mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-10 14:02:43 +00:00
2560 lines
74 KiB
C
2560 lines
74 KiB
C
/* Move registers around to reduce number of move instructions needed.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
|
||
/* This module looks for cases where matching constraints would force
|
||
an instruction to need a reload, and this reload would be a register
|
||
to register move. It then attempts to change the registers used by the
|
||
instruction to avoid the move instruction. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
|
||
#include "tm_p.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "basic-block.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "reload.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
|
||
|
||
/* Turn STACK_GROWS_DOWNWARD into a boolean. */
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
#undef STACK_GROWS_DOWNWARD
|
||
#define STACK_GROWS_DOWNWARD 1
|
||
#else
|
||
#define STACK_GROWS_DOWNWARD 0
|
||
#endif
|
||
|
||
static int perhaps_ends_bb_p (rtx);
|
||
static int optimize_reg_copy_1 (rtx, rtx, rtx);
|
||
static void optimize_reg_copy_2 (rtx, rtx, rtx);
|
||
static void optimize_reg_copy_3 (rtx, rtx, rtx);
|
||
static void copy_src_to_dest (rtx, rtx, rtx, int);
|
||
static int *regmove_bb_head;
|
||
|
||
struct match {
|
||
int with[MAX_RECOG_OPERANDS];
|
||
enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
|
||
int commutative[MAX_RECOG_OPERANDS];
|
||
int early_clobber[MAX_RECOG_OPERANDS];
|
||
};
|
||
|
||
static rtx discover_flags_reg (void);
|
||
static void mark_flags_life_zones (rtx);
|
||
static void flags_set_1 (rtx, rtx, void *);
|
||
|
||
static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
|
||
static int find_matches (rtx, struct match *);
|
||
static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
|
||
static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int);
|
||
static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
|
||
static int regclass_compatible_p (int, int);
|
||
static int replacement_quality (rtx);
|
||
static int fixup_match_2 (rtx, rtx, rtx, rtx);
|
||
|
||
/* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
|
||
causing too much register allocation problems. */
|
||
static int
|
||
regclass_compatible_p (int class0, int class1)
|
||
{
|
||
return (class0 == class1
|
||
|| (reg_class_subset_p (class0, class1)
|
||
&& ! CLASS_LIKELY_SPILLED_P (class0))
|
||
|| (reg_class_subset_p (class1, class0)
|
||
&& ! CLASS_LIKELY_SPILLED_P (class1)));
|
||
}
|
||
|
||
/* INC_INSN is an instruction that adds INCREMENT to REG.
|
||
Try to fold INC_INSN as a post/pre in/decrement into INSN.
|
||
Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
|
||
Return nonzero for success. */
|
||
static int
|
||
try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
|
||
HOST_WIDE_INT increment, int pre)
|
||
{
|
||
enum rtx_code inc_code;
|
||
|
||
rtx pset = single_set (insn);
|
||
if (pset)
|
||
{
|
||
/* Can't use the size of SET_SRC, we might have something like
|
||
(sign_extend:SI (mem:QI ... */
|
||
rtx use = find_use_as_address (pset, reg, 0);
|
||
if (use != 0 && use != (rtx) (size_t) 1)
|
||
{
|
||
int size = GET_MODE_SIZE (GET_MODE (use));
|
||
if (0
|
||
|| (HAVE_POST_INCREMENT
|
||
&& pre == 0 && (inc_code = POST_INC, increment == size))
|
||
|| (HAVE_PRE_INCREMENT
|
||
&& pre == 1 && (inc_code = PRE_INC, increment == size))
|
||
|| (HAVE_POST_DECREMENT
|
||
&& pre == 0 && (inc_code = POST_DEC, increment == -size))
|
||
|| (HAVE_PRE_DECREMENT
|
||
&& pre == 1 && (inc_code = PRE_DEC, increment == -size))
|
||
)
|
||
{
|
||
if (inc_insn_set)
|
||
validate_change
|
||
(inc_insn,
|
||
&SET_SRC (inc_insn_set),
|
||
XEXP (SET_SRC (inc_insn_set), 0), 1);
|
||
validate_change (insn, &XEXP (use, 0),
|
||
gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
|
||
if (apply_change_group ())
|
||
{
|
||
/* If there is a REG_DEAD note on this insn, we must
|
||
change this not to REG_UNUSED meaning that the register
|
||
is set, but the value is dead. Failure to do so will
|
||
result in a sched1 dieing -- when it recomputes lifetime
|
||
information, the number of REG_DEAD notes will have
|
||
changed. */
|
||
rtx note = find_reg_note (insn, REG_DEAD, reg);
|
||
if (note)
|
||
PUT_MODE (note, REG_UNUSED);
|
||
|
||
REG_NOTES (insn)
|
||
= gen_rtx_EXPR_LIST (REG_INC,
|
||
reg, REG_NOTES (insn));
|
||
if (! inc_insn_set)
|
||
delete_insn (inc_insn);
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Determine if the pattern generated by add_optab has a clobber,
|
||
such as might be issued for a flags hard register. To make the
|
||
code elsewhere simpler, we handle cc0 in this same framework.
|
||
|
||
Return the register if one was discovered. Return NULL_RTX if
|
||
if no flags were found. Return pc_rtx if we got confused. */
|
||
|
||
static rtx
|
||
discover_flags_reg (void)
|
||
{
|
||
rtx tmp;
|
||
tmp = gen_rtx_REG (word_mode, 10000);
|
||
tmp = gen_add3_insn (tmp, tmp, const2_rtx);
|
||
|
||
/* If we get something that isn't a simple set, or a
|
||
[(set ..) (clobber ..)], this whole function will go wrong. */
|
||
if (GET_CODE (tmp) == SET)
|
||
return NULL_RTX;
|
||
else if (GET_CODE (tmp) == PARALLEL)
|
||
{
|
||
int found;
|
||
|
||
if (XVECLEN (tmp, 0) != 2)
|
||
return pc_rtx;
|
||
tmp = XVECEXP (tmp, 0, 1);
|
||
if (GET_CODE (tmp) != CLOBBER)
|
||
return pc_rtx;
|
||
tmp = XEXP (tmp, 0);
|
||
|
||
/* Don't do anything foolish if the md wanted to clobber a
|
||
scratch or something. We only care about hard regs.
|
||
Moreover we don't like the notion of subregs of hard regs. */
|
||
if (GET_CODE (tmp) == SUBREG
|
||
&& REG_P (SUBREG_REG (tmp))
|
||
&& REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
|
||
return pc_rtx;
|
||
found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
|
||
|
||
return (found ? tmp : NULL_RTX);
|
||
}
|
||
|
||
return pc_rtx;
|
||
}
|
||
|
||
/* It is a tedious task identifying when the flags register is live and
|
||
when it is safe to optimize. Since we process the instruction stream
|
||
multiple times, locate and record these live zones by marking the
|
||
mode of the instructions --
|
||
|
||
QImode is used on the instruction at which the flags becomes live.
|
||
|
||
HImode is used within the range (exclusive) that the flags are
|
||
live. Thus the user of the flags is not marked.
|
||
|
||
All other instructions are cleared to VOIDmode. */
|
||
|
||
/* Used to communicate with flags_set_1. */
|
||
static rtx flags_set_1_rtx;
|
||
static int flags_set_1_set;
|
||
|
||
static void
|
||
mark_flags_life_zones (rtx flags)
|
||
{
|
||
int flags_regno;
|
||
int flags_nregs;
|
||
basic_block block;
|
||
|
||
#ifdef HAVE_cc0
|
||
/* If we found a flags register on a cc0 host, bail. */
|
||
if (flags == NULL_RTX)
|
||
flags = cc0_rtx;
|
||
else if (flags != cc0_rtx)
|
||
flags = pc_rtx;
|
||
#endif
|
||
|
||
/* Simple cases first: if no flags, clear all modes. If confusing,
|
||
mark the entire function as being in a flags shadow. */
|
||
if (flags == NULL_RTX || flags == pc_rtx)
|
||
{
|
||
enum machine_mode mode = (flags ? HImode : VOIDmode);
|
||
rtx insn;
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
PUT_MODE (insn, mode);
|
||
return;
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
flags_regno = -1;
|
||
flags_nregs = 1;
|
||
#else
|
||
flags_regno = REGNO (flags);
|
||
flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
|
||
#endif
|
||
flags_set_1_rtx = flags;
|
||
|
||
/* Process each basic block. */
|
||
FOR_EACH_BB_REVERSE (block)
|
||
{
|
||
rtx insn, end;
|
||
int live;
|
||
|
||
insn = BB_HEAD (block);
|
||
end = BB_END (block);
|
||
|
||
/* Look out for the (unlikely) case of flags being live across
|
||
basic block boundaries. */
|
||
live = 0;
|
||
#ifndef HAVE_cc0
|
||
{
|
||
int i;
|
||
for (i = 0; i < flags_nregs; ++i)
|
||
live |= REGNO_REG_SET_P (block->il.rtl->global_live_at_start,
|
||
flags_regno + i);
|
||
}
|
||
#endif
|
||
|
||
while (1)
|
||
{
|
||
/* Process liveness in reverse order of importance --
|
||
alive, death, birth. This lets more important info
|
||
overwrite the mode of lesser info. */
|
||
|
||
if (INSN_P (insn))
|
||
{
|
||
#ifdef HAVE_cc0
|
||
/* In the cc0 case, death is not marked in reg notes,
|
||
but is instead the mere use of cc0 when it is alive. */
|
||
if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
|
||
live = 0;
|
||
#else
|
||
/* In the hard reg case, we watch death notes. */
|
||
if (live && find_regno_note (insn, REG_DEAD, flags_regno))
|
||
live = 0;
|
||
#endif
|
||
PUT_MODE (insn, (live ? HImode : VOIDmode));
|
||
|
||
/* In either case, birth is denoted simply by its presence
|
||
as the destination of a set. */
|
||
flags_set_1_set = 0;
|
||
note_stores (PATTERN (insn), flags_set_1, NULL);
|
||
if (flags_set_1_set)
|
||
{
|
||
live = 1;
|
||
PUT_MODE (insn, QImode);
|
||
}
|
||
}
|
||
else
|
||
PUT_MODE (insn, (live ? HImode : VOIDmode));
|
||
|
||
if (insn == end)
|
||
break;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A subroutine of mark_flags_life_zones, called through note_stores. */
|
||
|
||
static void
|
||
flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
if (GET_CODE (pat) == SET
|
||
&& reg_overlap_mentioned_p (x, flags_set_1_rtx))
|
||
flags_set_1_set = 1;
|
||
}
|
||
|
||
static int *regno_src_regno;
|
||
|
||
/* Indicate how good a choice REG (which appears as a source) is to replace
|
||
a destination register with. The higher the returned value, the better
|
||
the choice. The main objective is to avoid using a register that is
|
||
a candidate for tying to a hard register, since the output might in
|
||
turn be a candidate to be tied to a different hard register. */
|
||
static int
|
||
replacement_quality (rtx reg)
|
||
{
|
||
int src_regno;
|
||
|
||
/* Bad if this isn't a register at all. */
|
||
if (!REG_P (reg))
|
||
return 0;
|
||
|
||
/* If this register is not meant to get a hard register,
|
||
it is a poor choice. */
|
||
if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
|
||
return 0;
|
||
|
||
src_regno = regno_src_regno[REGNO (reg)];
|
||
|
||
/* If it was not copied from another register, it is fine. */
|
||
if (src_regno < 0)
|
||
return 3;
|
||
|
||
/* Copied from a hard register? */
|
||
if (src_regno < FIRST_PSEUDO_REGISTER)
|
||
return 1;
|
||
|
||
/* Copied from a pseudo register - not as bad as from a hard register,
|
||
yet still cumbersome, since the register live length will be lengthened
|
||
when the registers get tied. */
|
||
return 2;
|
||
}
|
||
|
||
/* Return 1 if INSN might end a basic block. */
|
||
|
||
static int perhaps_ends_bb_p (rtx insn)
|
||
{
|
||
switch (GET_CODE (insn))
|
||
{
|
||
case CODE_LABEL:
|
||
case JUMP_INSN:
|
||
/* These always end a basic block. */
|
||
return 1;
|
||
|
||
case CALL_INSN:
|
||
/* A CALL_INSN might be the last insn of a basic block, if it is inside
|
||
an EH region or if there are nonlocal gotos. Note that this test is
|
||
very conservative. */
|
||
if (nonlocal_goto_handler_labels)
|
||
return 1;
|
||
/* Fall through. */
|
||
default:
|
||
return can_throw_internal (insn);
|
||
}
|
||
}
|
||
|
||
/* INSN is a copy from SRC to DEST, both registers, and SRC does not die
|
||
in INSN.
