABS:
|
||
case BUILT_IN_LLABS:
|
||
case BUILT_IN_IMAXABS:
|
||
case BUILT_IN_FABS:
|
||
case BUILT_IN_FABSL:
|
||
case BUILT_IN_FABSF:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
|
||
|
||
case BUILT_IN_CONJ:
|
||
case BUILT_IN_CONJF:
|
||
case BUILT_IN_CONJL:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (CONJ_EXPR, TREE_VALUE (coerced_params), 0);
|
||
|
||
case BUILT_IN_CREAL:
|
||
case BUILT_IN_CREALF:
|
||
case BUILT_IN_CREALL:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (REALPART_EXPR, TREE_VALUE (coerced_params), 0);
|
||
|
||
case BUILT_IN_CIMAG:
|
||
case BUILT_IN_CIMAGF:
|
||
case BUILT_IN_CIMAGL:
|
||
if (coerced_params == 0)
|
||
return integer_zero_node;
|
||
return build_unary_op (IMAGPART_EXPR, TREE_VALUE (coerced_params), 0);
|
||
|
||
case BUILT_IN_ISGREATER:
|
||
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT)
|
||
code = UNLE_EXPR;
|
||
else
|
||
code = LE_EXPR;
|
||
goto unordered_cmp;
|
||
|
||
case BUILT_IN_ISGREATEREQUAL:
|
||
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT)
|
||
code = UNLT_EXPR;
|
||
else
|
||
code = LT_EXPR;
|
||
goto unordered_cmp;
|
||
|
||
case BUILT_IN_ISLESS:
|
||
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT)
|
||
code = UNGE_EXPR;
|
||
else
|
||
code = GE_EXPR;
|
||
goto unordered_cmp;
|
||
|
||
case BUILT_IN_ISLESSEQUAL:
|
||
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT)
|
||
code = UNGT_EXPR;
|
||
else
|
||
code = GT_EXPR;
|
||
goto unordered_cmp;
|
||
|
||
case BUILT_IN_ISLESSGREATER:
|
||
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT)
|
||
code = UNEQ_EXPR;
|
||
else
|
||
code = EQ_EXPR;
|
||
goto unordered_cmp;
|
||
|
||
case BUILT_IN_ISUNORDERED:
|
||
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
|
||
return integer_zero_node;
|
||
code = UNORDERED_EXPR;
|
||
goto unordered_cmp;
|
||
|
||
unordered_cmp:
|
||
{
|
||
tree arg0, arg1;
|
||
|
||
if (params == 0
|
||
|| TREE_CHAIN (params) == 0)
|
||
{
|
||
error ("too few arguments to function `%s'",
|
||
IDENTIFIER_POINTER (DECL_NAME (function)));
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CHAIN (TREE_CHAIN (params)) != 0)
|
||
{
|
||
error ("too many arguments to function `%s'",
|
||
IDENTIFIER_POINTER (DECL_NAME (function)));
|
||
return error_mark_node;
|
||
}
|
||
|
||
arg0 = TREE_VALUE (params);
|
||
arg1 = TREE_VALUE (TREE_CHAIN (params));
|
||
arg0 = build_binary_op (code, arg0, arg1, 0);
|
||
if (code != UNORDERED_EXPR)
|
||
arg0 = build_unary_op (TRUTH_NOT_EXPR, arg0, 0);
|
||
return arg0;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns non-zero if CODE is the code for a statement. */
|
||
|
||
int
|
||
statement_code_p (code)
|
||
enum tree_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case CLEANUP_STMT:
|
||
case EXPR_STMT:
|
||
case COMPOUND_STMT:
|
||
case DECL_STMT:
|
||
case IF_STMT:
|
||
case FOR_STMT:
|
||
case WHILE_STMT:
|
||
case DO_STMT:
|
||
case RETURN_STMT:
|
||
case BREAK_STMT:
|
||
case CONTINUE_STMT:
|
||
case SCOPE_STMT:
|
||
case SWITCH_STMT:
|
||
case GOTO_STMT:
|
||
case LABEL_STMT:
|
||
case ASM_STMT:
|
||
case FILE_STMT:
|
||
case CASE_LABEL:
|
||
return 1;
|
||
|
||
default:
|
||
if (lang_statement_code_p)
|
||
return (*lang_statement_code_p) (code);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Walk the statement tree, rooted at *tp. Apply FUNC to all the
|
||
sub-trees of *TP in a pre-order traversal. FUNC is called with the
|
||
DATA and the address of each sub-tree. If FUNC returns a non-NULL
|
||
value, the traversal is aborted, and the value returned by FUNC is
|
||
returned. If FUNC sets WALK_SUBTREES to zero, then the subtrees of
|
||
the node being visited are not walked.
