1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-25 16:13:17 +00:00
freebsd/sys/dev/lmc/if_lmc.c
2000-05-01 03:31:58 +00:00

1525 lines
39 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-
* Copyright (c) 1994-1997 Matt Thomas (matt@3am-software.com)
* Copyright (c) LAN Media Corporation 1998, 1999.
* Copyright (c) 2000 Stephen Kiernan (sk-ports@vegamuse.org)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software withough specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
* From NetBSD: if_de.c,v 1.56.2.1 1997/10/27 02:13:25 thorpej Exp
* $Id: if_lmc.c,v 1.9 1999/02/19 15:08:42 explorer Exp $
*/
char lmc_version[] = "BSD 1.1";
#include "opt_netgraph.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <machine/clock.h>
#include <net/if.h>
#include <sys/syslog.h>
#include <vm/vm.h>
#include <netgraph/ng_message.h>
#include <netgraph/ng_parse.h>
#include <netgraph/netgraph.h>
#include <vm/pmap.h>
#include <pci.h>
#include <pci/pcivar.h>
#include <pci/dc21040reg.h>
#define INCLUDE_PATH_PREFIX "dev/lmc/"
/* Intel CPUs should use I/O mapped access. */
#if defined(__i386__)
#define LMC_IOMAPPED
#endif
/*
* This turns on all sort of debugging stuff and make the
* driver much larger.
*/
#ifdef LMC_DEBUG
#define DP(x) printf x
#else
#define DP(x)
#endif
#define LMC_HZ 10
#ifndef TULIP_GP_PINSET
#define TULIP_GP_PINSET 0x00000100L
#endif
#ifndef TULIP_BUSMODE_READMULTIPLE
#define TULIP_BUSMODE_READMULTIPLE 0x00200000L
#endif
/*
* C sucks
*/
typedef struct lmc___softc lmc_softc_t;
typedef struct lmc___media lmc_media_t;
typedef struct lmc___ctl lmc_ctl_t;
#include "dev/lmc/if_lmcioctl.h"
#include "dev/lmc/if_lmcvar.h"
#include "dev/lmc/if_lmc_common.c"
#include "dev/lmc/if_lmc_media.c"
/*
* This module supports
* the DEC 21140A pass 2.2 PCI Fast Ethernet Controller.
*/
static lmc_intrfunc_t lmc_intr_normal(void *);
static ifnet_ret_t lmc_ifstart(lmc_softc_t * const sc );
static ifnet_ret_t lmc_ifstart_one(lmc_softc_t * const sc);
static struct mbuf *lmc_txput(lmc_softc_t * const sc, struct mbuf *m);
static void lmc_rx_intr(lmc_softc_t * const sc);
static void lmc_watchdog(lmc_softc_t * const sc);
static void lmc_ifup(lmc_softc_t * const sc);
static void lmc_ifdown(lmc_softc_t * const sc);
#ifdef LMC_DEBUG
static void ng_lmc_dump_packet(struct mbuf *m);
#endif /* LMC_DEBUG */
static void ng_lmc_watchdog_frame(void *arg);
static void ng_lmc_init(void *ignored);
static ng_constructor_t ng_lmc_constructor;
static ng_rcvmsg_t ng_lmc_rcvmsg;
static ng_shutdown_t ng_lmc_rmnode;
static ng_newhook_t ng_lmc_newhook;
/*static ng_findhook_t ng_lmc_findhook; */
static ng_connect_t ng_lmc_connect;
static ng_rcvdata_t ng_lmc_rcvdata;
static ng_disconnect_t ng_lmc_disconnect;
/* Parse type for struct lmc_ctl */
static const struct ng_parse_fixedarray_info ng_lmc_ctl_cardspec_info = {
&ng_parse_int32_type,
7,
NULL
};
static const struct ng_parse_type ng_lmc_ctl_cardspec_type = {
&ng_parse_fixedarray_type,
&ng_lmc_ctl_cardspec_info
};
static const struct ng_parse_struct_info ng_lmc_ctl_type_info = {
{
{ "cardtype", &ng_parse_int32_type },
{ "clock_source", &ng_parse_int32_type },
{ "clock_rate", &ng_parse_int32_type },
{ "crc_length", &ng_parse_int32_type },
{ "cable_length", &ng_parse_int32_type },
{ "scrambler_onoff", &ng_parse_int32_type },
{ "cable_type", &ng_parse_int32_type },
{ "keepalive_onoff", &ng_parse_int32_type },
{ "ticks", &ng_parse_int32_type },
{ "cardspec", &ng_lmc_ctl_cardspec_type },
{ "circuit_type", &ng_parse_int32_type },
{ NULL },
}
};
static const struct ng_parse_type ng_lmc_ctl_type = {
&ng_parse_struct_type,
&ng_lmc_ctl_type_info
};
/* List of commands and how to convert arguments to/from ASCII */
static const struct ng_cmdlist ng_lmc_cmdlist[] = {
{
NG_LMC_COOKIE,
NGM_LMC_GET_CTL,
"getctl",
NULL,
&ng_lmc_ctl_type,
},
{
NG_LMC_COOKIE,
NGM_LMC_SET_CTL,
"setctl",
&ng_lmc_ctl_type,
NULL
},
{ 0 }
};
static struct ng_type typestruct = {
NG_VERSION,
NG_LMC_NODE_TYPE,
NULL,
ng_lmc_constructor,
ng_lmc_rcvmsg,
ng_lmc_rmnode,
ng_lmc_newhook,
NULL,
ng_lmc_connect,
ng_lmc_rcvdata,
ng_lmc_rcvdata,
ng_lmc_disconnect,
ng_lmc_cmdlist
};
static int ng_lmc_done_init = 0;
/*
* Code the read the SROM and MII bit streams (I2C)
*/
static void
lmc_delay_300ns(lmc_softc_t * const sc)
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
(void)LMC_CSR_READ(sc, csr_busmode);
}
#define EMIT \
do { \
LMC_CSR_WRITE(sc, csr_srom_mii, csr); \
lmc_delay_300ns(sc); \
} while (0)
static void
lmc_srom_idle(lmc_softc_t * const sc)
{
unsigned bit, csr;
csr = SROMSEL ; EMIT;
csr = SROMSEL | SROMRD; EMIT;
csr ^= SROMCS; EMIT;
csr ^= SROMCLKON; EMIT;
/*
* Write 25 cycles of 0 which will force the SROM to be idle.