|
||
|
||
Search forward to see if SRC dies before either it or DEST is modified,
|
||
but don't scan past the end of a basic block. If so, we can replace SRC
|
||
with DEST and let SRC die in INSN.
|
||
|
||
This will reduce the number of registers live in that range and may enable
|
||
DEST to be tied to SRC, thus often saving one register in addition to a
|
||
register-register copy. */
|
||
|
||
static int
|
||
optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
|
||
{
|
||
rtx p, q;
|
||
rtx note;
|
||
rtx dest_death = 0;
|
||
int sregno = REGNO (src);
|
||
int dregno = REGNO (dest);
|
||
|
||
/* We don't want to mess with hard regs if register classes are small. */
|
||
if (sregno == dregno
|
||
|| (SMALL_REGISTER_CLASSES
|
||
&& (sregno < FIRST_PSEUDO_REGISTER
|
||
|| dregno < FIRST_PSEUDO_REGISTER))
|
||
/* We don't see all updates to SP if they are in an auto-inc memory
|
||
reference, so we must disallow this optimization on them. */
|
||
|| sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
|
||
return 0;
|
||
|
||
for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
|
||
{
|
||
/* ??? We can't scan past the end of a basic block without updating
|
||
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (p))
|
||
break;
|
||
else if (! INSN_P (p))
|
||
continue;
|
||
|
||
if (reg_set_p (src, p) || reg_set_p (dest, p)
|
||
/* If SRC is an asm-declared register, it must not be replaced
|
||
in any asm. Unfortunately, the REG_EXPR tree for the asm
|
||
variable may be absent in the SRC rtx, so we can't check the
|
||
actual register declaration easily (the asm operand will have
|
||
it, though). To avoid complicating the test for a rare case,
|
||
we just don't perform register replacement for a hard reg
|
||
mentioned in an asm. */
|
||
|| (sregno < FIRST_PSEUDO_REGISTER
|
||
&& asm_noperands (PATTERN (p)) >= 0
|
||
&& reg_overlap_mentioned_p (src, PATTERN (p)))
|
||
/* Don't change hard registers used by a call. */
|
||
|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
|
||
&& find_reg_fusage (p, USE, src))
|
||
/* Don't change a USE of a register. */
|
||
|| (GET_CODE (PATTERN (p)) == USE
|
||
&& reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
|
||
break;
|
||
|
||
/* See if all of SRC dies in P. This test is slightly more
|
||
conservative than it needs to be. */
|
||
if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
|
||
&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
|
||
{
|
||
int failed = 0;
|
||
int d_length = 0;
|
||
int s_length = 0;
|
||
int d_n_calls = 0;
|
||
int s_n_calls = 0;
|
||
|
||
/* We can do the optimization. Scan forward from INSN again,
|
||
replacing regs as we go. Set FAILED if a replacement can't
|
||
be done. In that case, we can't move the death note for SRC.
|
||
This should be rare. */
|
||
|
||
/* Set to stop at next insn. */
|
||
for (q = next_real_insn (insn);
|
||
q != next_real_insn (p);
|
||
q = next_real_insn (q))
|
||
{
|
||
if (reg_overlap_mentioned_p (src, PATTERN (q)))
|
||
{
|
||
/* If SRC is a hard register, we might miss some
|
||
overlapping registers with validate_replace_rtx,
|
||
so we would have to undo it. We can't if DEST is
|
||
present in the insn, so fail in that combination
|
||
of cases. */
|
||
if (sregno < FIRST_PSEUDO_REGISTER
|
||
&& reg_mentioned_p (dest, PATTERN (q)))
|
||
failed = 1;
|
||
|
||
/* Replace all uses and make sure that the register
|
||
isn't still present. */
|
||
else if (validate_replace_rtx (src, dest, q)
|
||
&& (sregno >= FIRST_PSEUDO_REGISTER
|
||
|| ! reg_overlap_mentioned_p (src,
|
||
PATTERN (q))))
|
||
;
|
||
else
|
||
{
|
||
validate_replace_rtx (dest, src, q);
|
||
failed = 1;
|
||
}
|
||
}
|
||
|
||
/* For SREGNO, count the total number of insns scanned.
|
||
For DREGNO, count the total number of insns scanned after
|
||
passing the death note for DREGNO. */
|
||
s_length++;
|
||
if (dest_death)
|
||
d_length++;
|
||
|
||
/* If the insn in which SRC dies is a CALL_INSN, don't count it
|
||
as a call that has been crossed. Otherwise, count it. */
|
||
if (q != p && CALL_P (q))
|
||
{
|
||
/* Similarly, total calls for SREGNO, total calls beyond
|
||
the death note for DREGNO. */
|
||
s_n_calls++;
|
||
if (dest_death)
|
||
d_n_calls++;
|
||
}
|
||
|
||
/* If DEST dies here, remove the death note and save it for
|
||
later. Make sure ALL of DEST dies here; again, this is
|
||
overly conservative. */
|
||
if (dest_death == 0
|
||
&& (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
|
||
{
|
||
if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
|
||
failed = 1, dest_death = 0;
|
||
else
|
||
remove_note (q, dest_death);
|
||
}
|
||
}
|
||
|
||
if (! failed)
|
||
{
|
||
/* These counters need to be updated if and only if we are
|
||
going to move the REG_DEAD note. */
|
||
if (sregno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (REG_LIVE_LENGTH (sregno) >= 0)
|
||
{
|
||
REG_LIVE_LENGTH (sregno) -= s_length;
|
||
/* REG_LIVE_LENGTH is only an approximation after
|
||
combine if sched is not run, so make sure that we
|
||
still have a reasonable value. */
|
||
if (REG_LIVE_LENGTH (sregno) < 2)
|
||
REG_LIVE_LENGTH (sregno) = 2;
|
||
}
|
||
|
||
REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
|
||
}
|
||
|
||
/* Move death note of SRC from P to INSN. */
|
||
remove_note (p, note);
|
||
XEXP (note, 1) = REG_NOTES (insn);
|
||
REG_NOTES (insn) = note;
|
||
}
|
||
|
||
/* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
|
||
if (! dest_death
|
||
&& (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
|
||
{
|
||
PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
|
||
remove_note (insn, dest_death);
|
||
}
|
||
|
||
/* Put death note of DEST on P if we saw it die. */
|
||
if (dest_death)
|
||
{
|
||
XEXP (dest_death, 1) = REG_NOTES (p);
|
||
REG_NOTES (p) = dest_death;
|
||
|
||
if (dregno >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* If and only if we are moving the death note for DREGNO,
|
||
then we need to update its counters. */
|
||
if (REG_LIVE_LENGTH (dregno) >= 0)
|
||
REG_LIVE_LENGTH (dregno) += d_length;
|
||
REG_N_CALLS_CROSSED (dregno) += d_n_calls;
|
||
}
|
||
}
|
||
|
||
return ! failed;
|
||
}
|
||
|
||
/* If SRC is a hard register which is set or killed in some other
|
||
way, we can't do this optimization. */
|
||
else if (sregno < FIRST_PSEUDO_REGISTER
|
||
&& dead_or_set_p (p, src))
|
||
break;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
|
||
a sequence of insns that modify DEST followed by an insn that sets
|
||
SRC to DEST in which DEST dies, with no prior modification of DEST.
|
||
(There is no need to check if the insns in between actually modify
|
||
DEST. We should not have cases where DEST is not modified, but
|
||
the optimization is safe if no such modification is detected.)
|
||
In that case, we can replace all uses of DEST, starting with INSN and
|
||
ending with the set of SRC to DEST, with SRC. We do not do this
|
||
optimization if a CALL_INSN is crossed unless SRC already crosses a
|
||
call or if DEST dies before the copy back to SRC.