|
||
|
||
We don't need a without_duplicates variant of this one because the
|
||
statement tree is a tree, not a graph. */
|
||
|
||
tree
|
||
walk_stmt_tree (tp, func, data)
|
||
tree *tp;
|
||
walk_tree_fn func;
|
||
void *data;
|
||
{
|
||
enum tree_code code;
|
||
int walk_subtrees;
|
||
tree result;
|
||
int i, len;
|
||
|
||
#define WALK_SUBTREE(NODE) \
|
||
do \
|
||
{ \
|
||
result = walk_stmt_tree (&(NODE), func, data); \
|
||
if (result) \
|
||
return result; \
|
||
} \
|
||
while (0)
|
||
|
||
/* Skip empty subtrees. */
|
||
if (!*tp)
|
||
return NULL_TREE;
|
||
|
||
/* Skip subtrees below non-statement nodes. */
|
||
if (!statement_code_p (TREE_CODE (*tp)))
|
||
return NULL_TREE;
|
||
|
||
/* Call the function. */
|
||
walk_subtrees = 1;
|
||
result = (*func) (tp, &walk_subtrees, data);
|
||
|
||
/* If we found something, return it. */
|
||
if (result)
|
||
return result;
|
||
|
||
/* FUNC may have modified the tree, recheck that we're looking at a
|
||
statement node. */
|
||
code = TREE_CODE (*tp);
|
||
if (!statement_code_p (code))
|
||
return NULL_TREE;
|
||
|
||
/* Visit the subtrees unless FUNC decided that there was nothing
|
||
interesting below this point in the tree. */
|
||
if (walk_subtrees)
|
||
{
|
||
/* Walk over all the sub-trees of this operand. Statement nodes
|
||
never contain RTL, and we needn't worry about TARGET_EXPRs. */
|
||
len = TREE_CODE_LENGTH (code);
|
||
|
||
/* Go through the subtrees. We need to do this in forward order so
|
||
that the scope of a FOR_EXPR is handled properly. */
|
||
for (i = 0; i < len; ++i)
|
||
WALK_SUBTREE (TREE_OPERAND (*tp, i));
|
||
}
|
||
|
||
/* Finally visit the chain. This can be tail-recursion optimized if
|
||
we write it this way. */
|
||
return walk_stmt_tree (&TREE_CHAIN (*tp), func, data);
|
||
|
||
#undef WALK_SUBTREE
|
||
}
|
||
|
||
/* Used to compare case labels. K1 and K2 are actually tree nodes
|
||
representing case labels, or NULL_TREE for a `default' label.
|
||
Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
|
||
K2, and 0 if K1 and K2 are equal. */
|
||
|
||
int
|
||
case_compare (k1, k2)
|
||
splay_tree_key k1;
|
||
splay_tree_key k2;
|
||
{
|
||
/* Consider a NULL key (such as arises with a `default' label) to be
|
||
smaller than anything else. */
|
||
if (!k1)
|
||
return k2 ? -1 : 0;
|
||
else if (!k2)
|
||
return k1 ? 1 : 0;
|
||
|
||
return tree_int_cst_compare ((tree) k1, (tree) k2);
|
||
}
|
||
|
||
/* Process a case label for the range LOW_VALUE ... HIGH_VALUE. If
|
||
LOW_VALUE and HIGH_VALUE are both NULL_TREE then this case label is
|
||
actually a `default' label. If only HIGH_VALUE is NULL_TREE, then
|
||
case label was declared using the usual C/C++ syntax, rather than
|
||
the GNU case range extension. CASES is a tree containing all the
|
||
case ranges processed so far; COND is the condition for the
|
||
switch-statement itself. Returns the CASE_LABEL created, or
|
||
ERROR_MARK_NODE if no CASE_LABEL is created. */
|
||
|
||
tree
|
||
c_add_case_label (cases, cond, low_value, high_value)
|
||
splay_tree cases;
|
||
tree cond;
|
||
tree low_value;
|
||
tree high_value;
|
||
{
|
||
tree type;
|
||
tree label;
|
||
tree case_label;
|
||
splay_tree_node node;
|
||
|
||
/* Create the LABEL_DECL itself. */
|
||
label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
|
||
DECL_CONTEXT (label) = current_function_decl;
|
||
|
||
/* If there was an error processing the switch condition, bail now
|
||
before we get more confused. */
|
||
if (!cond || cond == error_mark_node)
|
||
{
|
||
/* Add a label anyhow so that the back-end doesn't think that
|
||
the beginning of the switch is unreachable. */
|
||
if (!cases->root)
|
||
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
|
||
return error_mark_node;
|
||
}
|
||
|
||
if ((low_value && TREE_TYPE (low_value)
|
||
&& POINTER_TYPE_P (TREE_TYPE (low_value)))
|
||
|| (high_value && TREE_TYPE (high_value)
|
||
&& POINTER_TYPE_P (TREE_TYPE (high_value))))
|
||
error ("pointers are not permitted as case values");
|
||
|
||
/* Case ranges are a GNU extension. */
|
||
if (high_value && pedantic)
|
||
{
|
||
if (c_language == clk_cplusplus)
|
||
pedwarn ("ISO C++ forbids range expressions in switch statements");
|
||
else
|
||
pedwarn ("ISO C forbids range expressions in switch statements");
|
||
}
|
||
|
||
type = TREE_TYPE (cond);
|
||
if (low_value)
|
||
{
|
||
low_value = check_case_value (low_value);
|
||
low_value = convert_and_check (type, low_value);
|
||
}
|
||
if (high_value)
|
||
{
|
||
high_value = check_case_value (high_value);
|
||
high_value = convert_and_check (type, high_value);
|
||
}
|
||
|
||
/* If an error has occurred, bail out now. */
|
||
if (low_value == error_mark_node || high_value == error_mark_node)
|
||
{
|
||
if (!cases->root)
|
||
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
|
||
really a case range, even though it was written that way. Remove
|
||
the HIGH_VALUE to simplify later processing. */
|
||
if (tree_int_cst_equal (low_value, high_value))
|
||
high_value = NULL_TREE;
|
||
if (low_value && high_value
|
||
&& !tree_int_cst_lt (low_value, high_value))
|
||
warning ("empty range specified");
|
||
|
||
/* Look up the LOW_VALUE in the table of case labels we already
|
||
have. */
|
||
node = splay_tree_lookup (cases, (splay_tree_key) low_value);
|
||
/* If there was not an exact match, check for overlapping ranges.
