1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-26 11:47:31 +00:00
freebsd/sys/opencrypto/xform.c
Pawel Jakub Dawidek d295bdee07 Add support for AES-XTS.
Obtained from:	OpenBSD
MFC after:	1 week
2010-09-23 11:52:32 +00:00

814 lines
18 KiB
C

/* $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $ */
/*-
* The authors of this code are John Ioannidis (ji@tla.org),
* Angelos D. Keromytis (kermit@csd.uch.gr) and
* Niels Provos (provos@physnet.uni-hamburg.de).
*
* This code was written by John Ioannidis for BSD/OS in Athens, Greece,
* in November 1995.
*
* Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
* by Angelos D. Keromytis.
*
* Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
* and Niels Provos.
*
* Additional features in 1999 by Angelos D. Keromytis.
*
* Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
* Angelos D. Keromytis and Niels Provos.
*
* Copyright (C) 2001, Angelos D. Keromytis.
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all copies of any software which is or includes a copy or
* modification of this software.
* You may use this code under the GNU public license if you so wish. Please
* contribute changes back to the authors under this freer than GPL license
* so that we may further the use of strong encryption without limitations to
* all.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <machine/cpu.h>
#include <crypto/blowfish/blowfish.h>
#include <crypto/des/des.h>
#include <crypto/rijndael/rijndael.h>
#include <crypto/camellia/camellia.h>
#include <crypto/sha1.h>
#include <opencrypto/cast.h>
#include <opencrypto/deflate.h>
#include <opencrypto/rmd160.h>
#include <opencrypto/skipjack.h>
#include <sys/md5.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
static int null_setkey(u_int8_t **, u_int8_t *, int);
static int des1_setkey(u_int8_t **, u_int8_t *, int);
static int des3_setkey(u_int8_t **, u_int8_t *, int);
static int blf_setkey(u_int8_t **, u_int8_t *, int);
static int cast5_setkey(u_int8_t **, u_int8_t *, int);
static int skipjack_setkey(u_int8_t **, u_int8_t *, int);
static int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
static int aes_xts_setkey(u_int8_t **, u_int8_t *, int);
static int cml_setkey(u_int8_t **, u_int8_t *, int);
static void null_encrypt(caddr_t, u_int8_t *);
static void des1_encrypt(caddr_t, u_int8_t *);
static void des3_encrypt(caddr_t, u_int8_t *);
static void blf_encrypt(caddr_t, u_int8_t *);
static void cast5_encrypt(caddr_t, u_int8_t *);
static void skipjack_encrypt(caddr_t, u_int8_t *);
static void rijndael128_encrypt(caddr_t, u_int8_t *);
static void aes_xts_encrypt(caddr_t, u_int8_t *);
static void cml_encrypt(caddr_t, u_int8_t *);
static void null_decrypt(caddr_t, u_int8_t *);
static void des1_decrypt(caddr_t, u_int8_t *);
static void des3_decrypt(caddr_t, u_int8_t *);
static void blf_decrypt(caddr_t, u_int8_t *);
static void cast5_decrypt(caddr_t, u_int8_t *);
static void skipjack_decrypt(caddr_t, u_int8_t *);
static void rijndael128_decrypt(caddr_t, u_int8_t *);
static void aes_xts_decrypt(caddr_t, u_int8_t *);
static void cml_decrypt(caddr_t, u_int8_t *);
static void null_zerokey(u_int8_t **);
static void des1_zerokey(u_int8_t **);
static void des3_zerokey(u_int8_t **);
static void blf_zerokey(u_int8_t **);
static void cast5_zerokey(u_int8_t **);
static void skipjack_zerokey(u_int8_t **);
static void rijndael128_zerokey(u_int8_t **);
static void aes_xts_zerokey(u_int8_t **);
static void cml_zerokey(u_int8_t **);
static void aes_xts_reinit(caddr_t, u_int8_t *);
static void null_init(void *);
static int null_update(void *, u_int8_t *, u_int16_t);
static void null_final(u_int8_t *, void *);
static int MD5Update_int(void *, u_int8_t *, u_int16_t);
static void SHA1Init_int(void *);
static int SHA1Update_int(void *, u_int8_t *, u_int16_t);
static void SHA1Final_int(u_int8_t *, void *);
static int RMD160Update_int(void *, u_int8_t *, u_int16_t);
static int SHA256Update_int(void *, u_int8_t *, u_int16_t);