|
||
|
||
It is assumed that DEST and SRC are pseudos; it is too complicated to do
|
||
this for hard registers since the substitutions we may make might fail. */
|
||
|
||
static void
|
||
optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
|
||
{
|
||
rtx p, q;
|
||
rtx set;
|
||
int sregno = REGNO (src);
|
||
int dregno = REGNO (dest);
|
||
|
||
for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
|
||
{
|
||
/* ??? We can't scan past the end of a basic block without updating
|
||
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (p))
|
||
break;
|
||
else if (! INSN_P (p))
|
||
continue;
|
||
|
||
set = single_set (p);
|
||
if (set && SET_SRC (set) == dest && SET_DEST (set) == src
|
||
&& find_reg_note (p, REG_DEAD, dest))
|
||
{
|
||
/* We can do the optimization. Scan forward from INSN again,
|
||
replacing regs as we go. */
|
||
|
||
/* Set to stop at next insn. */
|
||
for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
|
||
if (INSN_P (q))
|
||
{
|
||
if (reg_mentioned_p (dest, PATTERN (q)))
|
||
PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
|
||
|
||
|
||
if (CALL_P (q))
|
||
{
|
||
REG_N_CALLS_CROSSED (dregno)--;
|
||
REG_N_CALLS_CROSSED (sregno)++;
|
||
}
|
||
}
|
||
|
||
remove_note (p, find_reg_note (p, REG_DEAD, dest));
|
||
REG_N_DEATHS (dregno)--;
|
||
remove_note (insn, find_reg_note (insn, REG_DEAD, src));
|
||
REG_N_DEATHS (sregno)--;
|
||
return;
|
||
}
|
||
|
||
if (reg_set_p (src, p)
|
||
|| find_reg_note (p, REG_DEAD, dest)
|
||
|| (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
|
||
break;
|
||
}
|
||
}
|
||
/* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
|
||
Look if SRC dies there, and if it is only set once, by loading
|
||
it from memory. If so, try to incorporate the zero/sign extension
|
||
into the memory read, change SRC to the mode of DEST, and alter
|
||
the remaining accesses to use the appropriate SUBREG. This allows
|
||
SRC and DEST to be tied later. */
|
||
static void
|
||
optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
|
||
{
|
||
rtx src_reg = XEXP (src, 0);
|
||
int src_no = REGNO (src_reg);
|
||
int dst_no = REGNO (dest);
|
||
rtx p, set;
|
||
enum machine_mode old_mode;
|
||
|
||
if (src_no < FIRST_PSEUDO_REGISTER
|
||
|| dst_no < FIRST_PSEUDO_REGISTER
|
||
|| ! find_reg_note (insn, REG_DEAD, src_reg)
|
||
|| REG_N_DEATHS (src_no) != 1
|
||
|| REG_N_SETS (src_no) != 1)
|
||
return;
|
||
for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
|
||
/* ??? We can't scan past the end of a basic block without updating
|
||
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (p))
|
||
break;
|
||
|
||
if (! p)
|
||
return;
|
||
|
||
if (! (set = single_set (p))
|
||
|| !MEM_P (SET_SRC (set))
|
||
/* If there's a REG_EQUIV note, this must be an insn that loads an
|
||
argument. Prefer keeping the note over doing this optimization. */
|
||
|| find_reg_note (p, REG_EQUIV, NULL_RTX)
|
||
|| SET_DEST (set) != src_reg)
|
||
return;
|
||
|
||
/* Be conservative: although this optimization is also valid for
|
||
volatile memory references, that could cause trouble in later passes. */
|
||
if (MEM_VOLATILE_P (SET_SRC (set)))
|
||
return;
|
||
|
||
/* Do not use a SUBREG to truncate from one mode to another if truncation
|
||
is not a nop. */
|
||
if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
|
||
&& !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
|
||
GET_MODE_BITSIZE (GET_MODE (src_reg))))
|
||
return;
|
||
|
||
old_mode = GET_MODE (src_reg);
|
||
PUT_MODE (src_reg, GET_MODE (src));
|
||
XEXP (src, 0) = SET_SRC (set);
|
||
|
||
/* Include this change in the group so that it's easily undone if
|
||
one of the changes in the group is invalid. */
|
||
validate_change (p, &SET_SRC (set), src, 1);
|
||
|
||
/* Now walk forward making additional replacements. We want to be able
|
||
to undo all the changes if a later substitution fails. */
|
||
while (p = NEXT_INSN (p), p != insn)
|
||
{
|
||
if (! INSN_P (p))
|
||
continue;
|
||
|
||
/* Make a tentative change. */
|
||
validate_replace_rtx_group (src_reg,
|
||
gen_lowpart_SUBREG (old_mode, src_reg),
|
||
p);
|
||
}
|
||
|
||
validate_replace_rtx_group (src, src_reg, insn);
|
||
|
||
/* Now see if all the changes are valid. */
|
||
if (! apply_change_group ())
|
||
{
|
||
/* One or more changes were no good. Back out everything. */
|
||
PUT_MODE (src_reg, old_mode);
|
||
XEXP (src, 0) = src_reg;
|
||
}
|
||
else
|
||
{
|
||
rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
|
||
if (note)
|
||
remove_note (p, note);
|
||
}
|
||
}
|
||
|
||
|
||
/* If we were not able to update the users of src to use dest directly, try
|
||
instead moving the value to dest directly before the operation. */
|
||
|
||
static void
|
||
copy_src_to_dest (rtx insn, rtx src, rtx dest, int old_max_uid)
|
||
{
|
||
rtx seq;
|
||
rtx link;
|
||
rtx next;
|
||
rtx set;
|
||
rtx move_insn;
|
||
rtx *p_insn_notes;
|
||
rtx *p_move_notes;
|
||
int src_regno;
|
||
int dest_regno;
|
||
int bb;
|
||
int insn_uid;
|
||
int move_uid;
|
||
|
||
/* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
|
||
or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
|
||
parameter when there is no frame pointer that is not allocated a register.
|
||
For now, we just reject them, rather than incrementing the live length. */
|
||
|
||
if (REG_P (src)
|
||
&& REG_LIVE_LENGTH (REGNO (src)) > 0
|
||
&& REG_P (dest)
|
||
&& REG_LIVE_LENGTH (REGNO (dest)) > 0
|
||
&& (set = single_set (insn)) != NULL_RTX
|
||
&& !reg_mentioned_p (dest, SET_SRC (set))
|
||
&& GET_MODE (src) == GET_MODE (dest))
|
||
{
|
||
int old_num_regs = reg_rtx_no;
|
||
|
||
/* Generate the src->dest move. */
|
||
start_sequence ();
|
||
emit_move_insn (dest, src);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
/* If this sequence uses new registers, we may not use it. */
|
||
if (old_num_regs != reg_rtx_no
|
||
|| ! validate_replace_rtx (src, dest, insn))
|
||
{
|
||
/* We have to restore reg_rtx_no to its old value, lest
|
||
recompute_reg_usage will try to compute the usage of the
|
||
new regs, yet reg_n_info is not valid for them. */
|
||
reg_rtx_no = old_num_regs;
|
||
return;
|
||
}
|
||
emit_insn_before (seq, insn);
|
||
move_insn = PREV_INSN (insn);
|
||
p_move_notes = ®_NOTES (move_insn);
|
||
p_insn_notes = ®_NOTES (insn);
|
||
|
||
/* Move any notes mentioning src to the move instruction. */
|
||
for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
|
||
{
|
||
next = XEXP (link, 1);
|
||
if (XEXP (link, 0) == src)
|
||
{
|
||
*p_move_notes = link;
|
||
p_move_notes = &XEXP (link, 1);
|
||
}
|
||
else
|
||
{
|
||
*p_insn_notes = link;
|
||
p_insn_notes = &XEXP (link, 1);
|
||
}
|
||
}
|
||
|
||
*p_move_notes = NULL_RTX;
|
||
*p_insn_notes = NULL_RTX;
|
||
|
||
/* Is the insn the head of a basic block? If so extend it. */
|
||
insn_uid = INSN_UID (insn);
|
||
move_uid = INSN_UID (move_insn);
|
||
if (insn_uid < old_max_uid)
|
||
{
|
||
bb = regmove_bb_head[insn_uid];
|
||
if (bb >= 0)
|
||
{
|
||
BB_HEAD (BASIC_BLOCK (bb)) = move_insn;
|
||
regmove_bb_head[insn_uid] = -1;
|
||
}
|
||
}
|
||
|
||
/* Update the various register tables. */
|
||
dest_regno = REGNO (dest);
|
||
REG_N_SETS (dest_regno) ++;
|
||
REG_LIVE_LENGTH (dest_regno)++;
|
||
if (REGNO_FIRST_UID (dest_regno) == insn_uid)
|
||
REGNO_FIRST_UID (dest_regno) = move_uid;
|
||
|
||
src_regno = REGNO (src);
|
||
if (! find_reg_note (move_insn, REG_DEAD, src))
|
||
REG_LIVE_LENGTH (src_regno)++;
|
||
|
||
if (REGNO_FIRST_UID (src_regno) == insn_uid)
|
||
REGNO_FIRST_UID (src_regno) = move_uid;
|
||
|
||
if (REGNO_LAST_UID (src_regno) == insn_uid)
|
||
REGNO_LAST_UID (src_regno) = move_uid;
|
||
}
|
||
}
|
||
|
||
/* reg_set_in_bb[REGNO] points to basic block iff the register is set
|
||
only once in the given block and has REG_EQUAL note. */
|
||
|
||
basic_block *reg_set_in_bb;
|
||
|
||
/* Size of reg_set_in_bb array. */
|
||
static unsigned int max_reg_computed;
|
||
|
||
|
||
/* Return whether REG is set in only one location, and is set to a
|
||
constant, but is set in a different basic block from INSN (an
|
||
instructions which uses REG). In this case REG is equivalent to a
|
||
constant, and we don't want to break that equivalence, because that
|
||
may increase register pressure and make reload harder. If REG is
|
||
set in the same basic block as INSN, we don't worry about it,
|
||
because we'll probably need a register anyhow (??? but what if REG
|
||
is used in a different basic block as well as this one?). FIRST is
|
||
the first insn in the function. */
|
||
|
||
static bool
|
||
reg_is_remote_constant_p (rtx reg, rtx insn)
|
||
{
|
||
basic_block bb;
|
||
rtx p;
|
||
int max;
|
||
|
||
if (!reg_set_in_bb)
|
||
{
|
||
max_reg_computed = max = max_reg_num ();
|
||
reg_set_in_bb = xcalloc (max, sizeof (*reg_set_in_bb));
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (p = BB_HEAD (bb); p != NEXT_INSN (BB_END (bb));
|
||
p = NEXT_INSN (p))
|
||
{
|
||
rtx s;
|
||
|
||
if (!INSN_P (p))
|
||
continue;
|
||
s = single_set (p);
|
||
/* This is the instruction which sets REG. If there is a
|
||
REG_EQUAL note, then REG is equivalent to a constant. */
|
||
if (s != 0
|
||
&& REG_P (SET_DEST (s))
|
||
&& REG_N_SETS (REGNO (SET_DEST (s))) == 1
|
||
&& find_reg_note (p, REG_EQUAL, NULL_RTX))
|
||
reg_set_in_bb[REGNO (SET_DEST (s))] = bb;
|
||
}
|
||
}
|
||
gcc_assert (REGNO (reg) < max_reg_computed);
|
||
if (reg_set_in_bb[REGNO (reg)] == NULL)
|
||
return false;
|
||
if (reg_set_in_bb[REGNO (reg)] != BLOCK_FOR_INSN (insn))
|
||
return true;
|
||
/* Look for the set. */
|
||
for (p = BB_HEAD (BLOCK_FOR_INSN (insn)); p != insn; p = NEXT_INSN (p))
|
||
{
|
||
rtx s;
|
||
|
||
if (!INSN_P (p))
|
||
continue;
|
||
s = single_set (p);
|
||
if (s != 0
|
||
&& REG_P (SET_DEST (s)) && REGNO (SET_DEST (s)) == REGNO (reg))
|
||
{
|
||
/* The register is set in the same basic block. */
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* INSN is adding a CONST_INT to a REG. We search backwards looking for
|
||
another add immediate instruction with the same source and dest registers,
|
||
and if we find one, we change INSN to an increment, and return 1. If
|
||
no changes are made, we return 0.