|
||
There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
|
||
that's a `default' label and the only overlap is an exact match. */
|
||
if (!node && (low_value || high_value))
|
||
{
|
||
splay_tree_node low_bound;
|
||
splay_tree_node high_bound;
|
||
|
||
/* Even though there wasn't an exact match, there might be an
|
||
overlap between this case range and another case range.
|
||
Since we've (inductively) not allowed any overlapping case
|
||
ranges, we simply need to find the greatest low case label
|
||
that is smaller that LOW_VALUE, and the smallest low case
|
||
label that is greater than LOW_VALUE. If there is an overlap
|
||
it will occur in one of these two ranges. */
|
||
low_bound = splay_tree_predecessor (cases,
|
||
(splay_tree_key) low_value);
|
||
high_bound = splay_tree_successor (cases,
|
||
(splay_tree_key) low_value);
|
||
|
||
/* Check to see if the LOW_BOUND overlaps. It is smaller than
|
||
the LOW_VALUE, so there is no need to check unless the
|
||
LOW_BOUND is in fact itself a case range. */
|
||
if (low_bound
|
||
&& CASE_HIGH ((tree) low_bound->value)
|
||
&& tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
|
||
low_value) >= 0)
|
||
node = low_bound;
|
||
/* Check to see if the HIGH_BOUND overlaps. The low end of that
|
||
range is bigger than the low end of the current range, so we
|
||
are only interested if the current range is a real range, and
|
||
not an ordinary case label. */
|
||
else if (high_bound
|
||
&& high_value
|
||
&& (tree_int_cst_compare ((tree) high_bound->key,
|
||
high_value)
|
||
<= 0))
|
||
node = high_bound;
|
||
}
|
||
/* If there was an overlap, issue an error. */
|
||
if (node)
|
||
{
|
||
tree duplicate = CASE_LABEL_DECL ((tree) node->value);
|
||
|
||
if (high_value)
|
||
{
|
||
error ("duplicate (or overlapping) case value");
|
||
error_with_decl (duplicate,
|
||
"this is the first entry overlapping that value");
|
||
}
|
||
else if (low_value)
|
||
{
|
||
error ("duplicate case value") ;
|
||
error_with_decl (duplicate, "previously used here");
|
||
}
|
||
else
|
||
{
|
||
error ("multiple default labels in one switch");
|
||
error_with_decl (duplicate, "this is the first default label");
|
||
}
|
||
if (!cases->root)
|
||
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
|
||
}
|
||
|
||
/* Add a CASE_LABEL to the statement-tree. */
|
||
case_label = add_stmt (build_case_label (low_value, high_value, label));
|
||
/* Register this case label in the splay tree. */
|
||
splay_tree_insert (cases,
|
||
(splay_tree_key) low_value,
|
||
(splay_tree_value) case_label);
|
||
|
||
return case_label;
|
||
}
|
||
|
||
/* Finish an expression taking the address of LABEL. Returns an
|
||
expression for the address. */
|
||
|
||
tree
|
||
finish_label_address_expr (label)
|
||
tree label;
|
||
{
|
||
tree result;
|
||
|
||
if (pedantic)
|
||
{
|
||
if (c_language == clk_cplusplus)
|
||
pedwarn ("ISO C++ forbids taking the address of a label");
|
||
else
|
||
pedwarn ("ISO C forbids taking the address of a label");
|
||
}
|
||
|
||
label = lookup_label (label);
|
||
if (label == NULL_TREE)
|
||
result = null_pointer_node;
|
||
else
|
||
{
|
||
TREE_USED (label) = 1;
|
||
result = build1 (ADDR_EXPR, ptr_type_node, label);
|
||
TREE_CONSTANT (result) = 1;
|
||
/* The current function in not necessarily uninlinable.
|
||
Computed gotos are incompatible with inlining, but the value
|
||
here could be used only in a diagnostic, for example. */
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Mark P (a stmt_tree) for GC. The use of a `void *' for the
|
||
parameter allows this function to be used as a GC-marking
|
||
function. */
|
||
|
||
void
|
||
mark_stmt_tree (p)
|
||
void *p;
|
||
{
|
||
stmt_tree st = (stmt_tree) p;
|
||
|
||
ggc_mark_tree (st->x_last_stmt);
|
||
ggc_mark_tree (st->x_last_expr_type);
|
||
}
|
||
|
||
/* Mark LD for GC. */
|
||
|
||
void
|
||
c_mark_lang_decl (c)
|
||
struct c_lang_decl *c ATTRIBUTE_UNUSED;
|
||
{
|
||
}
|
||
|
||
/* Mark F for GC. */
|
||
|
||
void
|
||
mark_c_language_function (f)
|
||
struct language_function *f;
|
||
{
|
||
if (!f)
|
||
return;
|
||
|
||
mark_stmt_tree (&f->x_stmt_tree);
|
||
ggc_mark_tree (f->x_scope_stmt_stack);
|
||
}
|
||
|
||
/* Hook used by expand_expr to expand language-specific tree codes. */
|
||
|
||
rtx
|
||
c_expand_expr (exp, target, tmode, modifier)
|
||
tree exp;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
enum expand_modifier modifier;
|
||
{
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case STMT_EXPR:
|
||
{
|
||
tree rtl_expr;
|
||
rtx result;
|
||
bool preserve_result = false;
|
||
|
||
/* Since expand_expr_stmt calls free_temp_slots after every
|
||
expression statement, we must call push_temp_slots here.