static int SHA384Update_int(void *, u_int8_t *, u_int16_t);
static int SHA512Update_int(void *, u_int8_t *, u_int16_t);
static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
/* Encryption instances */
struct enc_xform enc_xform_null = {
CRYPTO_NULL_CBC, "NULL",
/* NB: blocksize of 4 is to generate a properly aligned ESP header */
NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
null_encrypt,
null_decrypt,
null_setkey,
null_zerokey,
NULL
};
struct enc_xform enc_xform_des = {
CRYPTO_DES_CBC, "DES",
DES_BLOCK_LEN, 8, 8,
des1_encrypt,
des1_decrypt,
des1_setkey,
des1_zerokey,
NULL
};
struct enc_xform enc_xform_3des = {
CRYPTO_3DES_CBC, "3DES",
DES3_BLOCK_LEN, 24, 24,
des3_encrypt,
des3_decrypt,
des3_setkey,
des3_zerokey,
NULL
};
struct enc_xform enc_xform_blf = {
CRYPTO_BLF_CBC, "Blowfish",
BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
blf_encrypt,
blf_decrypt,
blf_setkey,
blf_zerokey,
NULL
};
struct enc_xform enc_xform_cast5 = {
CRYPTO_CAST_CBC, "CAST-128",
CAST128_BLOCK_LEN, 5, 16,
cast5_encrypt,
cast5_decrypt,
cast5_setkey,
cast5_zerokey,
NULL
};
struct enc_xform enc_xform_skipjack = {
CRYPTO_SKIPJACK_CBC, "Skipjack",
SKIPJACK_BLOCK_LEN, 10, 10,
skipjack_encrypt,
skipjack_decrypt,
skipjack_setkey,
skipjack_zerokey,
NULL
};
struct enc_xform enc_xform_rijndael128 = {
CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
RIJNDAEL128_BLOCK_LEN, 8, 32,
rijndael128_encrypt,
rijndael128_decrypt,
rijndael128_setkey,
rijndael128_zerokey,
NULL
};
struct enc_xform enc_xform_aes_xts = {
CRYPTO_AES_XTS, "AES-XTS",
RIJNDAEL128_BLOCK_LEN, 32, 64,
aes_xts_encrypt,
aes_xts_decrypt,
aes_xts_setkey,
aes_xts_zerokey,
aes_xts_reinit
};
struct enc_xform enc_xform_arc4 = {
CRYPTO_ARC4, "ARC4",
1, 1, 32,
NULL,
NULL,
NULL,
NULL,
NULL
};
struct enc_xform enc_xform_camellia = {
CRYPTO_CAMELLIA_CBC, "Camellia",
CAMELLIA_BLOCK_LEN, 8, 32,
cml_encrypt,
cml_decrypt,
cml_setkey,
cml_zerokey,
NULL
};
/* Authentication instances */
struct auth_hash auth_hash_null = {
CRYPTO_NULL_HMAC, "NULL-HMAC",
0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN, sizeof(int), /* NB: context isn't used */
null_init, null_update, null_final
};
struct auth_hash auth_hash_hmac_md5 = {
CRYPTO_MD5_HMAC, "HMAC-MD5",
16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX),
(void (*) (void *)) MD5Init, MD5Update_int,
(void (*) (u_int8_t *, void *)) MD5Final
};
struct auth_hash auth_hash_hmac_sha1 = {
CRYPTO_SHA1_HMAC, "HMAC-SHA1",
20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX),
SHA1Init_int, SHA1Update_int, SHA1Final_int
};
struct auth_hash auth_hash_hmac_ripemd_160 = {
CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX),
(void (*)(void *)) RMD160Init, RMD160Update_int,
(void (*)(u_int8_t *, void *)) RMD160Final
};
struct auth_hash auth_hash_key_md5 = {
CRYPTO_MD5_KPDK, "Keyed MD5",
0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX),
(void (*)(void *)) MD5Init, MD5Update_int,
(void (*)(u_int8_t *, void *)) MD5Final
};
struct auth_hash auth_hash_key_sha1 = {
CRYPTO_SHA1_KPDK, "Keyed SHA1",
0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX),
SHA1Init_int, SHA1Update_int, SHA1Final_int
};
struct auth_hash auth_hash_hmac_sha2_256 = {
CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX),
(void (*)(void *)) SHA256_Init, SHA256Update_int,
(void (*)(u_int8_t *, void *)) SHA256_Final
};
struct auth_hash auth_hash_hmac_sha2_384 = {
CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX),
(void (*)(void *)) SHA384_Init, SHA384Update_int,
(void (*)(u_int8_t *, void *)) SHA384_Final
};
struct auth_hash auth_hash_hmac_sha2_512 = {
CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX),
(void (*)(void *)) SHA512_Init, SHA512Update_int,
(void (*)(u_int8_t *, void *)) SHA512_Final
};
/* Compression instance */
struct comp_algo comp_algo_deflate = {
CRYPTO_DEFLATE_COMP, "Deflate",
90, deflate_compress,
deflate_decompress
};
/*
* Encryption wrapper routines.