|
||
|
||
This changes
|
||
(set (reg100) (plus reg1 offset1))
|
||
...
|
||
(set (reg100) (plus reg1 offset2))
|
||
to
|
||
(set (reg100) (plus reg1 offset1))
|
||
...
|
||
(set (reg100) (plus reg100 offset2-offset1)) */
|
||
|
||
/* ??? What does this comment mean? */
|
||
/* cse disrupts preincrement / postdecrement sequences when it finds a
|
||
hard register as ultimate source, like the frame pointer. */
|
||
|
||
static int
|
||
fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset)
|
||
{
|
||
rtx p, dst_death = 0;
|
||
int length, num_calls = 0;
|
||
|
||
/* If SRC dies in INSN, we'd have to move the death note. This is
|
||
considered to be very unlikely, so we just skip the optimization
|
||
in this case. */
|
||
if (find_regno_note (insn, REG_DEAD, REGNO (src)))
|
||
return 0;
|
||
|
||
/* Scan backward to find the first instruction that sets DST. */
|
||
|
||
for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
|
||
{
|
||
rtx pset;
|
||
|
||
/* ??? We can't scan past the end of a basic block without updating
|
||
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (p))
|
||
break;
|
||
else if (! INSN_P (p))
|
||
continue;
|
||
|
||
if (find_regno_note (p, REG_DEAD, REGNO (dst)))
|
||
dst_death = p;
|
||
if (! dst_death)
|
||
length++;
|
||
|
||
pset = single_set (p);
|
||
if (pset && SET_DEST (pset) == dst
|
||
&& GET_CODE (SET_SRC (pset)) == PLUS
|
||
&& XEXP (SET_SRC (pset), 0) == src
|
||
&& GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT newconst
|
||
= INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
|
||
rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
|
||
|
||
if (add && validate_change (insn, &PATTERN (insn), add, 0))
|
||
{
|
||
/* Remove the death note for DST from DST_DEATH. */
|
||
if (dst_death)
|
||
{
|
||
remove_death (REGNO (dst), dst_death);
|
||
REG_LIVE_LENGTH (REGNO (dst)) += length;
|
||
REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Fixed operand of insn %d.\n",
|
||
INSN_UID (insn));
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
|
||
{
|
||
if (LABEL_P (p)
|
||
|| JUMP_P (p))
|
||
break;
|
||
if (! INSN_P (p))
|
||
continue;
|
||
if (reg_overlap_mentioned_p (dst, PATTERN (p)))
|
||
{
|
||
if (try_auto_increment (p, insn, 0, dst, newconst, 0))
|
||
return 1;
|
||
break;
|
||
}
|
||
}
|
||
for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
|
||
{
|
||
if (LABEL_P (p)
|
||
|| JUMP_P (p))
|
||
break;
|
||
if (! INSN_P (p))
|
||
continue;
|
||
if (reg_overlap_mentioned_p (dst, PATTERN (p)))
|
||
{
|
||
try_auto_increment (p, insn, 0, dst, newconst, 1);
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
if (reg_set_p (dst, PATTERN (p)))
|
||
break;
|
||
|
||
/* If we have passed a call instruction, and the
|
||
pseudo-reg SRC is not already live across a call,
|
||
then don't perform the optimization. */
|
||
/* reg_set_p is overly conservative for CALL_INSNS, thinks that all
|
||
hard regs are clobbered. Thus, we only use it for src for
|
||
non-call insns. */
|
||
if (CALL_P (p))
|
||
{
|
||
if (! dst_death)
|
||
num_calls++;
|
||
|
||
if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
|
||
break;
|
||
|
||
if (call_used_regs [REGNO (dst)]
|
||
|| find_reg_fusage (p, CLOBBER, dst))
|
||
break;
|
||
}
|
||
else if (reg_set_p (src, PATTERN (p)))
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Main entry for the register move optimization.
|
||
F is the first instruction.
|
||
NREGS is one plus the highest pseudo-reg number used in the instruction.
|
||
REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
|
||
(or 0 if none should be output). */
|
||
|
||
static void
|
||
regmove_optimize (rtx f, int nregs)
|
||
{
|
||
int old_max_uid = get_max_uid ();
|
||
rtx insn;
|
||
struct match match;
|
||
int pass;
|
||
int i;
|
||
rtx copy_src, copy_dst;
|
||
basic_block bb;
|
||
|
||
/* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
|
||
confused by non-call exceptions ending blocks. */
|
||
if (flag_non_call_exceptions)
|
||
return;
|
||
|
||
/* Find out where a potential flags register is live, and so that we
|
||
can suppress some optimizations in those zones. */
|
||
mark_flags_life_zones (discover_flags_reg ());
|
||
|
||
regno_src_regno = XNEWVEC (int, nregs);
|
||
for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
|
||
|
||
regmove_bb_head = XNEWVEC (int, old_max_uid + 1);
|
||
for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
|
||
FOR_EACH_BB (bb)
|
||
regmove_bb_head[INSN_UID (BB_HEAD (bb))] = bb->index;
|
||
|
||
/* A forward/backward pass. Replace output operands with input operands. */
|
||
|
||
for (pass = 0; pass <= 2; pass++)
|
||
{
|
||
if (! flag_regmove && pass >= flag_expensive_optimizations)
|
||
goto done;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Starting %s pass...\n",
|
||
pass ? "backward" : "forward");
|
||
|
||
for (insn = pass ? get_last_insn () : f; insn;
|
||
insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
|
||
{
|
||
rtx set;
|
||
int op_no, match_no;
|
||
|
||
set = single_set (insn);
|
||
if (! set)
|
||
continue;
|
||
|
||
if (flag_expensive_optimizations && ! pass
|
||
&& (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
|
||
|| GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
|
||
&& REG_P (XEXP (SET_SRC (set), 0))
|
||
&& REG_P (SET_DEST (set)))
|
||
optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
|
||
|
||
if (flag_expensive_optimizations && ! pass
|
||
&& REG_P (SET_SRC (set))
|
||
&& REG_P (SET_DEST (set)))
|
||
{
|
||
/* If this is a register-register copy where SRC is not dead,
|
||
see if we can optimize it. If this optimization succeeds,
|
||
it will become a copy where SRC is dead. */
|
||
if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
|
||
|| optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
|
||
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* Similarly for a pseudo-pseudo copy when SRC is dead. */
|
||
if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
|
||
optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
|
||
if (regno_src_regno[REGNO (SET_DEST (set))] < 0
|
||
&& SET_SRC (set) != SET_DEST (set))
|
||
{
|
||
int srcregno = REGNO (SET_SRC (set));
|
||
if (regno_src_regno[srcregno] >= 0)
|
||
srcregno = regno_src_regno[srcregno];
|
||
regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
|
||
}
|
||
}
|
||
}
|
||
if (! flag_regmove)
|
||
continue;
|
||
|
||
if (! find_matches (insn, &match))
|
||
continue;
|
||
|
||
/* Now scan through the operands looking for a source operand
|
||
which is supposed to match the destination operand.
|
||
Then scan forward for an instruction which uses the dest
|
||
operand.
|
||
If it dies there, then replace the dest in both operands with
|
||
the source operand. */
|
||
|
||
for (op_no = 0; op_no < recog_data.n_operands; op_no++)
|
||
{
|
||
rtx src, dst, src_subreg;
|
||
enum reg_class src_class, dst_class;
|
||
|
||
match_no = match.with[op_no];
|
||
|
||
/* Nothing to do if the two operands aren't supposed to match. */
|
||
if (match_no < 0)
|
||
continue;
|
||
|
||
src = recog_data.operand[op_no];
|
||
dst = recog_data.operand[match_no];
|
||
|
||
if (!REG_P (src))
|
||
continue;
|
||
|
||
src_subreg = src;
|
||
if (GET_CODE (dst) == SUBREG
|
||
&& GET_MODE_SIZE (GET_MODE (dst))
|
||
>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
|
||
{
|
||
dst = SUBREG_REG (dst);
|
||
src_subreg = lowpart_subreg (GET_MODE (dst),
|
||
src, GET_MODE (src));
|
||
if (!src_subreg)
|
||
continue;
|
||
}
|
||
if (!REG_P (dst)
|
||
|| REGNO (dst) < FIRST_PSEUDO_REGISTER)
|
||
continue;
|
||
|
||
if (REGNO (src) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (match.commutative[op_no] < op_no)
|
||
regno_src_regno[REGNO (dst)] = REGNO (src);
|
||
continue;
|
||
}
|
||
|
||
if (REG_LIVE_LENGTH (REGNO (src)) < 0)
|
||
continue;
|
||
|
||
/* op_no/src must be a read-only operand, and
|
||
match_operand/dst must be a write-only operand. */
|
||
if (match.use[op_no] != READ
|
||
|| match.use[match_no] != WRITE)
|
||
continue;
|
||
|
||
if (match.early_clobber[match_no]
|
||
&& count_occurrences (PATTERN (insn), src, 0) > 1)
|
||
continue;
|
||
|
||
/* Make sure match_operand is the destination. */
|
||
if (recog_data.operand[match_no] != SET_DEST (set))
|
||
continue;
|
||
|
||
/* If the operands already match, then there is nothing to do. */
|
||
if (operands_match_p (src, dst))
|
||
continue;
|
||
|
||
/* But in the commutative case, we might find a better match. */
|
||
if (match.commutative[op_no] >= 0)
|
||
{
|
||
rtx comm = recog_data.operand[match.commutative[op_no]];
|
||
if (operands_match_p (comm, dst)
|
||
&& (replacement_quality (comm)
|
||
>= replacement_quality (src)))
|
||
continue;
|
||
}
|
||
|
||
src_class = reg_preferred_class (REGNO (src));
|
||
dst_class = reg_preferred_class (REGNO (dst));
|
||
if (! regclass_compatible_p (src_class, dst_class))
|
||
continue;
|
||
|
||
if (GET_MODE (src) != GET_MODE (dst))
|
||
continue;
|
||
|
||
if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
|
||
op_no, match_no))
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A backward pass. Replace input operands with output operands. */
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Starting backward pass...\n");
|
||
|
||
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
int op_no, match_no;
|
||
int success = 0;
|
||
|
||
if (! find_matches (insn, &match))
|
||
continue;
|
||
|
||
/* Now scan through the operands looking for a destination operand
|
||
which is supposed to match a source operand.