|
||
Otherwise, any temporaries in use now would be considered
|
||
out-of-scope after the first EXPR_STMT from within the
|
||
STMT_EXPR. */
|
||
push_temp_slots ();
|
||
rtl_expr = expand_start_stmt_expr (!STMT_EXPR_NO_SCOPE (exp));
|
||
|
||
/* If we want the result of this expression, find the last
|
||
EXPR_STMT in the COMPOUND_STMT and mark it as addressable. */
|
||
if (target != const0_rtx
|
||
&& TREE_CODE (STMT_EXPR_STMT (exp)) == COMPOUND_STMT
|
||
&& TREE_CODE (COMPOUND_BODY (STMT_EXPR_STMT (exp))) == SCOPE_STMT)
|
||
{
|
||
tree expr = COMPOUND_BODY (STMT_EXPR_STMT (exp));
|
||
tree last = TREE_CHAIN (expr);
|
||
|
||
while (TREE_CHAIN (last))
|
||
{
|
||
expr = last;
|
||
last = TREE_CHAIN (last);
|
||
}
|
||
|
||
if (TREE_CODE (last) == SCOPE_STMT
|
||
&& TREE_CODE (expr) == EXPR_STMT)
|
||
{
|
||
TREE_ADDRESSABLE (expr) = 1;
|
||
preserve_result = true;
|
||
}
|
||
}
|
||
|
||
expand_stmt (STMT_EXPR_STMT (exp));
|
||
expand_end_stmt_expr (rtl_expr);
|
||
|
||
result = expand_expr (rtl_expr, target, tmode, modifier);
|
||
if (preserve_result && GET_CODE (result) == MEM)
|
||
{
|
||
if (GET_MODE (result) != BLKmode)
|
||
result = copy_to_reg (result);
|
||
else
|
||
preserve_temp_slots (result);
|
||
}
|
||
|
||
/* If the statment-expression does not have a scope, then the
|
||
new temporaries we created within it must live beyond the
|
||
statement-expression. */
|
||
if (STMT_EXPR_NO_SCOPE (exp))
|
||
preserve_temp_slots (NULL_RTX);
|
||
|
||
pop_temp_slots ();
|
||
return result;
|
||
}
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
{
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
|
||
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== FUNCTION_DECL)
|
||
&& DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
&& (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
|
||
== BUILT_IN_FRONTEND))
|
||
return c_expand_builtin (exp, target, tmode, modifier);
|
||
else
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case COMPOUND_LITERAL_EXPR:
|
||
{
|
||
/* Initialize the anonymous variable declared in the compound
|
||
literal, then return the variable. */
|
||
tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
|
||
emit_local_var (decl);
|
||
return expand_expr (decl, target, tmode, modifier);
|
||
}
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
abort ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Hook used by safe_from_p to handle language-specific tree codes. */
|
||
|
||
int
|
||
c_safe_from_p (target, exp)
|
||
rtx target;
|
||
tree exp;
|
||
{
|
||
/* We can see statements here when processing the body of a
|
||
statement-expression. For a declaration statement declaring a
|
||
variable, look at the variable's initializer. */
|
||
if (TREE_CODE (exp) == DECL_STMT)
|
||
{
|
||
tree decl = DECL_STMT_DECL (exp);
|
||
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& DECL_INITIAL (decl)
|
||
&& !safe_from_p (target, DECL_INITIAL (decl), /*top_p=*/0))
|
||
return 0;
|
||
}
|
||
|
||
/* For any statement, we must follow the statement-chain. */
|
||
if (statement_code_p (TREE_CODE (exp)) && TREE_CHAIN (exp))
|
||
return safe_from_p (target, TREE_CHAIN (exp), /*top_p=*/0);
|
||
|
||
/* Assume everything else is safe. */
|
||
return 1;
|
||
}
|
||
|
||
/* Hook used by unsafe_for_reeval to handle language-specific tree codes. */
|
||
|
||
int
|
||
c_unsafe_for_reeval (exp)
|
||
tree exp;
|
||
{
|
||
/* Statement expressions may not be reevaluated, likewise compound
|
||
literals. */
|
||
if (TREE_CODE (exp) == STMT_EXPR
|
||
|| TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
|
||
return 2;
|
||
|
||
/* Walk all other expressions. */
|
||
return -1;
|
||
}
|
||
|
||
/* Hook used by staticp to handle language-specific tree codes. */
|
||
|
||
int
|
||
c_staticp (exp)
|
||
tree exp;
|
||
{
|
||
if (TREE_CODE (exp) == COMPOUND_LITERAL_EXPR
|
||
&& TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Tree code classes. */
|
||
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
|
||
|
||
static const char c_tree_code_type[] = {
|
||
'x',
|
||
#include "c-common.def"
|
||
};
|
||
#undef DEFTREECODE
|
||
|
||
/* Table indexed by tree code giving number of expression
|
||
operands beyond the fixed part of the node structure.
|
||
Not used for types or decls. */
|
||
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
|
||
|
||
static const int c_tree_code_length[] = {
|
||
0,
|
||
#include "c-common.def"
|
||
};
|
||
#undef DEFTREECODE
|
||
|
||
/* Names of tree components.