*/
for (bit = 3 + SROM_BITWIDTH + 16; bit > 0; bit--) {
csr ^= SROMCLKOFF; EMIT; /* clock low; data not valid */
csr ^= SROMCLKON; EMIT; /* clock high; data valid */
}
csr ^= SROMCLKOFF; EMIT;
csr ^= SROMCS; EMIT;
csr = 0; EMIT;
}
static void
lmc_srom_read(lmc_softc_t * const sc)
{
unsigned idx;
const unsigned bitwidth = SROM_BITWIDTH;
const unsigned cmdmask = (SROMCMD_RD << bitwidth);
const unsigned msb = 1 << (bitwidth + 3 - 1);
unsigned lastidx = (1 << bitwidth) - 1;
lmc_srom_idle(sc);
for (idx = 0; idx <= lastidx; idx++) {
unsigned lastbit, data, bits, bit, csr;
csr = SROMSEL ; EMIT;
csr = SROMSEL | SROMRD; EMIT;
csr ^= SROMCSON; EMIT;
csr ^= SROMCLKON; EMIT;
lastbit = 0;
for (bits = idx|cmdmask, bit = bitwidth + 3
; bit > 0
; bit--, bits <<= 1) {
const unsigned thisbit = bits & msb;
csr ^= SROMCLKOFF; EMIT; /* clock L data invalid */
if (thisbit != lastbit) {
csr ^= SROMDOUT; EMIT;/* clock L invert data */
} else {
EMIT;
}
csr ^= SROMCLKON; EMIT; /* clock H data valid */
lastbit = thisbit;
}
csr ^= SROMCLKOFF; EMIT;
for (data = 0, bits = 0; bits < 16; bits++) {
data <<= 1;
csr ^= SROMCLKON; EMIT; /* clock H data valid */
data |= LMC_CSR_READ(sc, csr_srom_mii) & SROMDIN ? 1 : 0;
csr ^= SROMCLKOFF; EMIT; /* clock L data invalid */
}
sc->lmc_rombuf[idx*2] = data & 0xFF;
sc->lmc_rombuf[idx*2+1] = data >> 8;
csr = SROMSEL | SROMRD; EMIT;
csr = 0; EMIT;
}
lmc_srom_idle(sc);
}
#define MII_EMIT do { LMC_CSR_WRITE(sc, csr_srom_mii, csr); lmc_delay_300ns(sc); } while (0)
static void
lmc_mii_writebits(lmc_softc_t * const sc, unsigned data, unsigned bits)
{
unsigned msb = 1 << (bits - 1);
unsigned csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
unsigned lastbit = (csr & MII_DOUT) ? msb : 0;
csr |= MII_WR; MII_EMIT; /* clock low; assert write */
for (; bits > 0; bits--, data <<= 1) {
const unsigned thisbit = data & msb;
if (thisbit != lastbit) {
csr ^= MII_DOUT; MII_EMIT; /* clock low; invert data */
}
csr ^= MII_CLKON; MII_EMIT; /* clock high; data valid */
lastbit = thisbit;
csr ^= MII_CLKOFF; MII_EMIT; /* clock low; data not valid */
}
}
static void
lmc_mii_turnaround(lmc_softc_t * const sc, unsigned cmd)
{
unsigned csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
if (cmd == MII_WRCMD) {
csr |= MII_DOUT; MII_EMIT; /* clock low; change data */
csr ^= MII_CLKON; MII_EMIT; /* clock high; data valid */
csr ^= MII_CLKOFF; MII_EMIT; /* clock low; data not valid */
csr ^= MII_DOUT; MII_EMIT; /* clock low; change data */
} else {
csr |= MII_RD; MII_EMIT; /* clock low; switch to read */
}
csr ^= MII_CLKON; MII_EMIT; /* clock high; data valid */
csr ^= MII_CLKOFF; MII_EMIT; /* clock low; data not valid */
}
static unsigned
lmc_mii_readbits(lmc_softc_t * const sc)
{
unsigned data;
unsigned csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
int idx;
for (idx = 0, data = 0; idx < 16; idx++) {
data <<= 1; /* this is NOOP on the first pass through */
csr ^= MII_CLKON; MII_EMIT; /* clock high; data valid */
if (LMC_CSR_READ(sc, csr_srom_mii) & MII_DIN)
data |= 1;
csr ^= MII_CLKOFF; MII_EMIT; /* clock low; data not valid */
}
csr ^= MII_RD; MII_EMIT; /* clock low; turn off read */
return data;
}
static unsigned
lmc_mii_readreg(lmc_softc_t * const sc, unsigned devaddr, unsigned regno)
{
unsigned csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
unsigned data;
csr &= ~(MII_RD|MII_CLK); MII_EMIT;
lmc_mii_writebits(sc, MII_PREAMBLE, 32);
lmc_mii_writebits(sc, MII_RDCMD, 8);
lmc_mii_writebits(sc, devaddr, 5);
lmc_mii_writebits(sc, regno, 5);
lmc_mii_turnaround(sc, MII_RDCMD);
data = lmc_mii_readbits(sc);
return data;
}
static void
lmc_mii_writereg(lmc_softc_t * const sc, unsigned devaddr,
unsigned regno, unsigned data)
{
unsigned csr = LMC_CSR_READ(sc, csr_srom_mii) & (MII_RD|MII_DOUT|MII_CLK);
csr &= ~(MII_RD|MII_CLK); MII_EMIT;
lmc_mii_writebits(sc, MII_PREAMBLE, 32);
lmc_mii_writebits(sc, MII_WRCMD, 8);
lmc_mii_writebits(sc, devaddr, 5);
lmc_mii_writebits(sc, regno, 5);
lmc_mii_turnaround(sc, MII_WRCMD);
lmc_mii_writebits(sc, data, 16);
}
static int
lmc_read_macaddr(lmc_softc_t * const sc)
{
lmc_srom_read(sc);
bcopy(sc->lmc_rombuf + 20, sc->lmc_enaddr, 6);
return 0;
}
/*
* Check to make certain there is a signal from the modem, and flicker
* lights as needed.