|
||
Then scan backward for an instruction which sets the source
|
||
operand. If safe, then replace the source operand with the
|
||
dest operand in both instructions. */
|
||
|
||
copy_src = NULL_RTX;
|
||
copy_dst = NULL_RTX;
|
||
for (op_no = 0; op_no < recog_data.n_operands; op_no++)
|
||
{
|
||
rtx set, p, src, dst;
|
||
rtx src_note, dst_note;
|
||
int num_calls = 0;
|
||
enum reg_class src_class, dst_class;
|
||
int length;
|
||
|
||
match_no = match.with[op_no];
|
||
|
||
/* Nothing to do if the two operands aren't supposed to match. */
|
||
if (match_no < 0)
|
||
continue;
|
||
|
||
dst = recog_data.operand[match_no];
|
||
src = recog_data.operand[op_no];
|
||
|
||
if (!REG_P (src))
|
||
continue;
|
||
|
||
if (!REG_P (dst)
|
||
|| REGNO (dst) < FIRST_PSEUDO_REGISTER
|
||
|| REG_LIVE_LENGTH (REGNO (dst)) < 0
|
||
|| GET_MODE (src) != GET_MODE (dst))
|
||
continue;
|
||
|
||
/* If the operands already match, then there is nothing to do. */
|
||
if (operands_match_p (src, dst))
|
||
continue;
|
||
|
||
if (match.commutative[op_no] >= 0)
|
||
{
|
||
rtx comm = recog_data.operand[match.commutative[op_no]];
|
||
if (operands_match_p (comm, dst))
|
||
continue;
|
||
}
|
||
|
||
set = single_set (insn);
|
||
if (! set)
|
||
continue;
|
||
|
||
/* Note that single_set ignores parts of a parallel set for
|
||
which one of the destinations is REG_UNUSED. We can't
|
||
handle that here, since we can wind up rewriting things
|
||
such that a single register is set twice within a single
|
||
parallel. */
|
||
if (reg_set_p (src, insn))
|
||
continue;
|
||
|
||
/* match_no/dst must be a write-only operand, and
|
||
operand_operand/src must be a read-only operand. */
|
||
if (match.use[op_no] != READ
|
||
|| match.use[match_no] != WRITE)
|
||
continue;
|
||
|
||
if (match.early_clobber[match_no]
|
||
&& count_occurrences (PATTERN (insn), src, 0) > 1)
|
||
continue;
|
||
|
||
/* Make sure match_no is the destination. */
|
||
if (recog_data.operand[match_no] != SET_DEST (set))
|
||
continue;
|
||
|
||
if (REGNO (src) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (GET_CODE (SET_SRC (set)) == PLUS
|
||
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
|
||
&& XEXP (SET_SRC (set), 0) == src
|
||
&& fixup_match_2 (insn, dst, src,
|
||
XEXP (SET_SRC (set), 1)))
|
||
break;
|
||
continue;
|
||
}
|
||
src_class = reg_preferred_class (REGNO (src));
|
||
dst_class = reg_preferred_class (REGNO (dst));
|
||
|
||
if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
|
||
{
|
||
/* We used to force the copy here like in other cases, but
|
||
it produces worse code, as it eliminates no copy
|
||
instructions and the copy emitted will be produced by
|
||
reload anyway. On patterns with multiple alternatives,
|
||
there may be better solution available.
|
||
|
||
In particular this change produced slower code for numeric
|
||
i387 programs. */
|
||
|
||
continue;
|
||
}
|
||
|
||
if (! regclass_compatible_p (src_class, dst_class))
|
||
{
|
||
if (!copy_src)
|
||
{
|
||
copy_src = src;
|
||
copy_dst = dst;
|
||
}
|
||
continue;
|
||
}
|
||
|
||
/* Can not modify an earlier insn to set dst if this insn
|
||
uses an old value in the source. */
|
||
if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
|
||
{
|
||
if (!copy_src)
|
||
{
|
||
copy_src = src;
|
||
copy_dst = dst;
|
||
}
|
||
continue;
|
||
}
|
||
|
||
/* If src is set once in a different basic block,
|
||
and is set equal to a constant, then do not use
|
||
it for this optimization, as this would make it
|
||
no longer equivalent to a constant. */
|
||
|
||
if (reg_is_remote_constant_p (src, insn))
|
||
{
|
||
if (!copy_src)
|
||
{
|
||
copy_src = src;
|
||
copy_dst = dst;
|
||
}
|
||
continue;
|
||
}
|
||
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Could fix operand %d of insn %d matching operand %d.\n",
|
||
op_no, INSN_UID (insn), match_no);
|
||
|
||
/* Scan backward to find the first instruction that uses
|
||
the input operand. If the operand is set here, then
|
||
replace it in both instructions with match_no. */
|
||
|
||
for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
|
||
{
|
||
rtx pset;
|
||
|
||
/* ??? We can't scan past the end of a basic block without
|
||
updating the register lifetime info
|
||
(REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (p))
|
||
break;
|
||
else if (! INSN_P (p))
|
||
continue;
|
||
|
||
length++;
|
||
|
||
/* ??? See if all of SRC is set in P. This test is much
|
||
more conservative than it needs to be. */
|
||
pset = single_set (p);
|
||
if (pset && SET_DEST (pset) == src)
|
||
{
|
||
/* We use validate_replace_rtx, in case there
|
||
are multiple identical source operands. All of
|
||
them have to be changed at the same time. */
|
||
if (validate_replace_rtx (src, dst, insn))
|
||
{
|
||
if (validate_change (p, &SET_DEST (pset),
|
||
dst, 0))
|
||
success = 1;
|
||
else
|
||
{
|
||
/* Change all source operands back.
|
||
This modifies the dst as a side-effect. */
|
||
validate_replace_rtx (dst, src, insn);
|
||
/* Now make sure the dst is right. */
|
||
validate_change (insn,
|
||
recog_data.operand_loc[match_no],
|
||
dst, 0);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (reg_overlap_mentioned_p (src, PATTERN (p))
|
||
|| reg_overlap_mentioned_p (dst, PATTERN (p)))
|
||
break;
|
||
|
||
/* If we have passed a call instruction, and the
|
||
pseudo-reg DST is not already live across a call,
|
||
then don't perform the optimization. */
|
||
if (CALL_P (p))
|
||
{
|
||
num_calls++;
|
||
|
||
if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (success)
|
||
{
|
||
int dstno, srcno;
|
||
|
||
/* Remove the death note for SRC from INSN. */
|
||
remove_note (insn, src_note);
|
||
/* Move the death note for SRC to P if it is used
|
||
there. */
|
||
if (reg_overlap_mentioned_p (src, PATTERN (p)))
|
||
{
|
||
XEXP (src_note, 1) = REG_NOTES (p);
|
||
REG_NOTES (p) = src_note;
|
||
}
|
||
/* If there is a REG_DEAD note for DST on P, then remove
|
||
it, because DST is now set there. */
|
||
if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
|
||
remove_note (p, dst_note);
|
||
|
||
dstno = REGNO (dst);
|
||
srcno = REGNO (src);
|
||
|
||
REG_N_SETS (dstno)++;
|
||
REG_N_SETS (srcno)--;
|
||
|
||
REG_N_CALLS_CROSSED (dstno) += num_calls;
|
||
REG_N_CALLS_CROSSED (srcno) -= num_calls;
|
||
|
||
REG_LIVE_LENGTH (dstno) += length;
|
||
if (REG_LIVE_LENGTH (srcno) >= 0)
|
||
{
|
||
REG_LIVE_LENGTH (srcno) -= length;
|
||
/* REG_LIVE_LENGTH is only an approximation after
|
||
combine if sched is not run, so make sure that we
|
||
still have a reasonable value. */
|
||
if (REG_LIVE_LENGTH (srcno) < 2)
|
||
REG_LIVE_LENGTH (srcno) = 2;
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Fixed operand %d of insn %d matching operand %d.\n",
|
||
op_no, INSN_UID (insn), match_no);
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we weren't able to replace any of the alternatives, try an
|
||
alternative approach of copying the source to the destination. */
|
||
if (!success && copy_src != NULL_RTX)
|
||
copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
|
||
|
||
}
|
||
}
|
||
|
||
/* In fixup_match_1, some insns may have been inserted after basic block
|
||
ends. Fix that here. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx end = BB_END (bb);
|
||
rtx new = end;
|
||
rtx next = NEXT_INSN (new);
|
||
while (next != 0 && INSN_UID (next) >= old_max_uid
|
||
&& (bb->next_bb == EXIT_BLOCK_PTR || BB_HEAD (bb->next_bb) != next))
|
||
new = next, next = NEXT_INSN (new);
|
||
BB_END (bb) = new;
|
||
}
|
||
|
||
done:
|
||
/* Clean up. */
|
||
free (regno_src_regno);
|
||
free (regmove_bb_head);
|
||
if (reg_set_in_bb)
|
||
{
|
||
free (reg_set_in_bb);
|
||
reg_set_in_bb = NULL;
|
||
}
|
||
}
|
||
|
||
/* Returns nonzero if INSN's pattern has matching constraints for any operand.
|
||
Returns 0 if INSN can't be recognized, or if the alternative can't be
|
||
determined.