|
||
Used for printing out the tree and error messages. */
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
|
||
|
||
static const char *const c_tree_code_name[] = {
|
||
"@@dummy",
|
||
#include "c-common.def"
|
||
};
|
||
#undef DEFTREECODE
|
||
|
||
/* Adds the tree codes specific to the C front end to the list of all
|
||
tree codes. */
|
||
|
||
void
|
||
add_c_tree_codes ()
|
||
{
|
||
memcpy (tree_code_type + (int) LAST_AND_UNUSED_TREE_CODE,
|
||
c_tree_code_type,
|
||
(int) LAST_C_TREE_CODE - (int) LAST_AND_UNUSED_TREE_CODE);
|
||
memcpy (tree_code_length + (int) LAST_AND_UNUSED_TREE_CODE,
|
||
c_tree_code_length,
|
||
(LAST_C_TREE_CODE - (int) LAST_AND_UNUSED_TREE_CODE) * sizeof (int));
|
||
memcpy (tree_code_name + (int) LAST_AND_UNUSED_TREE_CODE,
|
||
c_tree_code_name,
|
||
(LAST_C_TREE_CODE - (int) LAST_AND_UNUSED_TREE_CODE) * sizeof (char *));
|
||
lang_unsafe_for_reeval = c_unsafe_for_reeval;
|
||
}
|
||
|
||
#define CALLED_AS_BUILT_IN(NODE) \
|
||
(!strncmp (IDENTIFIER_POINTER (DECL_NAME (NODE)), "__builtin_", 10))
|
||
|
||
static rtx
|
||
c_expand_builtin (exp, target, tmode, modifier)
|
||
tree exp;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
enum expand_modifier modifier;
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
||
tree arglist = TREE_OPERAND (exp, 1);
|
||
enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
|
||
enum tree_code code = TREE_CODE (exp);
|
||
const int ignore = (target == const0_rtx
|
||
|| ((code == NON_LVALUE_EXPR || code == NOP_EXPR
|
||
|| code == CONVERT_EXPR || code == REFERENCE_EXPR
|
||
|| code == COND_EXPR)
|
||
&& TREE_CODE (type) == VOID_TYPE));
|
||
|
||
if (! optimize && ! CALLED_AS_BUILT_IN (fndecl))
|
||
return expand_call (exp, target, ignore);
|
||
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_PRINTF:
|
||
target = c_expand_builtin_printf (arglist, target, tmode,
|
||
modifier, ignore, /*unlocked=*/ 0);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_PRINTF_UNLOCKED:
|
||
target = c_expand_builtin_printf (arglist, target, tmode,
|
||
modifier, ignore, /*unlocked=*/ 1);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_FPRINTF:
|
||
target = c_expand_builtin_fprintf (arglist, target, tmode,
|
||
modifier, ignore, /*unlocked=*/ 0);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
case BUILT_IN_FPRINTF_UNLOCKED:
|
||
target = c_expand_builtin_fprintf (arglist, target, tmode,
|
||
modifier, ignore, /*unlocked=*/ 1);
|
||
if (target)
|
||
return target;
|
||
break;
|
||
|
||
default: /* just do library call, if unknown builtin */
|
||
error ("built-in function `%s' not currently supported",
|
||
IDENTIFIER_POINTER (DECL_NAME (fndecl)));
|
||
}
|
||
|
||
/* The switch statement above can drop through to cause the function
|
||
to be called normally. */
|
||
return expand_call (exp, target, ignore);
|
||
}
|
||
|
||
/* Check an arglist to *printf for problems. The arglist should start
|
||
at the format specifier, with the remaining arguments immediately
|
||
following it. */
|
||
static int
|
||
is_valid_printf_arglist (arglist)
|
||
tree arglist;
|
||
{
|
||
/* Save this value so we can restore it later. */
|
||
const int SAVE_pedantic = pedantic;
|
||
int diagnostic_occurred = 0;
|
||
tree attrs;
|
||
|
||
/* Set this to a known value so the user setting won't affect code
|
||
generation. */
|
||
pedantic = 1;
|
||
/* Check to make sure there are no format specifier errors. */
|
||
attrs = tree_cons (get_identifier ("format"),
|
||
tree_cons (NULL_TREE,
|
||
get_identifier ("printf"),
|
||
tree_cons (NULL_TREE,
|
||
integer_one_node,
|
||
tree_cons (NULL_TREE,
|
||
build_int_2 (2, 0),
|
||
NULL_TREE))),
|
||
NULL_TREE);
|
||
check_function_format (&diagnostic_occurred, attrs, arglist);
|
||
|
||
/* Restore the value of `pedantic'. */
|
||
pedantic = SAVE_pedantic;
|
||
|
||
/* If calling `check_function_format_ptr' produces a warning, we
|
||
return false, otherwise we return true. */
|
||
return ! diagnostic_occurred;
|
||
}
|
||
|
||
/* If the arguments passed to printf are suitable for optimizations,
|
||
we attempt to transform the call. */
|
||
static rtx
|
||
c_expand_builtin_printf (arglist, target, tmode, modifier, ignore, unlocked)
|
||
tree arglist;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
enum expand_modifier modifier;
|
||
int ignore;
|
||
int unlocked;
|
||
{
|
||
tree fn_putchar = unlocked ?
|
||
built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED] : built_in_decls[BUILT_IN_PUTCHAR];
|
||
tree fn_puts = unlocked ?