*/
static void
lmc_watchdog(lmc_softc_t * const sc)
{
int state;
u_int32_t ostatus;
u_int32_t link_status;
u_int32_t ticks;
state = 0;
link_status = sc->lmc_media->get_link_status(sc);
ostatus = ((sc->lmc_flags & LMC_MODEMOK) == LMC_MODEMOK);
/*
* hardware level link lost, but the interface is marked as up.
* Mark it as down.
*/
if (link_status == 0 && ostatus) {
printf(LMC_PRINTF_FMT ": physical link down\n",
LMC_PRINTF_ARGS);
sc->lmc_flags &= ~LMC_MODEMOK;
lmc_led_off(sc, LMC_MII16_LED1);
}
/*
* hardware link is up, but the interface is marked as down.
* Bring it back up again.
*/
if (link_status != 0 && !ostatus) {
printf(LMC_PRINTF_FMT ": physical link up\n",
LMC_PRINTF_ARGS);
if (sc->lmc_flags & LMC_IFUP)
lmc_ifup(sc);
sc->lmc_flags |= LMC_MODEMOK;
lmc_led_on(sc, LMC_MII16_LED1);
return;
}
/*
* remember the timer value
*/
ticks = LMC_CSR_READ(sc, csr_gp_timer);
LMC_CSR_WRITE(sc, csr_gp_timer, 0xffffffffUL);
sc->ictl.ticks = 0x0000ffff - (ticks & 0x0000ffff);
sc->lmc_out_dog = LMC_DOG_HOLDOFF;
}
/*
* Mark the interface as "up" and enable TX/RX and TX/RX interrupts.
* This also does a full software reset.
*/
static void
lmc_ifup(lmc_softc_t * const sc)
{
untimeout(ng_lmc_watchdog_frame, sc, sc->lmc_handle);
sc->lmc_running = 0;
lmc_dec_reset(sc);
lmc_reset(sc);
sc->lmc_media->set_link_status(sc, 1);
sc->lmc_media->set_status(sc, NULL);
sc->lmc_flags |= LMC_IFUP;
lmc_led_on(sc, LMC_MII16_LED1);
/*
* select what interrupts we want to get
*/
sc->lmc_intrmask |= (TULIP_STS_NORMALINTR
| TULIP_STS_RXINTR
| TULIP_STS_TXINTR
| TULIP_STS_ABNRMLINTR
| TULIP_STS_SYSERROR
| TULIP_STS_TXSTOPPED
| TULIP_STS_TXUNDERFLOW
| TULIP_STS_RXSTOPPED
);
LMC_CSR_WRITE(sc, csr_intr, sc->lmc_intrmask);
sc->lmc_cmdmode |= TULIP_CMD_TXRUN;
sc->lmc_cmdmode |= TULIP_CMD_RXRUN;
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode);
untimeout(ng_lmc_watchdog_frame, sc, sc->lmc_handle);
sc->lmc_handle = timeout(ng_lmc_watchdog_frame, sc, hz);
sc->lmc_running = 1;
}
/*
* Mark the interface as "down" and disable TX/RX and TX/RX interrupts.
* This is done by performing a full reset on the interface.
*/
static void
lmc_ifdown(lmc_softc_t * const sc)
{
untimeout(ng_lmc_watchdog_frame, sc, sc->lmc_handle);
sc->lmc_running = 0;
sc->lmc_flags &= ~LMC_IFUP;
sc->lmc_media->set_link_status(sc, 0);
lmc_led_off(sc, LMC_MII16_LED1);
lmc_dec_reset(sc);
lmc_reset(sc);
sc->lmc_media->set_status(sc, NULL);
}
static void
lmc_rx_intr(lmc_softc_t * const sc)
{
lmc_ringinfo_t * const ri = &sc->lmc_rxinfo;
int fillok = 1;
sc->lmc_rxtick++;
for (;;) {
tulip_desc_t *eop = ri->ri_nextin;
int total_len = 0, last_offset = 0;
struct mbuf *ms = NULL, *me = NULL;
int accept = 0;
if (fillok && sc->lmc_rxq.ifq_len < LMC_RXQ_TARGET)
goto queue_mbuf;
/*
* If the TULIP has no descriptors, there can't be any receive
* descriptors to process.
*/
if (eop == ri->ri_nextout)
break;
/*
* 90% of the packets will fit in one descriptor. So we
* optimize for that case.
*/
if ((((volatile tulip_desc_t *) eop)->d_status & (TULIP_DSTS_OWNER|TULIP_DSTS_RxFIRSTDESC|TULIP_DSTS_RxLASTDESC)) == (TULIP_DSTS_RxFIRSTDESC|TULIP_DSTS_RxLASTDESC)) {
IF_DEQUEUE(&sc->lmc_rxq, ms);
me = ms;
} else {
/*
* If still owned by the TULIP, don't touch it.
*/
if (((volatile tulip_desc_t *)eop)->d_status & TULIP_DSTS_OWNER)
break;
/*
* It is possible (though improbable unless the
* BIG_PACKET support is enabled or MCLBYTES < 1518)
* for a received packet to cross more than one
* receive descriptor.
*/
while ((((volatile tulip_desc_t *) eop)->d_status & TULIP_DSTS_RxLASTDESC) == 0) {
if (++eop == ri->ri_last)
eop = ri->ri_first;
if (eop == ri->ri_nextout || ((((volatile tulip_desc_t *) eop)->d_status & TULIP_DSTS_OWNER))) {
return;
}
total_len++;
}
/*
* Dequeue the first buffer for the start of the
* packet. Hopefully this will be the only one we
* need to dequeue. However, if the packet consumed
* multiple descriptors, then we need to dequeue
* those buffers and chain to the starting mbuf.