|
||
|
||
Initialize the info in MATCHP based on the constraints. */
|
||
|
||
static int
|
||
find_matches (rtx insn, struct match *matchp)
|
||
{
|
||
int likely_spilled[MAX_RECOG_OPERANDS];
|
||
int op_no;
|
||
int any_matches = 0;
|
||
|
||
extract_insn (insn);
|
||
if (! constrain_operands (0))
|
||
return 0;
|
||
|
||
/* Must initialize this before main loop, because the code for
|
||
the commutative case may set matches for operands other than
|
||
the current one. */
|
||
for (op_no = recog_data.n_operands; --op_no >= 0; )
|
||
matchp->with[op_no] = matchp->commutative[op_no] = -1;
|
||
|
||
for (op_no = 0; op_no < recog_data.n_operands; op_no++)
|
||
{
|
||
const char *p;
|
||
char c;
|
||
int i = 0;
|
||
|
||
p = recog_data.constraints[op_no];
|
||
|
||
likely_spilled[op_no] = 0;
|
||
matchp->use[op_no] = READ;
|
||
matchp->early_clobber[op_no] = 0;
|
||
if (*p == '=')
|
||
matchp->use[op_no] = WRITE;
|
||
else if (*p == '+')
|
||
matchp->use[op_no] = READWRITE;
|
||
|
||
for (;*p && i < which_alternative; p++)
|
||
if (*p == ',')
|
||
i++;
|
||
|
||
while ((c = *p) != '\0' && c != ',')
|
||
{
|
||
switch (c)
|
||
{
|
||
case '=':
|
||
break;
|
||
case '+':
|
||
break;
|
||
case '&':
|
||
matchp->early_clobber[op_no] = 1;
|
||
break;
|
||
case '%':
|
||
matchp->commutative[op_no] = op_no + 1;
|
||
matchp->commutative[op_no + 1] = op_no;
|
||
break;
|
||
|
||
case '0': case '1': case '2': case '3': case '4':
|
||
case '5': case '6': case '7': case '8': case '9':
|
||
{
|
||
char *end;
|
||
unsigned long match_ul = strtoul (p, &end, 10);
|
||
int match = match_ul;
|
||
|
||
p = end;
|
||
|
||
if (match < op_no && likely_spilled[match])
|
||
continue;
|
||
matchp->with[op_no] = match;
|
||
any_matches = 1;
|
||
if (matchp->commutative[op_no] >= 0)
|
||
matchp->with[matchp->commutative[op_no]] = match;
|
||
}
|
||
continue;
|
||
|
||
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
|
||
case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
|
||
case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
|
||
case 'C': case 'D': case 'W': case 'Y': case 'Z':
|
||
if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
|
||
likely_spilled[op_no] = 1;
|
||
break;
|
||
}
|
||
p += CONSTRAINT_LEN (c, p);
|
||
}
|
||
}
|
||
return any_matches;
|
||
}
|
||
|
||
/* Try to replace all occurrences of DST_REG with SRC in LOC, that is
|
||
assumed to be in INSN. */
|
||
|
||
static void
|
||
replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
|
||
{
|
||
rtx x = *loc;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
int i, j;
|
||
|
||
if (! x)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
if (code == REG)
|
||
{
|
||
if (REGNO (x) != dst_reg)
|
||
return;
|
||
|
||
validate_change (insn, loc, src, 1);
|
||
|
||
return;
|
||
}
|
||
|
||
/* Process each of our operands recursively. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
if (*fmt == 'e')
|
||
replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
|
||
else if (*fmt == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
|
||
}
|
||
|
||
/* Try to replace output operand DST in SET, with input operand SRC. SET is
|
||
the only set in INSN. INSN has just been recognized and constrained.
|
||
SRC is operand number OPERAND_NUMBER in INSN.
|
||
DST is operand number MATCH_NUMBER in INSN.
|
||
If BACKWARD is nonzero, we have been called in a backward pass.
|
||
Return nonzero for success. */
|
||
|
||
static int
|
||
fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
|
||
int backward, int operand_number, int match_number)
|
||
{
|
||
rtx p;
|
||
rtx post_inc = 0, post_inc_set = 0, search_end = 0;
|
||
int success = 0;
|
||
int num_calls = 0, s_num_calls = 0;
|
||
enum rtx_code code = NOTE;
|
||
HOST_WIDE_INT insn_const = 0, newconst = 0;
|
||
rtx overlap = 0; /* need to move insn ? */
|
||
rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
|
||
int length, s_length;
|
||
|
||
if (! src_note)
|
||
{
|
||
/* Look for (set (regX) (op regA constX))
|
||
(set (regY) (op regA constY))
|
||
and change that to
|
||
(set (regA) (op regA constX)).
|
||
(set (regY) (op regA constY-constX)).
|
||
This works for add and shift operations, if
|
||
regA is dead after or set by the second insn. */
|
||
|
||
code = GET_CODE (SET_SRC (set));
|
||
if ((code == PLUS || code == LSHIFTRT
|
||
|| code == ASHIFT || code == ASHIFTRT)
|
||
&& XEXP (SET_SRC (set), 0) == src
|
||
&& GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
|
||
insn_const = INTVAL (XEXP (SET_SRC (set), 1));
|
||
else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
|
||
return 0;
|
||
else
|
||
/* We might find a src_note while scanning. */
|
||
code = NOTE;
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Could fix operand %d of insn %d matching operand %d.\n",
|
||
operand_number, INSN_UID (insn), match_number);
|
||
|
||
/* If SRC is equivalent to a constant set in a different basic block,
|
||
then do not use it for this optimization. We want the equivalence
|
||
so that if we have to reload this register, we can reload the
|
||
constant, rather than extending the lifespan of the register. */
|
||
if (reg_is_remote_constant_p (src, insn))
|
||
return 0;
|
||
|
||
/* Scan forward to find the next instruction that
|
||
uses the output operand. If the operand dies here,
|
||
then replace it in both instructions with
|
||
operand_number. */
|
||
|
||
for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
|
||
{
|
||
if (CALL_P (p))
|
||
replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
|
||
REGNO (dst), src, p);
|
||
|
||
/* ??? We can't scan past the end of a basic block without updating
|
||
the register lifetime info (REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (p))
|
||
break;
|
||
else if (! INSN_P (p))
|
||
continue;
|
||
|
||
length++;
|
||
if (src_note)
|
||
s_length++;
|
||
|
||
if (reg_set_p (src, p) || reg_set_p (dst, p)
|
||
|| (GET_CODE (PATTERN (p)) == USE
|
||
&& reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
|
||
break;
|
||
|
||
/* See if all of DST dies in P. This test is
|
||
slightly more conservative than it needs to be. */
|
||
if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
|
||
&& (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
|
||
{
|
||
/* If we would be moving INSN, check that we won't move it
|
||
into the shadow of a live a live flags register. */
|
||
/* ??? We only try to move it in front of P, although
|
||
we could move it anywhere between OVERLAP and P. */
|
||
if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
|
||
break;
|
||
|
||
if (! src_note)
|
||
{
|
||
rtx q;
|
||
rtx set2 = NULL_RTX;
|
||
|
||
/* If an optimization is done, the value of SRC while P
|
||
is executed will be changed. Check that this is OK. */
|
||
if (reg_overlap_mentioned_p (src, PATTERN (p)))
|
||
break;
|
||
for (q = p; q; q = NEXT_INSN (q))
|
||
{
|
||
/* ??? We can't scan past the end of a basic block without
|
||
updating the register lifetime info
|
||
(REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (q))
|
||
{
|
||
q = 0;
|
||
break;
|
||
}
|
||
else if (! INSN_P (q))
|
||
continue;
|
||
else if (reg_overlap_mentioned_p (src, PATTERN (q))
|
||
|| reg_set_p (src, q))
|
||
break;
|
||
}
|
||
if (q)
|
||
set2 = single_set (q);
|
||
if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
|
||
|| XEXP (SET_SRC (set2), 0) != src
|
||
|| GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
|
||
|| (SET_DEST (set2) != src
|
||
&& ! find_reg_note (q, REG_DEAD, src)))
|
||
{
|
||
/* If this is a PLUS, we can still save a register by doing
|
||
src += insn_const;
|
||
P;
|
||
src -= insn_const; .
|
||
This also gives opportunities for subsequent
|
||
optimizations in the backward pass, so do it there. */
|
||
if (code == PLUS && backward
|
||
/* Don't do this if we can likely tie DST to SET_DEST
|
||
of P later; we can't do this tying here if we got a
|
||
hard register. */
|
||
&& ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
|
||
&& single_set (p)
|
||
&& REG_P (SET_DEST (single_set (p)))
|
||
&& (REGNO (SET_DEST (single_set (p)))
|
||
< FIRST_PSEUDO_REGISTER))
|
||
/* We may only emit an insn directly after P if we
|
||
are not in the shadow of a live flags register. */
|
||
&& GET_MODE (p) == VOIDmode)
|
||
{
|
||
search_end = q;
|
||
q = insn;
|
||
set2 = set;
|
||
newconst = -insn_const;
|
||
code = MINUS;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
|
||
/* Reject out of range shifts. */
|
||
if (code != PLUS
|
||
&& (newconst < 0
|
||
|| ((unsigned HOST_WIDE_INT) newconst
|
||
>= (GET_MODE_BITSIZE (GET_MODE
|
||
(SET_SRC (set2)))))))
|
||
break;
|
||
if (code == PLUS)
|
||
{
|
||
post_inc = q;
|
||
if (SET_DEST (set2) != src)
|
||
post_inc_set = set2;
|
||
}
|
||
}
|
||
/* We use 1 as last argument to validate_change so that all
|
||
changes are accepted or rejected together by apply_change_group
|
||
when it is called by validate_replace_rtx . */
|
||
validate_change (q, &XEXP (SET_SRC (set2), 1),
|
||
GEN_INT (newconst), 1);
|
||
}
|
||
validate_change (insn, recog_data.operand_loc[match_number], src, 1);
|
||
if (validate_replace_rtx (dst, src_subreg, p))
|
||
success = 1;
|
||
break;
|
||
}
|
||
|
||
if (reg_overlap_mentioned_p (dst, PATTERN (p)))
|
||
break;
|
||
if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
|
||
{
|
||
/* INSN was already checked to be movable wrt. the registers that it
|
||
sets / uses when we found no REG_DEAD note for src on it, but it
|
||
still might clobber the flags register. We'll have to check that
|
||
we won't insert it into the shadow of a live flags register when
|
||
we finally know where we are to move it. */
|
||
overlap = p;
|
||
src_note = find_reg_note (p, REG_DEAD, src);
|
||
}
|
||
|
||
/* If we have passed a call instruction, and the pseudo-reg SRC is not
|
||
already live across a call, then don't perform the optimization. */
|
||
if (CALL_P (p))
|
||
{
|
||
if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
|
||
break;
|
||
|
||
num_calls++;
|
||
|
||
if (src_note)
|
||
s_num_calls++;
|
||
|
||
}
|
||
}
|
||
|
||
if (! success)
|
||
return 0;
|
||
|
||
/* Remove the death note for DST from P. */
|
||
remove_note (p, dst_note);
|
||
if (code == MINUS)
|
||
{
|
||
post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
|
||
if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
|
||
&& search_end
|
||
&& try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
|
||
post_inc = 0;
|
||
validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
|
||
REG_N_SETS (REGNO (src))++;
|
||
REG_LIVE_LENGTH (REGNO (src))++;
|
||
}
|
||
if (overlap)
|
||
{
|
||
/* The lifetime of src and dest overlap,
|
||
but we can change this by moving insn. */
|
||
rtx pat = PATTERN (insn);
|
||
if (src_note)
|
||
remove_note (overlap, src_note);
|
||
if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
|
||
&& code == PLUS
|
||
&& try_auto_increment (overlap, insn, 0, src, insn_const, 0))
|
||
insn = overlap;
|
||
else
|
||
{
|
||
rtx notes = REG_NOTES (insn);
|
||
|
||
emit_insn_after_with_line_notes (pat, PREV_INSN (p), insn);
|
||
delete_insn (insn);
|
||
/* emit_insn_after_with_line_notes has no
|
||
return value, so search for the new insn. */
|
||
insn = p;
|
||
while (! INSN_P (insn) || PATTERN (insn) != pat)
|
||
insn = PREV_INSN (insn);
|
||
|
||
REG_NOTES (insn) = notes;
|
||
}
|
||
}
|
||
/* Sometimes we'd generate src = const; src += n;
|
||
if so, replace the instruction that set src
|
||
in the first place. */
|
||
|
||
if (! overlap && (code == PLUS || code == MINUS))
|
||
{
|
||
rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
|
||
rtx q, set2 = NULL_RTX;
|
||
int num_calls2 = 0, s_length2 = 0;
|
||
|
||
if (note && CONSTANT_P (XEXP (note, 0)))
|
||
{
|
||
for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
|
||
{
|
||
/* ??? We can't scan past the end of a basic block without
|
||
updating the register lifetime info
|
||
(REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (q))
|
||
{
|
||
q = 0;
|
||
break;
|
||
}
|
||
else if (! INSN_P (q))
|
||
continue;
|
||
|
||
s_length2++;
|
||
if (reg_set_p (src, q))
|
||
{
|
||
set2 = single_set (q);
|
||
break;
|
||
}
|
||
if (reg_overlap_mentioned_p (src, PATTERN (q)))
|
||
{
|
||
q = 0;
|
||
break;
|
||
}
|
||
if (CALL_P (p))
|
||
num_calls2++;
|
||
}
|
||
if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
|
||
&& validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
|
||
{
|
||
delete_insn (q);
|
||
REG_N_SETS (REGNO (src))--;
|
||
REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
|
||
REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
|
||
insn_const = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
|
||
&& (code == PLUS || code == MINUS) && insn_const
|
||
&& try_auto_increment (p, insn, 0, src, insn_const, 1))
|
||
insn = p;
|
||
else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
|
||
&& post_inc
|
||
&& try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
|
||
post_inc = 0;
|
||
/* If post_inc still prevails, try to find an
|
||
insn where it can be used as a pre-in/decrement.