*/
static void
null_encrypt(caddr_t key, u_int8_t *blk)
{
}
static void
null_decrypt(caddr_t key, u_int8_t *blk)
{
}
static int
null_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
*sched = NULL;
return 0;
}
static void
null_zerokey(u_int8_t **sched)
{
*sched = NULL;
}
static void
des1_encrypt(caddr_t key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
}
static void
des1_decrypt(caddr_t key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
}
static int
des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
des_key_schedule *p;
int err;
p = malloc(sizeof (des_key_schedule),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (p != NULL) {
des_set_key((des_cblock *) key, p[0]);
err = 0;
} else
err = ENOMEM;
*sched = (u_int8_t *) p;
return err;
}
static void
des1_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof (des_key_schedule));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
des3_encrypt(caddr_t key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
}
static void
des3_decrypt(caddr_t key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
}
static int
des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
des_key_schedule *p;
int err;
p = malloc(3*sizeof (des_key_schedule),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (p != NULL) {
des_set_key((des_cblock *)(key + 0), p[0]);
des_set_key((des_cblock *)(key + 8), p[1]);
des_set_key((des_cblock *)(key + 16), p[2]);
err = 0;
} else
err = ENOMEM;
*sched = (u_int8_t *) p;
return err;
}
static void
des3_zerokey(u_int8_t **sched)
{
bzero(*sched, 3*sizeof (des_key_schedule));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
blf_encrypt(caddr_t key, u_int8_t *blk)
{
BF_LONG t[2];
memcpy(t, blk, sizeof (t));
t[0] = ntohl(t[0]);
t[1] = ntohl(t[1]);
/* NB: BF_encrypt expects the block in host order! */
BF_encrypt(t, (BF_KEY *) key);
t[0] = htonl(t[0]);
t[1] = htonl(t[1]);
memcpy(blk, t, sizeof (t));
}
static void
blf_decrypt(caddr_t key, u_int8_t *blk)
{
BF_LONG t[2];
memcpy(t, blk, sizeof (t));
t[0] = ntohl(t[0]);
t[1] = ntohl(t[1]);
/* NB: BF_decrypt expects the block in host order! */
BF_decrypt(t, (BF_KEY *) key);
t[0] = htonl(t[0]);
t[1] = htonl(t[1]);
memcpy(blk, t, sizeof (t));
}
static int
blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
*sched = malloc(sizeof(BF_KEY),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (*sched != NULL) {
BF_set_key((BF_KEY *) *sched, len, key);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
blf_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(BF_KEY));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
cast5_encrypt(caddr_t key, u_int8_t *blk)
{
cast_encrypt((cast_key *) key, blk, blk);
}
static void
cast5_decrypt(caddr_t key, u_int8_t *blk)
{
cast_decrypt((cast_key *) key, blk, blk);
}
static int
cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
*sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (*sched != NULL) {
cast_setkey((cast_key *)*sched, key, len);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
cast5_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(cast_key));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
skipjack_encrypt(caddr_t key, u_int8_t *blk)
{
skipjack_forwards(blk, blk, (u_int8_t **) key);
}
static void
skipjack_decrypt(caddr_t key, u_int8_t *blk)
{
skipjack_backwards(blk, blk, (u_int8_t **) key);
}
static int
skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
/* NB: allocate all the memory that's needed at once */
*sched = malloc(10 * (sizeof(u_int8_t *) + 0x100),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (*sched != NULL) {
u_int8_t** key_tables = (u_int8_t**) *sched;
u_int8_t* table = (u_int8_t*) &key_tables[10];
int k;
for (k = 0; k < 10; k++) {
key_tables[k] = table;
table += 0x100;
}
subkey_table_gen(key, (u_int8_t **) *sched);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
skipjack_zerokey(u_int8_t **sched)
{
bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
rijndael128_encrypt(caddr_t key, u_int8_t *blk)
{
rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
}
static void
rijndael128_decrypt(caddr_t key, u_int8_t *blk)
{
rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
(u_char *) blk);
}
static int
rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
if (len != 16 && len != 24 && len != 32)
return (EINVAL);
*sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (*sched != NULL) {
rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
len * 8);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
rijndael128_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(rijndael_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
#define AES_XTS_BLOCKSIZE 16
#define AES_XTS_IVSIZE 8
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
struct aes_xts_ctx {
rijndael_ctx key1;
rijndael_ctx key2;
u_int8_t tweak[AES_XTS_BLOCKSIZE];
};
void
aes_xts_reinit(caddr_t key, u_int8_t *iv)
{
struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
u_int64_t blocknum;
u_int i;
/*
* Prepare tweak as E_k2(IV). IV is specified as LE representation
* of a 64-bit block number which we allow to be passed in directly.