* All buffers but the last buffer have the same
* length so we can set that now. (we add to
* last_offset instead of multiplying since we
* normally won't go into the loop and thereby
* saving a ourselves from doing a multiplication
* by 0 in the normal case).
*/
IF_DEQUEUE(&sc->lmc_rxq, ms);
for (me = ms; total_len > 0; total_len--) {
me->m_len = LMC_RX_BUFLEN;
last_offset += LMC_RX_BUFLEN;
IF_DEQUEUE(&sc->lmc_rxq, me->m_next);
me = me->m_next;
}
}
/*
* Now get the size of received packet (minus the CRC).
*/
total_len = ((eop->d_status >> 16) & 0x7FFF);
if (sc->ictl.crc_length == 16)
total_len -= 2;
else
total_len -= 4;
sc->lmc_inbytes += total_len;
sc->lmc_inlast = 0;
if ((sc->lmc_flags & LMC_RXIGNORE) == 0
&& ((eop->d_status & LMC_DSTS_ERRSUM) == 0
)) {
me->m_len = total_len - last_offset;
sc->lmc_flags |= LMC_RXACT;
accept = 1;
} else {
sc->lmc_ierrors++;
if (eop->d_status & TULIP_DSTS_RxOVERFLOW) {
sc->lmc_dot3stats.dot3StatsInternalMacReceiveErrors++;
}
}
sc->lmc_ipackets++;
if (++eop == ri->ri_last)
eop = ri->ri_first;
ri->ri_nextin = eop;
queue_mbuf:
/*
* Either we are priming the TULIP with mbufs (m == NULL)
* or we are about to accept an mbuf for the upper layers
* so we need to allocate an mbuf to replace it. If we
* can't replace it, send up it anyways. This may cause
* us to drop packets in the future but that's better than
* being caught in livelock.
*
* Note that if this packet crossed multiple descriptors
* we don't even try to reallocate all the mbufs here.
* Instead we rely on the test of the beginning of
* the loop to refill for the extra consumed mbufs.
*/
if (accept || ms == NULL) {
struct mbuf *m0;
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 != NULL) {
MCLGET(m0, M_DONTWAIT);
if ((m0->m_flags & M_EXT) == 0) {
m_freem(m0);
m0 = NULL;
}
}
if (accept) {
ms->m_pkthdr.len = total_len;
ms->m_pkthdr.rcvif = NULL;
ng_send_data(sc->lmc_hook,
ms, NULL, NULL, NULL);
}
ms = m0;
}
if (ms == NULL) {
/*
* Couldn't allocate a new buffer. Don't bother
* trying to replenish the receive queue.
*/
fillok = 0;
sc->lmc_flags |= LMC_RXBUFSLOW;
continue;
}
/*
* Now give the buffer(s) to the TULIP and save in our
* receive queue.
*/
do {
ri->ri_nextout->d_length1 = LMC_RX_BUFLEN;
ri->ri_nextout->d_addr1 = LMC_KVATOPHYS(sc, mtod(ms, caddr_t));
ri->ri_nextout->d_status = TULIP_DSTS_OWNER;
if (++ri->ri_nextout == ri->ri_last)
ri->ri_nextout = ri->ri_first;
me = ms->m_next;
ms->m_next = NULL;
IF_ENQUEUE(&sc->lmc_rxq, ms);
} while ((ms = me) != NULL);
if (sc->lmc_rxq.ifq_len >= LMC_RXQ_TARGET)
sc->lmc_flags &= ~LMC_RXBUFSLOW;
}
}
static int
lmc_tx_intr(lmc_softc_t * const sc)
{
lmc_ringinfo_t * const ri = &sc->lmc_txinfo;
struct mbuf *m;
int xmits = 0;
int descs = 0;
sc->lmc_txtick++;
while (ri->ri_free < ri->ri_max) {
u_int32_t d_flag;
if (((volatile tulip_desc_t *) ri->ri_nextin)->d_status & TULIP_DSTS_OWNER)
break;
d_flag = ri->ri_nextin->d_flag;
if (d_flag & TULIP_DFLAG_TxLASTSEG) {
const u_int32_t d_status = ri->ri_nextin->d_status;
IF_DEQUEUE(&sc->lmc_txq, m);
if (m != NULL) {
#if NBPFILTER > 0
if (sc->lmc_bpf != NULL)
LMC_BPF_MTAP(sc, m);
#endif
m_freem(m);
#if defined(LMC_DEBUG)
} else {
printf(LMC_PRINTF_FMT ": tx_intr: failed to dequeue mbuf?!?\n", LMC_PRINTF_ARGS);
#endif
}
xmits++;
if (d_status & LMC_DSTS_ERRSUM) {
sc->lmc_oerrors++;
if (d_status & TULIP_DSTS_TxUNDERFLOW)
sc->lmc_dot3stats.dot3StatsInternalTransmitUnderflows++;
} else {
if (d_status & TULIP_DSTS_TxDEFERRED)
sc->lmc_dot3stats.dot3StatsDeferredTransmissions++;
}
}
if (++ri->ri_nextin == ri->ri_last)
ri->ri_nextin = ri->ri_first;
ri->ri_free++;
descs++;
/*sc->lmc_if.if_flags &= ~IFF_OACTIVE;*/
sc->lmc_out_deficit++;
}
/*
* If nothing left to transmit, disable the timer.
* Else if progress, reset the timer back to 2 ticks.