|
||
built_in_decls[BUILT_IN_PUTS_UNLOCKED] : built_in_decls[BUILT_IN_PUTS];
|
||
tree fn, format_arg, stripped_string;
|
||
|
||
/* If the return value is used, or the replacement _DECL isn't
|
||
initialized, don't do the transformation. */
|
||
if (!ignore || !fn_putchar || !fn_puts)
|
||
return 0;
|
||
|
||
/* Verify the required arguments in the original call. */
|
||
if (arglist == 0
|
||
|| (TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE))
|
||
return 0;
|
||
|
||
/* Check the specifier vs. the parameters. */
|
||
if (!is_valid_printf_arglist (arglist))
|
||
return 0;
|
||
|
||
format_arg = TREE_VALUE (arglist);
|
||
stripped_string = format_arg;
|
||
STRIP_NOPS (stripped_string);
|
||
if (stripped_string && TREE_CODE (stripped_string) == ADDR_EXPR)
|
||
stripped_string = TREE_OPERAND (stripped_string, 0);
|
||
|
||
/* If the format specifier isn't a STRING_CST, punt. */
|
||
if (TREE_CODE (stripped_string) != STRING_CST)
|
||
return 0;
|
||
|
||
/* OK! We can attempt optimization. */
|
||
|
||
/* If the format specifier was "%s\n", call __builtin_puts(arg2). */
|
||
if (strcmp (TREE_STRING_POINTER (stripped_string), "%s\n") == 0)
|
||
{
|
||
arglist = TREE_CHAIN (arglist);
|
||
fn = fn_puts;
|
||
}
|
||
/* If the format specifier was "%c", call __builtin_putchar (arg2). */
|
||
else if (strcmp (TREE_STRING_POINTER (stripped_string), "%c") == 0)
|
||
{
|
||
arglist = TREE_CHAIN (arglist);
|
||
fn = fn_putchar;
|
||
}
|
||
else
|
||
{
|
||
/* We can't handle anything else with % args or %% ... yet. */
|
||
if (strchr (TREE_STRING_POINTER (stripped_string), '%'))
|
||
return 0;
|
||
|
||
/* If the resulting constant string has a length of 1, call
|
||
putchar. Note, TREE_STRING_LENGTH includes the terminating
|
||
NULL in its count. */
|
||
if (TREE_STRING_LENGTH (stripped_string) == 2)
|
||
{
|
||
/* Given printf("c"), (where c is any one character,)
|
||
convert "c"[0] to an int and pass that to the replacement
|
||
function. */
|
||
arglist = build_int_2 (TREE_STRING_POINTER (stripped_string)[0], 0);
|
||
arglist = build_tree_list (NULL_TREE, arglist);
|
||
|
||
fn = fn_putchar;
|
||
}
|
||
/* If the resulting constant was "string\n", call
|
||
__builtin_puts("string"). Ensure "string" has at least one
|
||
character besides the trailing \n. Note, TREE_STRING_LENGTH
|
||
includes the terminating NULL in its count. */
|
||
else if (TREE_STRING_LENGTH (stripped_string) > 2
|
||
&& TREE_STRING_POINTER (stripped_string)
|
||
[TREE_STRING_LENGTH (stripped_string) - 2] == '\n')
|
||
{
|
||
/* Create a NULL-terminated string that's one char shorter
|
||
than the original, stripping off the trailing '\n'. */
|
||
const int newlen = TREE_STRING_LENGTH (stripped_string) - 1;
|
||
char *newstr = (char *) alloca (newlen);
|
||
memcpy (newstr, TREE_STRING_POINTER (stripped_string), newlen - 1);
|
||
newstr[newlen - 1] = 0;
|
||
|
||
arglist = combine_strings (build_string (newlen, newstr));
|
||
arglist = build_tree_list (NULL_TREE, arglist);
|
||
fn = fn_puts;
|
||
}
|
||
else
|
||
/* We'd like to arrange to call fputs(string) here, but we
|
||
need stdout and don't have a way to get it ... yet. */
|
||
return 0;
|
||
}
|
||
|
||
return expand_expr (build_function_call (fn, arglist),
|
||
(ignore ? const0_rtx : target),
|
||
tmode, modifier);
|
||
}
|
||
|
||
/* If the arguments passed to fprintf are suitable for optimizations,
|
||
we attempt to transform the call. */
|
||
static rtx
|
||
c_expand_builtin_fprintf (arglist, target, tmode, modifier, ignore, unlocked)
|
||
tree arglist;
|
||
rtx target;
|
||
enum machine_mode tmode;
|
||
enum expand_modifier modifier;
|
||
int ignore;
|
||
int unlocked;
|
||
{
|
||
tree fn_fputc = unlocked ?
|
||
built_in_decls[BUILT_IN_FPUTC_UNLOCKED] : built_in_decls[BUILT_IN_FPUTC];
|
||
tree fn_fputs = unlocked ?