*/
bcopy(iv, &blocknum, AES_XTS_IVSIZE);
for (i = 0; i < AES_XTS_IVSIZE; i++) {
ctx->tweak[i] = blocknum & 0xff;
blocknum >>= 8;
}
/* Last 64 bits of IV are always zero */
bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
}
static void
aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
{
u_int8_t block[AES_XTS_BLOCKSIZE];
u_int i, carry_in, carry_out;
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
block[i] = data[i] ^ ctx->tweak[i];
if (do_encrypt)
rijndael_encrypt(&ctx->key1, block, data);
else
rijndael_decrypt(&ctx->key1, block, data);
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
data[i] ^= ctx->tweak[i];
/* Exponentiate tweak */
carry_in = 0;
for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
carry_out = ctx->tweak[i] & 0x80;
ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0);
carry_in = carry_out;
}
if (carry_in)
ctx->tweak[0] ^= AES_XTS_ALPHA;
bzero(block, sizeof(block));
}
void
aes_xts_encrypt(caddr_t key, u_int8_t *data)
{
aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
}
void
aes_xts_decrypt(caddr_t key, u_int8_t *data)
{
aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
}
int
aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
struct aes_xts_ctx *ctx;
if (len != 32 && len != 64)
return EINVAL;
*sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA,
M_NOWAIT | M_ZERO);
if (*sched == NULL)
return ENOMEM;
ctx = (struct aes_xts_ctx *)*sched;
rijndael_set_key(&ctx->key1, key, len * 4);
rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
return 0;
}
void
aes_xts_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(struct aes_xts_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
cml_encrypt(caddr_t key, u_int8_t *blk)
{
camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
}
static void
cml_decrypt(caddr_t key, u_int8_t *blk)
{
camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
(u_char *) blk);
}
static int
cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
if (len != 16 && len != 24 && len != 32)
return (EINVAL);
*sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (*sched != NULL) {
camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
len * 8);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
cml_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(camellia_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
/*
* And now for auth.
*/
static void
null_init(void *ctx)
{
}
static int
null_update(void *ctx, u_int8_t *buf, u_int16_t len)
{
return 0;
}
static void
null_final(u_int8_t *buf, void *ctx)
{
if (buf != (u_int8_t *) 0)
bzero(buf, 12);
}
static int
RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
{
RMD160Update(ctx, buf, len);
return 0;
}
static int
MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
{
MD5Update(ctx, buf, len);
return 0;
}
static void
SHA1Init_int(void *ctx)
{
SHA1Init(ctx);
}
static int
SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
{
SHA1Update(ctx, buf, len);
return 0;
}
static void
SHA1Final_int(u_int8_t *blk, void *ctx)
{
SHA1Final(blk, ctx);
}
static int
SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
{
SHA256_Update(ctx, buf, len);
return 0;
}
static int
SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
{
SHA384_Update(ctx, buf, len);
return 0;
}
static int
SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
{
SHA512_Update(ctx, buf, len);
return 0;
}
/*
* And compression
*/
static u_int32_t
deflate_compress(data, size, out)
u_int8_t *data;
u_int32_t size;
u_int8_t **out;
{
return deflate_global(data, size, 0, out);
}
static u_int32_t
deflate_decompress(data, size, out)
u_int8_t *data;
u_int32_t size;
u_int8_t **out;
{
return deflate_global(data, size, 1, out);
}