*/
sc->lmc_opackets += xmits;
return descs;
}
static void
lmc_print_abnormal_interrupt (lmc_softc_t * const sc, u_int32_t csr)
{
printf(LMC_PRINTF_FMT ": Abnormal interrupt\n", LMC_PRINTF_ARGS);
}
static void
lmc_intr_handler(lmc_softc_t * const sc, int *progress_p)
{
u_int32_t csr;
while ((csr = LMC_CSR_READ(sc, csr_status)) & sc->lmc_intrmask) {
*progress_p = 1;
LMC_CSR_WRITE(sc, csr_status, csr);
if (csr & TULIP_STS_SYSERROR) {
sc->lmc_last_system_error = (csr & TULIP_STS_ERRORMASK) >> TULIP_STS_ERR_SHIFT;
if (sc->lmc_flags & LMC_NOMESSAGES) {
sc->lmc_flags |= LMC_SYSTEMERROR;
} else {
printf(LMC_PRINTF_FMT ": system error: %s\n",
LMC_PRINTF_ARGS,
lmc_system_errors[sc->lmc_last_system_error]);
}
sc->lmc_flags |= LMC_NEEDRESET;
sc->lmc_system_errors++;
break;
}
if (csr & (TULIP_STS_RXINTR | TULIP_STS_RXNOBUF)) {
u_int32_t misses = LMC_CSR_READ(sc, csr_missed_frames);
if (csr & TULIP_STS_RXNOBUF)
sc->lmc_dot3stats.dot3StatsMissedFrames += misses & 0xFFFF;
/*
* Pass 2.[012] of the 21140A-A[CDE] may hang and/or corrupt data
* on receive overflows.
*/
if ((misses & 0x0FFE0000) && (sc->lmc_features & LMC_HAVE_RXBADOVRFLW)) {
sc->lmc_dot3stats.dot3StatsInternalMacReceiveErrors++;
/*
* Stop the receiver process and spin until it's stopped.
* Tell rx_intr to drop the packets it dequeues.
*/
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode & ~TULIP_CMD_RXRUN);
while ((LMC_CSR_READ(sc, csr_status) & TULIP_STS_RXSTOPPED) == 0)
;
LMC_CSR_WRITE(sc, csr_status, TULIP_STS_RXSTOPPED);
sc->lmc_flags |= LMC_RXIGNORE;
}
lmc_rx_intr(sc);
if (sc->lmc_flags & LMC_RXIGNORE) {
/*
* Restart the receiver.
*/
sc->lmc_flags &= ~LMC_RXIGNORE;
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode);
}
}
if (csr & TULIP_STS_ABNRMLINTR) {
u_int32_t tmp = csr & sc->lmc_intrmask
& ~(TULIP_STS_NORMALINTR|TULIP_STS_ABNRMLINTR);
if (csr & TULIP_STS_TXUNDERFLOW) {
if ((sc->lmc_cmdmode & TULIP_CMD_THRESHOLDCTL) != TULIP_CMD_THRSHLD160) {
sc->lmc_cmdmode += TULIP_CMD_THRSHLD96;
sc->lmc_flags |= LMC_NEWTXTHRESH;
} else if (sc->lmc_features & LMC_HAVE_STOREFWD) {
sc->lmc_cmdmode |= TULIP_CMD_STOREFWD;
sc->lmc_flags |= LMC_NEWTXTHRESH;
}
}
if (sc->lmc_flags & LMC_NOMESSAGES) {
sc->lmc_statusbits |= tmp;
} else {
lmc_print_abnormal_interrupt(sc, tmp);
sc->lmc_flags |= LMC_NOMESSAGES;
}
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode);
}
if (csr & TULIP_STS_TXINTR)
lmc_tx_intr(sc);
if (sc->lmc_flags & LMC_WANTTXSTART)
lmc_ifstart(sc);
}
}
static lmc_intrfunc_t
lmc_intr_normal(void *arg)
{
lmc_softc_t * sc = (lmc_softc_t *) arg;
int progress = 0;
lmc_intr_handler(sc, &progress);
#if !defined(LMC_VOID_INTRFUNC)
return progress;
#endif
}
static struct mbuf *
lmc_mbuf_compress(struct mbuf *m)
{
struct mbuf *m0;
#if MCLBYTES >= LMC_MTU + PPP_HEADER_LEN && !defined(BIG_PACKET)
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 != NULL) {
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m0, M_DONTWAIT);
if ((m0->m_flags & M_EXT) == 0) {
m_freem(m);
m_freem(m0);
return NULL;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m0, caddr_t));
m0->m_pkthdr.len = m0->m_len = m->m_pkthdr.len;
}
#else
int mlen = MHLEN;
int len = m->m_pkthdr.len;
struct mbuf **mp = &m0;
while (len > 0) {
if (mlen == MHLEN) {
MGETHDR(*mp, M_DONTWAIT, MT_DATA);
} else {
MGET(*mp, M_DONTWAIT, MT_DATA);
}
if (*mp == NULL) {
m_freem(m0);
m0 = NULL;
break;
}
if (len > MLEN) {
MCLGET(*mp, M_DONTWAIT);
if (((*mp)->m_flags & M_EXT) == 0) {
m_freem(m0);
m0 = NULL;
break;
}
(*mp)->m_len = (len <= MCLBYTES ? len : MCLBYTES);
} else {
(*mp)->m_len = (len <= mlen ? len : mlen);
}
m_copydata(m, m->m_pkthdr.len - len,
(*mp)->m_len, mtod((*mp), caddr_t));
len -= (*mp)->m_len;
mp = &(*mp)->m_next;
mlen = MLEN;
}
#endif
m_freem(m);
return m0;
}
/*
* queue the mbuf handed to us for the interface. If we cannot
* queue it, return the mbuf. Return NULL if the mbuf was queued.