|
||
If code is MINUS, this was already tried. */
|
||
if (post_inc && code == PLUS
|
||
/* Check that newconst is likely to be usable
|
||
in a pre-in/decrement before starting the search. */
|
||
&& ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
|
||
|| (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
|
||
&& exact_log2 (newconst))
|
||
{
|
||
rtx q, inc_dest;
|
||
|
||
inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
|
||
for (q = post_inc; (q = NEXT_INSN (q)); )
|
||
{
|
||
/* ??? We can't scan past the end of a basic block without updating
|
||
the register lifetime info
|
||
(REG_DEAD/basic_block_live_at_start). */
|
||
if (perhaps_ends_bb_p (q))
|
||
break;
|
||
else if (! INSN_P (q))
|
||
continue;
|
||
else if (src != inc_dest
|
||
&& (reg_overlap_mentioned_p (src, PATTERN (q))
|
||
|| reg_set_p (src, q)))
|
||
break;
|
||
else if (reg_set_p (inc_dest, q))
|
||
break;
|
||
else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
|
||
{
|
||
try_auto_increment (q, post_inc,
|
||
post_inc_set, inc_dest, newconst, 1);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Move the death note for DST to INSN if it is used
|
||
there. */
|
||
if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
|
||
{
|
||
XEXP (dst_note, 1) = REG_NOTES (insn);
|
||
REG_NOTES (insn) = dst_note;
|
||
}
|
||
|
||
if (src_note)
|
||
{
|
||
/* Move the death note for SRC from INSN to P. */
|
||
if (! overlap)
|
||
remove_note (insn, src_note);
|
||
XEXP (src_note, 1) = REG_NOTES (p);
|
||
REG_NOTES (p) = src_note;
|
||
|
||
REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
|
||
}
|
||
|
||
REG_N_SETS (REGNO (src))++;
|
||
REG_N_SETS (REGNO (dst))--;
|
||
|
||
REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
|
||
|
||
REG_LIVE_LENGTH (REGNO (src)) += s_length;
|
||
if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
|
||
{
|
||
REG_LIVE_LENGTH (REGNO (dst)) -= length;
|
||
/* REG_LIVE_LENGTH is only an approximation after
|
||
combine if sched is not run, so make sure that we
|
||
still have a reasonable value. */
|
||
if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
|
||
REG_LIVE_LENGTH (REGNO (dst)) = 2;
|
||
}
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Fixed operand %d of insn %d matching operand %d.\n",
|
||
operand_number, INSN_UID (insn), match_number);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Return nonzero if X is stable and mentions no registers but for
|
||
mentioning SRC or mentioning / changing DST . If in doubt, presume
|
||
it is unstable.
|
||
The rationale is that we want to check if we can move an insn easily
|
||
while just paying attention to SRC and DST. */
|
||
static int
|
||
stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
|
||
{
|
||
RTX_CODE code = GET_CODE (x);
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_UNARY:
|
||
case RTX_BIN_ARITH:
|
||
case RTX_COMM_ARITH:
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
case RTX_TERNARY:
|
||
case RTX_BITFIELD_OPS:
|
||
{
|
||
int i;
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e'
|
||
&& ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
case RTX_OBJ:
|
||
if (code == REG)
|
||
return x == src || x == dst;
|
||
/* If this is a MEM, look inside - there might be a register hidden in
|
||
the address of an unchanging MEM. */
|
||
if (code == MEM
|
||
&& ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
|
||
return 0;
|
||
/* Fall through. */
|
||
default:
|
||
return ! rtx_unstable_p (x);
|
||
}
|
||
}
|
||
|
||
/* Track stack adjustments and stack memory references. Attempt to
|
||
reduce the number of stack adjustments by back-propagating across
|
||
the memory references.
|
||
|
||
This is intended primarily for use with targets that do not define
|
||
ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
|
||
targets that define PREFERRED_STACK_BOUNDARY more aligned than
|
||
STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
|
||
(e.g. x86 fp regs) which would ordinarily have to be implemented
|
||
as a sub/mov pair due to restrictions in calls.c.
|
||
|
||
Propagation stops when any of the insns that need adjusting are
|
||
(a) no longer valid because we've exceeded their range, (b) a
|
||
non-trivial push instruction, or (c) a call instruction.
|
||
|
||
Restriction B is based on the assumption that push instructions
|
||
are smaller or faster. If a port really wants to remove all
|
||
pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
|
||
one exception that is made is for an add immediately followed
|
||
by a push. */
|
||
|
||
/* This structure records stack memory references between stack adjusting
|
||
instructions. */
|
||
|
||
struct csa_memlist
|
||
{
|
||
HOST_WIDE_INT sp_offset;
|
||
rtx insn, *mem;
|
||
struct csa_memlist *next;
|
||
};
|
||
|
||
static int stack_memref_p (rtx);
|
||
static rtx single_set_for_csa (rtx);
|
||
static void free_csa_memlist (struct csa_memlist *);
|
||
static struct csa_memlist *record_one_stack_memref (rtx, rtx *,
|
||
struct csa_memlist *);
|
||
static int try_apply_stack_adjustment (rtx, struct csa_memlist *,
|
||
HOST_WIDE_INT, HOST_WIDE_INT);
|
||
static void combine_stack_adjustments_for_block (basic_block);
|
||
static int record_stack_memrefs (rtx *, void *);
|
||
|
||
|
||
/* Main entry point for stack adjustment combination. */
|
||
|
||
static void
|
||
combine_stack_adjustments (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
combine_stack_adjustments_for_block (bb);
|
||
}
|
||
|
||
/* Recognize a MEM of the form (sp) or (plus sp const). */
|
||
|
||
static int
|
||
stack_memref_p (rtx x)
|
||
{
|
||
if (!MEM_P (x))
|
||
return 0;
|
||
x = XEXP (x, 0);
|
||
|
||
if (x == stack_pointer_rtx)
|
||
return 1;
|
||
if (GET_CODE (x) == PLUS
|
||
&& XEXP (x, 0) == stack_pointer_rtx
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Recognize either normal single_set or the hack in i386.md for
|
||
tying fp and sp adjustments. */
|
||
|
||
static rtx
|
||
single_set_for_csa (rtx insn)
|
||
{
|
||
int i;
|
||
rtx tmp = single_set (insn);
|
||
if (tmp)
|
||
return tmp;
|
||
|
||
if (!NONJUMP_INSN_P (insn)
|
||
|| GET_CODE (PATTERN (insn)) != PARALLEL)
|
||
return NULL_RTX;
|
||
|
||
tmp = PATTERN (insn);
|
||
if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
|
||
return NULL_RTX;
|
||
|
||
for (i = 1; i < XVECLEN (tmp, 0); ++i)
|
||
{
|
||
rtx this = XVECEXP (tmp, 0, i);
|
||
|
||
/* The special case is allowing a no-op set. */
|
||
if (GET_CODE (this) == SET
|
||
&& SET_SRC (this) == SET_DEST (this))
|
||
;
|
||
else if (GET_CODE (this) != CLOBBER
|
||
&& GET_CODE (this) != USE)
|
||
return NULL_RTX;
|
||
}
|
||
|
||
return XVECEXP (tmp, 0, 0);
|
||
}
|
||
|
||
/* Free the list of csa_memlist nodes. */
|
||
|
||
static void
|
||
free_csa_memlist (struct csa_memlist *memlist)
|
||
{
|
||
struct csa_memlist *next;
|
||
for (; memlist ; memlist = next)
|
||
{
|
||
next = memlist->next;
|
||
free (memlist);
|
||
}
|
||
}
|
||
|
||
/* Create a new csa_memlist node from the given memory reference.