|
||
built_in_decls[BUILT_IN_FPUTS_UNLOCKED] : built_in_decls[BUILT_IN_FPUTS];
|
||
tree fn, format_arg, stripped_string;
|
||
|
||
/* If the return value is used, or the replacement _DECL isn't
|
||
initialized, don't do the transformation. */
|
||
if (!ignore || !fn_fputc || !fn_fputs)
|
||
return 0;
|
||
|
||
/* Verify the required arguments in the original call. */
|
||
if (arglist == 0
|
||
|| (TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE)
|
||
|| (TREE_CHAIN (arglist) == 0)
|
||
|| (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist)))) !=
|
||
POINTER_TYPE))
|
||
return 0;
|
||
|
||
/* Check the specifier vs. the parameters. */
|
||
if (!is_valid_printf_arglist (TREE_CHAIN (arglist)))
|
||
return 0;
|
||
|
||
format_arg = TREE_VALUE (TREE_CHAIN (arglist));
|
||
stripped_string = format_arg;
|
||
STRIP_NOPS (stripped_string);
|
||
if (stripped_string && TREE_CODE (stripped_string) == ADDR_EXPR)
|
||
stripped_string = TREE_OPERAND (stripped_string, 0);
|
||
|
||
/* If the format specifier isn't a STRING_CST, punt. */
|
||
if (TREE_CODE (stripped_string) != STRING_CST)
|
||
return 0;
|
||
|
||
/* OK! We can attempt optimization. */
|
||
|
||
/* If the format specifier was "%s", call __builtin_fputs(arg3, arg1). */
|
||
if (strcmp (TREE_STRING_POINTER (stripped_string), "%s") == 0)
|
||
{
|
||
tree newarglist = build_tree_list (NULL_TREE, TREE_VALUE (arglist));
|
||
arglist = tree_cons (NULL_TREE,
|
||
TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))),
|
||
newarglist);
|
||
fn = fn_fputs;
|
||
}
|
||
/* If the format specifier was "%c", call __builtin_fputc (arg3, arg1). */
|
||
else if (strcmp (TREE_STRING_POINTER (stripped_string), "%c") == 0)
|
||
{
|
||
tree newarglist = build_tree_list (NULL_TREE, TREE_VALUE (arglist));
|
||
arglist = tree_cons (NULL_TREE,
|
||
TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))),
|
||
newarglist);
|
||
fn = fn_fputc;
|
||
}
|
||
else
|
||
{
|
||
/* We can't handle anything else with % args or %% ... yet. */
|
||
if (strchr (TREE_STRING_POINTER (stripped_string), '%'))
|
||
return 0;
|
||
|
||
/* When "string" doesn't contain %, replace all cases of
|
||
fprintf(stream,string) with fputs(string,stream). The fputs
|
||
builtin will take take of special cases like length==1. */
|
||
arglist = tree_cons (NULL_TREE, TREE_VALUE (TREE_CHAIN (arglist)),
|
||
build_tree_list (NULL_TREE, TREE_VALUE (arglist)));
|
||
fn = fn_fputs;
|
||
}
|
||
|
||
return expand_expr (build_function_call (fn, arglist),
|
||
(ignore ? const0_rtx : target),
|
||
tmode, modifier);
|
||
}
|
||
|
||
|
||
/* Given a boolean expression ARG, return a tree representing an increment
|
||
or decrement (as indicated by CODE) of ARG. The front end must check for
|
||
invalid cases (e.g., decrement in C++). */
|
||
tree
|
||
boolean_increment (code, arg)
|
||
enum tree_code code;
|
||
tree arg;
|
||
{
|
||
tree val;
|
||
tree true_res = (c_language == clk_cplusplus
|
||
? boolean_true_node
|
||
: c_bool_true_node);
|
||
arg = stabilize_reference (arg);
|
||
switch (code)
|
||
{
|
||
case PREINCREMENT_EXPR:
|
||
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
|
||
break;
|
||
case POSTINCREMENT_EXPR:
|
||
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
|
||
arg = save_expr (arg);
|
||
val = build (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
|
||
val = build (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
|
||
break;
|
||
case PREDECREMENT_EXPR:
|
||
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, invert_truthvalue (arg));
|
||
break;
|
||
case POSTDECREMENT_EXPR:
|
||
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, invert_truthvalue (arg));
|
||
arg = save_expr (arg);
|
||
val = build (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
|
||
val = build (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
TREE_SIDE_EFFECTS (val) = 1;
|
||
return val;
|
||
}
|
||
|
||
/* Handle C and C++ default attributes. */
|
||
|
||
enum built_in_attribute
|
||
{
|
||
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
|
||
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
|
||
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
|
||
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
|
||
#define DEF_FN_ATTR(NAME, ATTRS, PREDICATE) /* No entry needed in enum. */
|
||
#include "builtin-attrs.def"
|
||
#undef DEF_ATTR_NULL_TREE
|
||
#undef DEF_ATTR_INT
|
||
#undef DEF_ATTR_IDENT
|
||
#undef DEF_ATTR_TREE_LIST
|
||
#undef DEF_FN_ATTR
|
||
ATTR_LAST
|
||
};
|
||
|
||
static tree built_in_attributes[(int) ATTR_LAST];
|
||
|
||
static bool c_attrs_initialized = false;
|
||
|
||
static void c_init_attributes PARAMS ((void));
|
||
|
||
/* Common initialization before parsing options. */
|
||
void