*/
static struct mbuf *
lmc_txput(lmc_softc_t * const sc, struct mbuf *m)
{
lmc_ringinfo_t * const ri = &sc->lmc_txinfo;
tulip_desc_t *eop, *nextout;
int segcnt, free;
u_int32_t d_status;
struct mbuf *m0;
#if defined(LMC_DEBUG)
if ((sc->lmc_cmdmode & TULIP_CMD_TXRUN) == 0) {
printf(LMC_PRINTF_FMT ": txput: tx not running\n",
LMC_PRINTF_ARGS);
sc->lmc_flags |= LMC_WANTTXSTART;
goto finish;
}
#endif
/*
* Now we try to fill in our transmit descriptors. This is
* a bit reminiscent of going on the Ark two by two
* since each descriptor for the TULIP can describe
* two buffers. So we advance through packet filling
* each of the two entries at a time to fill each
* descriptor. Clear the first and last segment bits
* in each descriptor (actually just clear everything
* but the end-of-ring or chain bits) to make sure
* we don't get messed up by previously sent packets.
*
* We may fail to put the entire packet on the ring if
* there is either not enough ring entries free or if the
* packet has more than MAX_TXSEG segments. In the former
* case we will just wait for the ring to empty. In the
* latter case we have to recopy.
*/
again:
d_status = 0;
eop = nextout = ri->ri_nextout;
m0 = m;
segcnt = 0;
free = ri->ri_free;
do {
int len = m0->m_len;
caddr_t addr = mtod(m0, caddr_t);
unsigned clsize = CLBYTES - (((u_long) addr) & (CLBYTES-1));
while (len > 0) {
unsigned slen = min(len, clsize);
#ifdef BIG_PACKET
int partial = 0;
if (slen >= 2048)
slen = 2040, partial = 1;
#endif
segcnt++;
if (segcnt > LMC_MAX_TXSEG) {
/*
* The packet exceeds the number of transmit
* buffer entries that we can use for one
* packet, so we have recopy it into one mbuf
* and then try again.
*/
m = lmc_mbuf_compress(m);
if (m == NULL)
goto finish;
goto again;
}
if (segcnt & 1) {
if (--free == 0) {
/*
* See if there's any unclaimed space
* in the transmit ring.
*/
if ((free += lmc_tx_intr(sc)) == 0) {
/*
* There's no more room but
* since nothing has been
* committed at this point,
* just show output is active,
* put back the mbuf and
* return.
*/
sc->lmc_flags |= LMC_WANTTXSTART;
goto finish;
}
}
eop = nextout;
if (++nextout == ri->ri_last)
nextout = ri->ri_first;
eop->d_flag &= TULIP_DFLAG_ENDRING;
eop->d_flag |= TULIP_DFLAG_TxNOPADDING;
if (sc->ictl.crc_length == 16)
eop->d_flag |= TULIP_DFLAG_TxHASCRC;
eop->d_status = d_status;
eop->d_addr1 = LMC_KVATOPHYS(sc, addr);
eop->d_length1 = slen;
} else {
/*
* Fill in second half of descriptor
*/
eop->d_addr2 = LMC_KVATOPHYS(sc, addr);
eop->d_length2 = slen;
}
d_status = TULIP_DSTS_OWNER;
len -= slen;
addr += slen;
#ifdef BIG_PACKET
if (partial)
continue;
#endif
clsize = CLBYTES;
}
} while ((m0 = m0->m_next) != NULL);
/*
* The descriptors have been filled in. Now get ready
* to transmit.
*/
IF_ENQUEUE(&sc->lmc_txq, m);
m = NULL;
/*
* Make sure the next descriptor after this packet is owned
* by us since it may have been set up above if we ran out
* of room in the ring.
*/
nextout->d_status = 0;
/*
* If we only used the first segment of the last descriptor,
* make sure the second segment will not be used.
*/
if (segcnt & 1) {
eop->d_addr2 = 0;
eop->d_length2 = 0;
}
/*
* Mark the last and first segments, indicate we want a transmit
* complete interrupt, and tell it to transmit!
*/
eop->d_flag |= TULIP_DFLAG_TxLASTSEG | TULIP_DFLAG_TxWANTINTR;
/*
* Note that ri->ri_nextout is still the start of the packet
* and until we set the OWNER bit, we can still back out of
* everything we have done.
*/
ri->ri_nextout->d_flag |= TULIP_DFLAG_TxFIRSTSEG;
ri->ri_nextout->d_status = TULIP_DSTS_OWNER;
LMC_CSR_WRITE(sc, csr_txpoll, 1);
/*
* This advances the ring for us.
*/
ri->ri_nextout = nextout;
ri->ri_free = free;
/*
* switch back to the single queueing ifstart.
*/
sc->lmc_flags &= ~LMC_WANTTXSTART;
sc->lmc_xmit_busy = 0;
sc->lmc_out_dog = 0;
/*
* If we want a txstart, there must be not enough space in the
* transmit ring. So we want to enable transmit done interrupts
* so we can immediately reclaim some space. When the transmit
* interrupt is posted, the interrupt handler will call tx_intr
* to reclaim space and then txstart (since WANTTXSTART is set).
* txstart will move the packet into the transmit ring and clear
* WANTTXSTART thereby causing TXINTR to be cleared.
*/
finish:
return m;
}
/*
* These routines gets called at device spl
*/
static ifnet_ret_t
lmc_ifstart(lmc_softc_t * const sc)
{
struct mbuf *m;
if (sc->lmc_flags & LMC_IFUP) {
sc->lmc_xmit_busy = 1;
for(;;) {
struct ifqueue *q = &sc->lmc_xmitq_hipri;
IF_DEQUEUE(q, m);
if (m == NULL) {
q = &sc->lmc_xmitq;
IF_DEQUEUE(q, m);
}
if (m) {
sc->lmc_outbytes = m->m_pkthdr.len;
sc->lmc_opackets++;
if ((m = lmc_txput(sc, m)) != NULL) {
IF_PREPEND(q, m);
printf(LMC_PRINTF_FMT
": lmc_txput failed\n",
LMC_PRINTF_ARGS);
break;
}
LMC_CSR_WRITE(sc, csr_txpoll, 1);
}
else
break;
}
}
}
static ifnet_ret_t
lmc_ifstart_one(lmc_softc_t * const sc)
{
struct mbuf *m;
if ((sc->lmc_flags & LMC_IFUP)) {
struct ifqueue *q = &sc->lmc_xmitq_hipri;
IF_DEQUEUE(q, m);
if (m == NULL) {
q = &sc->lmc_xmitq;
IF_DEQUEUE(q, m);
}
if (m) {
sc->lmc_outbytes += m->m_pkthdr.len;
sc->lmc_opackets++;
if ((m = lmc_txput(sc, m)) != NULL) {
IF_PREPEND(q, m);
}
LMC_CSR_WRITE(sc, csr_txpoll, 1);
}
}
}
/*
* Set up the OS interface magic and attach to the operating system
* network services.