|
||
It is already known that the memory is stack_memref_p. */
|
||
|
||
static struct csa_memlist *
|
||
record_one_stack_memref (rtx insn, rtx *mem, struct csa_memlist *next_memlist)
|
||
{
|
||
struct csa_memlist *ml;
|
||
|
||
ml = XNEW (struct csa_memlist);
|
||
|
||
if (XEXP (*mem, 0) == stack_pointer_rtx)
|
||
ml->sp_offset = 0;
|
||
else
|
||
ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
|
||
|
||
ml->insn = insn;
|
||
ml->mem = mem;
|
||
ml->next = next_memlist;
|
||
|
||
return ml;
|
||
}
|
||
|
||
/* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
|
||
as each of the memories in MEMLIST. Return true on success. */
|
||
|
||
static int
|
||
try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
|
||
HOST_WIDE_INT delta)
|
||
{
|
||
struct csa_memlist *ml;
|
||
rtx set;
|
||
|
||
set = single_set_for_csa (insn);
|
||
validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
|
||
|
||
for (ml = memlist; ml ; ml = ml->next)
|
||
validate_change
|
||
(ml->insn, ml->mem,
|
||
replace_equiv_address_nv (*ml->mem,
|
||
plus_constant (stack_pointer_rtx,
|
||
ml->sp_offset - delta)), 1);
|
||
|
||
if (apply_change_group ())
|
||
{
|
||
/* Succeeded. Update our knowledge of the memory references. */
|
||
for (ml = memlist; ml ; ml = ml->next)
|
||
ml->sp_offset -= delta;
|
||
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Called via for_each_rtx and used to record all stack memory references in
|
||
the insn and discard all other stack pointer references. */
|
||
struct record_stack_memrefs_data
|
||
{
|
||
rtx insn;
|
||
struct csa_memlist *memlist;
|
||
};
|
||
|
||
static int
|
||
record_stack_memrefs (rtx *xp, void *data)
|
||
{
|
||
rtx x = *xp;
|
||
struct record_stack_memrefs_data *d =
|
||
(struct record_stack_memrefs_data *) data;
|
||
if (!x)
|
||
return 0;
|
||
switch (GET_CODE (x))
|
||
{
|
||
case MEM:
|
||
if (!reg_mentioned_p (stack_pointer_rtx, x))
|
||
return -1;
|
||
/* We are not able to handle correctly all possible memrefs containing
|
||
stack pointer, so this check is necessary. */
|
||
if (stack_memref_p (x))
|
||
{
|
||
d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
|
||
return -1;
|
||
}
|
||
return 1;
|
||
case REG:
|
||
/* ??? We want be able to handle non-memory stack pointer
|
||
references later. For now just discard all insns referring to
|
||
stack pointer outside mem expressions. We would probably
|
||
want to teach validate_replace to simplify expressions first.
|
||
|
||
We can't just compare with STACK_POINTER_RTX because the
|
||
reference to the stack pointer might be in some other mode.
|
||
In particular, an explicit clobber in an asm statement will
|
||
result in a QImode clobber. */
|
||
if (REGNO (x) == STACK_POINTER_REGNUM)
|
||
return 1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Subroutine of combine_stack_adjustments, called for each basic block. */
|
||
|
||
static void
|
||
combine_stack_adjustments_for_block (basic_block bb)
|
||
{
|
||
HOST_WIDE_INT last_sp_adjust = 0;
|
||
rtx last_sp_set = NULL_RTX;
|
||
struct csa_memlist *memlist = NULL;
|
||
rtx insn, next, set;
|
||
struct record_stack_memrefs_data data;
|
||
bool end_of_block = false;
|
||
|
||
for (insn = BB_HEAD (bb); !end_of_block ; insn = next)
|
||
{
|
||
end_of_block = insn == BB_END (bb);
|
||
next = NEXT_INSN (insn);
|
||
|
||
if (! INSN_P (insn))
|
||
continue;
|
||
|
||
set = single_set_for_csa (insn);
|
||
if (set)
|
||
{
|
||
rtx dest = SET_DEST (set);
|
||
rtx src = SET_SRC (set);
|
||
|
||
/* Find constant additions to the stack pointer. */
|
||
if (dest == stack_pointer_rtx
|
||
&& GET_CODE (src) == PLUS
|
||
&& XEXP (src, 0) == stack_pointer_rtx
|
||
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
|
||
|
||
/* If we've not seen an adjustment previously, record
|
||
it now and continue. */
|
||
if (! last_sp_set)
|
||
{
|
||
last_sp_set = insn;
|
||
last_sp_adjust = this_adjust;
|
||
continue;
|
||
}
|
||
|
||
/* If not all recorded memrefs can be adjusted, or the
|
||
adjustment is now too large for a constant addition,
|
||
we cannot merge the two stack adjustments.
|
||
|
||
Also we need to be careful to not move stack pointer
|
||
such that we create stack accesses outside the allocated
|
||
area. We can combine an allocation into the first insn,
|
||
or a deallocation into the second insn. We can not
|
||
combine an allocation followed by a deallocation.
|
||
|
||
The only somewhat frequent occurrence of the later is when
|
||
a function allocates a stack frame but does not use it.
|
||
For this case, we would need to analyze rtl stream to be
|
||
sure that allocated area is really unused. This means not
|
||
only checking the memory references, but also all registers
|
||
or global memory references possibly containing a stack
|
||
frame address.
|
||
|
||
Perhaps the best way to address this problem is to teach
|
||
gcc not to allocate stack for objects never used. */
|
||
|
||
/* Combine an allocation into the first instruction. */
|
||
if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
|
||
{
|
||
if (try_apply_stack_adjustment (last_sp_set, memlist,
|
||
last_sp_adjust + this_adjust,
|
||
this_adjust))
|
||
{
|
||
/* It worked! */
|
||
delete_insn (insn);
|
||
last_sp_adjust += this_adjust;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Otherwise we have a deallocation. Do not combine with
|
||
a previous allocation. Combine into the second insn. */
|
||
else if (STACK_GROWS_DOWNWARD
|
||
? last_sp_adjust >= 0 : last_sp_adjust <= 0)
|
||
{
|
||
if (try_apply_stack_adjustment (insn, memlist,
|
||
last_sp_adjust + this_adjust,
|
||
-last_sp_adjust))
|
||
{
|
||
/* It worked! */
|
||
delete_insn (last_sp_set);
|
||
last_sp_set = insn;
|
||
last_sp_adjust += this_adjust;
|
||
free_csa_memlist (memlist);
|
||
memlist = NULL;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Combination failed. Restart processing from here. If
|
||
deallocation+allocation conspired to cancel, we can
|
||
delete the old deallocation insn. */
|
||
if (last_sp_set && last_sp_adjust == 0)
|
||
delete_insn (insn);
|
||
free_csa_memlist (memlist);
|
||
memlist = NULL;
|
||
last_sp_set = insn;
|
||
last_sp_adjust = this_adjust;
|
||
continue;
|
||
}
|
||
|
||
/* Find a predecrement of exactly the previous adjustment and
|
||
turn it into a direct store. Obviously we can't do this if
|
||
there were any intervening uses of the stack pointer. */
|
||
if (memlist == NULL
|
||
&& MEM_P (dest)
|
||
&& ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
|
||
&& (last_sp_adjust
|
||
== (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
|
||
|| (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
|
||
&& GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
|
||
&& XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
|
||
&& (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
|
||
== CONST_INT)
|
||
&& (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
|
||
== -last_sp_adjust)))
|
||
&& XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
|
||
&& ! reg_mentioned_p (stack_pointer_rtx, src)
|
||
&& memory_address_p (GET_MODE (dest), stack_pointer_rtx)
|
||
&& validate_change (insn, &SET_DEST (set),
|
||
replace_equiv_address (dest,
|
||
stack_pointer_rtx),
|
||
0))
|
||
{
|
||
delete_insn (last_sp_set);
|
||
free_csa_memlist (memlist);
|
||
memlist = NULL;
|
||
last_sp_set = NULL_RTX;
|
||
last_sp_adjust = 0;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
data.insn = insn;
|
||
data.memlist = memlist;
|
||
if (!CALL_P (insn) && last_sp_set
|
||
&& !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
|
||
{
|
||
memlist = data.memlist;
|
||
continue;
|
||
}
|
||
memlist = data.memlist;
|
||
|
||
/* Otherwise, we were not able to process the instruction.
|
||
Do not continue collecting data across such a one. */
|
||
if (last_sp_set
|
||
&& (CALL_P (insn)
|
||
|| reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
|
||
{
|
||
if (last_sp_set && last_sp_adjust == 0)
|
||
delete_insn (last_sp_set);
|
||
free_csa_memlist (memlist);
|
||
memlist = NULL;
|
||
last_sp_set = NULL_RTX;
|
||
last_sp_adjust = 0;
|
||
}
|
||
}
|
||
|
||
if (last_sp_set && last_sp_adjust == 0)
|
||
delete_insn (last_sp_set);
|
||
|
||
if (memlist)
|
||
free_csa_memlist (memlist);
|
||
}
|
||
|
||
static bool
|
||
gate_handle_regmove (void)
|
||
{
|
||
return (optimize > 0 && flag_regmove);
|
||
}
|
||
|
||
|
||
/* Register allocation pre-pass, to reduce number of moves necessary
|
||
for two-address machines. */
|
||
static unsigned int
|
||
rest_of_handle_regmove (void)
|
||
{
|
||
regmove_optimize (get_insns (), max_reg_num ());
|
||
cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_regmove =
|
||
{
|
||
"regmove", /* name */
|
||
gate_handle_regmove, /* gate */
|
||
rest_of_handle_regmove, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_REGMOVE, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
'N' /* letter */
|
||
};
|
||
|
||
|
||
static bool
|
||
gate_handle_stack_adjustments (void)
|
||
{
|
||
return (optimize > 0);
|
||
}
|
||
|
||
static unsigned int
|
||
rest_of_handle_stack_adjustments (void)
|
||
{
|
||
life_analysis (PROP_POSTRELOAD);
|
||
cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE
|
||
| (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
|
||
|
||
/* This is kind of a heuristic. We need to run combine_stack_adjustments
|
||
even for machines with possibly nonzero RETURN_POPS_ARGS
|
||
and ACCUMULATE_OUTGOING_ARGS. We expect that only ports having
|
||
push instructions will have popping returns. */
|
||
#ifndef PUSH_ROUNDING
|
||
if (!ACCUMULATE_OUTGOING_ARGS)
|
||
#endif
|
||
combine_stack_adjustments ();
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_stack_adjustments =
|
||
{
|
||
"csa", /* name */
|
||
gate_handle_stack_adjustments, /* gate */
|
||
rest_of_handle_stack_adjustments, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func |
|
||
TODO_ggc_collect, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|