|
||
c_common_init_options (lang)
|
||
enum c_language_kind lang;
|
||
{
|
||
c_language = lang;
|
||
parse_in = cpp_create_reader (lang == clk_c ? CLK_GNUC89:
|
||
lang == clk_cplusplus ? CLK_GNUCXX: CLK_OBJC);
|
||
|
||
/* Mark as "unspecified" (see c_common_post_options). */
|
||
flag_bounds_check = -1;
|
||
}
|
||
|
||
/* Post-switch processing. */
|
||
void
|
||
c_common_post_options ()
|
||
{
|
||
cpp_post_options (parse_in);
|
||
|
||
flag_inline_trees = 1;
|
||
|
||
/* Use tree inlining if possible. Function instrumentation is only
|
||
done in the RTL level, so we disable tree inlining. */
|
||
if (! flag_instrument_function_entry_exit)
|
||
{
|
||
if (!flag_no_inline)
|
||
flag_no_inline = 1;
|
||
if (flag_inline_functions)
|
||
{
|
||
flag_inline_trees = 2;
|
||
flag_inline_functions = 0;
|
||
}
|
||
}
|
||
|
||
/* If still "unspecified", make it match -fbounded-pointers. */
|
||
if (flag_bounds_check == -1)
|
||
flag_bounds_check = flag_bounded_pointers;
|
||
|
||
/* Special format checking options don't work without -Wformat; warn if
|
||
they are used. */
|
||
if (warn_format_y2k && !warn_format)
|
||
warning ("-Wformat-y2k ignored without -Wformat");
|
||
if (warn_format_extra_args && !warn_format)
|
||
warning ("-Wformat-extra-args ignored without -Wformat");
|
||
if (warn_format_nonliteral && !warn_format)
|
||
warning ("-Wformat-nonliteral ignored without -Wformat");
|
||
if (warn_format_security && !warn_format)
|
||
warning ("-Wformat-security ignored without -Wformat");
|
||
if (warn_missing_format_attribute && !warn_format)
|
||
warning ("-Wmissing-format-attribute ignored without -Wformat");
|
||
}
|
||
|
||
/* Front end initialization common to C, ObjC and C++. */
|
||
const char *
|
||
c_common_init (filename)
|
||
const char *filename;
|
||
{
|
||
/* Do this before initializing pragmas, as then cpplib's hash table
|
||
has been set up. */
|
||
filename = init_c_lex (filename);
|
||
|
||
init_pragma ();
|
||
|
||
if (!c_attrs_initialized)
|
||
c_init_attributes ();
|
||
|
||
return filename;
|
||
}
|
||
|
||
/* Common finish hook for the C, ObjC and C++ front ends. */
|
||
void
|
||
c_common_finish ()
|
||
{
|
||
cpp_finish (parse_in);
|
||
|
||
/* For performance, avoid tearing down cpplib's internal structures.
|
||
Call cpp_errors () instead of cpp_destroy (). */
|
||
errorcount += cpp_errors (parse_in);
|
||
}
|
||
|
||
static void
|
||
c_init_attributes ()
|
||
{
|
||
/* Fill in the built_in_attributes array. */
|
||
#define DEF_ATTR_NULL_TREE(ENUM) \
|
||
built_in_attributes[(int) ENUM] = NULL_TREE;
|
||
#define DEF_ATTR_INT(ENUM, VALUE) \
|
||
built_in_attributes[(int) ENUM] = build_int_2 (VALUE, VALUE < 0 ? -1 : 0);
|
||
#define DEF_ATTR_IDENT(ENUM, STRING) \
|
||
built_in_attributes[(int) ENUM] = get_identifier (STRING);
|
||
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
|
||
built_in_attributes[(int) ENUM] \
|
||
= tree_cons (built_in_attributes[(int) PURPOSE], \
|
||
built_in_attributes[(int) VALUE], \
|
||
built_in_attributes[(int) CHAIN]);
|
||
#define DEF_FN_ATTR(NAME, ATTRS, PREDICATE) /* No initialization needed. */
|
||
#include "builtin-attrs.def"
|
||
#undef DEF_ATTR_NULL_TREE
|
||
#undef DEF_ATTR_INT
|
||
#undef DEF_ATTR_IDENT
|
||
#undef DEF_ATTR_TREE_LIST
|
||
#undef DEF_FN_ATTR
|
||
ggc_add_tree_root (built_in_attributes, (int) ATTR_LAST);
|
||
c_attrs_initialized = true;
|
||
}
|
||
|
||
/* Depending on the name of DECL, apply default attributes to it. */
|
||
|
||
void
|
||
c_common_insert_default_attributes (decl)
|
||
tree decl;
|
||
{
|
||
tree name = DECL_NAME (decl);
|
||
|
||
if (!c_attrs_initialized)
|
||
c_init_attributes ();
|
||
|
||
#define DEF_ATTR_NULL_TREE(ENUM) /* Nothing needed after initialization. */
|
||
#define DEF_ATTR_INT(ENUM, VALUE)
|
||
#define DEF_ATTR_IDENT(ENUM, STRING)
|
||
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN)
|
||
#define DEF_FN_ATTR(NAME, ATTRS, PREDICATE) \
|
||
if ((PREDICATE) && name == built_in_attributes[(int) NAME]) \
|
||
decl_attributes (&decl, built_in_attributes[(int) ATTRS], \
|
||
ATTR_FLAG_BUILT_IN);
|
||
#include "builtin-attrs.def"
|
||
#undef DEF_ATTR_NULL_TREE
|
||
#undef DEF_ATTR_INT
|
||
#undef DEF_ATTR_IDENT
|
||
#undef DEF_ATTR_TREE_LIST
|
||
#undef DEF_FN_ATTR
|
||
}
|
||
|
||
/* Output a -Wshadow warning MSGID about NAME, an IDENTIFIER_NODE, and
|
||
additionally give the location of the previous declaration DECL. */
|
||
void
|
||
shadow_warning (msgid, name, decl)
|
||
const char *msgid;
|
||
tree name, decl;
|
||
{
|
||
warning ("declaration of `%s' shadows %s", IDENTIFIER_POINTER (name), msgid);
|
||
warning_with_file_and_line (DECL_SOURCE_FILE (decl),
|
||
DECL_SOURCE_LINE (decl),
|
||
"shadowed declaration is here");
|
||
}
|
||
|