*/
static int
lmc_attach(lmc_softc_t * const sc)
{
/*
* we have found a node, make sure our 'type' is availabe.
*/
if (ng_lmc_done_init == 0) ng_lmc_init(NULL);
if (ng_make_node_common(&typestruct, &sc->lmc_node) != 0)
return (0);
sc->lmc_node->private = sc;
callout_handle_init(&sc->lmc_handle);
sc->lmc_xmitq.ifq_maxlen = IFQ_MAXLEN;
sc->lmc_xmitq_hipri.ifq_maxlen = IFQ_MAXLEN;
sprintf(sc->lmc_nodename, "%s%d", NG_LMC_NODE_TYPE, sc->lmc_unit);
if (ng_name_node(sc->lmc_node, sc->lmc_nodename)) {
ng_rmnode(sc->lmc_node);
ng_unref(sc->lmc_node);
return (0);
}
sc->lmc_running = 0;
/*
* turn off those LEDs...
*/
sc->lmc_miireg16 |= LMC_MII16_LED_ALL;
lmc_led_on(sc, LMC_MII16_LED0);
return 1;
}
static void
lmc_initring(lmc_softc_t * const sc, lmc_ringinfo_t * const ri,
tulip_desc_t *descs, int ndescs)
{
ri->ri_max = ndescs;
ri->ri_first = descs;
ri->ri_last = ri->ri_first + ri->ri_max;
bzero((caddr_t) ri->ri_first, sizeof(ri->ri_first[0]) * ri->ri_max);
ri->ri_last[-1].d_flag = TULIP_DFLAG_ENDRING;
}
#ifdef LMC_DEBUG
static void
ng_lmc_dump_packet(struct mbuf *m)
{
int i;
printf("mbuf: %d bytes, %s packet\n", m->m_len,
(m->m_type == MT_DATA)?"data":"other");
for (i=0; i < m->m_len; i++) {
if( (i % 8) == 0 ) {
if( i ) printf("\n");
printf("\t");
}
else
printf(" ");
printf( "0x%02x", m->m_dat[i] );
}
printf("\n");
}
#endif /* LMC_DEBUG */
/* Device timeout/watchdog routine */
static void
ng_lmc_watchdog_frame(void *arg)
{
lmc_softc_t * sc = (lmc_softc_t *) arg;
int s;
int speed;
if(sc->lmc_running == 0)
return; /* if we are not running let timeouts die */
/*
* calculate the apparent throughputs
* XXX a real hack
*/
s = splimp();
speed = sc->lmc_inbytes - sc->lmc_lastinbytes;
sc->lmc_lastinbytes = sc->lmc_inbytes;
if ( sc->lmc_inrate < speed )
sc->lmc_inrate = speed;
speed = sc->lmc_outbytes - sc->lmc_lastoutbytes;
sc->lmc_lastoutbytes = sc->lmc_outbytes;
if ( sc->lmc_outrate < speed )
sc->lmc_outrate = speed;
sc->lmc_inlast++;
splx(s);
if ((sc->lmc_inlast > LMC_QUITE_A_WHILE)
&& (sc->lmc_out_deficit > LMC_LOTS_OF_PACKETS)) {
log(LOG_ERR, "%s%d: No response from remote end\n",
sc->lmc_name, sc->lmc_unit);
s = splimp();
lmc_ifdown(sc);
lmc_ifup(sc);
sc->lmc_inlast = sc->lmc_out_deficit = 0;
splx(s);
} else if (sc->lmc_xmit_busy) {
if (sc->lmc_out_dog == 0) {
log(LOG_ERR, "ar%d: Transmit failure.. no clock?\n",
sc->lmc_unit);
s = splimp();
lmc_watchdog(sc);
#if 0
lmc_ifdown(sc);
lmc_ifup(sc);
#endif
splx(s);
sc->lmc_inlast = sc->lmc_out_deficit = 0;
} else {
sc->lmc_out_dog--;
}
}
lmc_watchdog(sc);
sc->lmc_handle = timeout(ng_lmc_watchdog_frame, sc, hz);
}
/***********************************************************************
* This section contains the methods for the Netgraph interface
***********************************************************************/
/*
* It is not possible or allowable to create a node of this type.
* If the hardware exists, it will already have created it.
*/
static int
ng_lmc_constructor(node_p *nodep)
{
return (EINVAL);
}
/*
* give our ok for a hook to be added...
* If we are not running this should kick the device into life.
* We allow hooks called "control", "rawdata", and "debug".
* The hook's private info points to our stash of info about that
* device.
*/
static int
ng_lmc_newhook(node_p node, hook_p hook, const char *name)
{
lmc_softc_t * sc = (lmc_softc_t *) node->private;
/*
* check if it's our friend the debug hook
*/
if (strcmp(name, NG_LMC_HOOK_DEBUG) == 0) {
hook->private = NULL; /* paranoid */
sc->lmc_debug_hook = hook;
return (0);
}
/*
* Check for raw mode hook.
*/
if (strcmp(name, NG_LMC_HOOK_RAW) != 0) {
return (EINVAL);
}
hook->private = sc;
sc->lmc_hook = hook;
sc->lmc_datahooks++;
lmc_ifup(sc);
return (0);
}
/*
* incoming messages.
* Just respond to the generic TEXT_STATUS message
*/
static int
ng_lmc_rcvmsg(node_p node, struct ng_mesg *msg,
const char *retaddr, struct ng_mesg **rptr, hook_p lasthook)
{
lmc_softc_t *sc = (lmc_softc_t *) node->private;
struct ng_mesg *resp = NULL;
int error = 0;
switch (msg->header.typecookie) {
case NG_LMC_COOKIE:
switch (msg->header.cmd) {
case NGM_LMC_GET_CTL:
{
lmc_ctl_t *ctl;
NG_MKRESPONSE(resp, msg, sizeof(*ctl), M_NOWAIT);
if (!resp) {
error = ENOMEM;
break;
}
ctl = (lmc_ctl_t *) resp->data;
memcpy( ctl, &sc->ictl, sizeof(*ctl) );
break;
}
case NGM_LMC_SET_CTL:
{
lmc_ctl_t *ctl;
if (msg->header.arglen != sizeof(*ctl)) {
error = EINVAL;
break;
}
ctl = (lmc_ctl_t *) msg->data;
sc->lmc_media->set_status(sc, ctl);
break;
}
default:
error = EINVAL; /* unknown command */
break;
}
break;
case NGM_GENERIC_COOKIE:
switch(msg->header.cmd) {
case NGM_TEXT_STATUS: {
char *arg;
int pos = 0;
int resplen = sizeof(struct ng_mesg) + 512;
MALLOC(resp, struct ng_mesg *, resplen, M_NETGRAPH,
M_NOWAIT);
if (resp == NULL) {
error = ENOMEM;
break;
}
bzero(resp, resplen);
arg = (resp)->data;
/*
* Put in the throughput information.
*/
pos = sprintf(arg, "%ld bytes in, %ld bytes out\n"
"highest rate seen: %ld B/S in, "
"%ld B/S out\n",
sc->lmc_inbytes, sc->lmc_outbytes,
sc->lmc_inrate, sc->lmc_outrate);
pos += sprintf(arg + pos, "%ld output errors\n",
sc->lmc_oerrors);
pos += sprintf(arg + pos, "%ld input errors\n",
sc->lmc_ierrors);
resp->header.version = NG_VERSION;
resp->header.arglen = strlen(arg) + 1;
resp->header.token = msg->header.token;
resp->header.typecookie = NG_LMC_COOKIE;
resp->header.cmd = msg->header.cmd;
strncpy(resp->header.cmdstr, "status",
NG_CMDSTRLEN);
}
break;
default:
error = EINVAL;
break;
}
break;
default:
error = EINVAL;
break;
}
/* Take care of synchronous response, if any */
if (rptr)
*rptr = resp;
else if (resp)
FREE(resp, M_NETGRAPH);
free(msg, M_NETGRAPH);
return (error);
}
/*
* get data from another node and transmit it to the line
*/
static int
ng_lmc_rcvdata(hook_p hook, struct mbuf *m, meta_p meta,
struct mbuf **ret_m, meta_p *ret_meta)
{
int s;
int error = 0;
lmc_softc_t * sc = (lmc_softc_t *) hook->node->private;
struct ifqueue *xmitq_p;
/*
* data doesn't come in from just anywhere (e.g control hook)
*/
if ( hook->private == NULL) {
error = ENETDOWN;
goto bad;
}
/*
* Now queue the data for when it can be sent
*/
if (meta && meta->priority > 0) {
xmitq_p = (&sc->lmc_xmitq_hipri);
} else {
xmitq_p = (&sc->lmc_xmitq);
}
s = splimp();
if (IF_QFULL(xmitq_p)) {
IF_DROP(xmitq_p);
splx(s);
error = ENOBUFS;
goto bad;
}
IF_ENQUEUE(xmitq_p, m);
lmc_ifstart_one(sc);
splx(s);
return (0);
bad:
/*
* It was an error case.
* check if we need to free the mbuf, and then return the error
*/
NG_FREE_DATA(m, meta);
return (error);
}
/*
* do local shutdown processing..
* this node will refuse to go away, unless the hardware says to..
* don't unref the node, or remove our name. just clear our links up.
*/
static int
ng_lmc_rmnode(node_p node)
{
lmc_softc_t * sc = (lmc_softc_t *) node->private;
lmc_ifdown(sc);
ng_cutlinks(node);
node->flags &= ~NG_INVALID; /* bounce back to life */
return (0);
}
/* already linked */
static int
ng_lmc_connect(hook_p hook)
{
/* be really amiable and just say "YUP that's OK by me! " */
return (0);
}
/*
* notify on hook disconnection (destruction)
*
* For this type, removal of the last link resets tries to destroy the node.
* As the device still exists, the shutdown method will not actually
* destroy the node, but reset the device and leave it 'fresh' :)
*
* The node removal code will remove all references except that owned by the
* driver.
*/
static int
ng_lmc_disconnect(hook_p hook)
{
lmc_softc_t * sc = (lmc_softc_t *) hook->node->private;
int s;
/*
* If it's the data hook, then free resources etc.
*/
if (hook->private) {
s = splimp();
sc->lmc_datahooks--;
if (sc->lmc_datahooks == 0)
lmc_ifdown(sc);
splx(s);
} else {
sc->lmc_debug_hook = NULL;
}
return (0);
}
/*
* called during bootup
* or LKM loading to put this type into the list of known modules
*/
static void
ng_lmc_init(void *ignored)
{
if (ng_newtype(&typestruct))
printf("ng_lmc install failed\n");
ng_lmc_done_init = 1;
}
/*
* This is the PCI configuration support.
*/
#define PCI_CFID 0x00 /* Configuration ID */
#define PCI_CFCS 0x04 /* Configurtion Command/Status */
#define PCI_CFRV 0x08 /* Configuration Revision */
#define PCI_CFLT 0x0c /* Configuration Latency Timer */
#define PCI_CBIO 0x10 /* Configuration Base IO Address */
#define PCI_CBMA 0x14 /* Configuration Base Memory Address */
#define PCI_SSID 0x2c /* subsystem config register */
#define PCI_CFIT 0x3c /* Configuration Interrupt */
#define PCI_CFDA 0x40 /* Configuration Driver Area */
#include "dev/lmc/if_lmc_fbsd3.c"