mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-06 13:09:50 +00:00
a3a981b7f9
processed by ipfw once - avoid second ipfw_chk() call. This saves us from unnecessary IPFW_RLOCK(), m_tag_find() calls and ip/tcp/udp header parsing. MFC after: 2 month
4739 lines
119 KiB
C
4739 lines
119 KiB
C
/*-
|
|
* Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#define DEB(x)
|
|
#define DDB(x) x
|
|
|
|
/*
|
|
* Implement IP packet firewall (new version)
|
|
*/
|
|
|
|
#if !defined(KLD_MODULE)
|
|
#include "opt_ipfw.h"
|
|
#include "opt_ipdivert.h"
|
|
#include "opt_ipdn.h"
|
|
#include "opt_inet.h"
|
|
#ifndef INET
|
|
#error IPFIREWALL requires INET.
|
|
#endif /* INET */
|
|
#endif
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_mac.h"
|
|
#include "opt_route.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/module.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/ucred.h>
|
|
#include <sys/vimage.h>
|
|
#include <net/ethernet.h> /* for ETHERTYPE_IP */
|
|
#include <net/if.h>
|
|
#include <net/radix.h>
|
|
#include <net/route.h>
|
|
#include <net/pf_mtag.h>
|
|
#include <net/vnet.h>
|
|
|
|
#define IPFW_INTERNAL /* Access to protected data structures in ip_fw.h. */
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_icmp.h>
|
|
#include <netinet/ip_fw.h>
|
|
#include <netinet/ip_divert.h>
|
|
#include <netinet/ip_dummynet.h>
|
|
#include <netinet/ip_carp.h>
|
|
#include <netinet/pim.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/udp.h>
|
|
#include <netinet/udp_var.h>
|
|
#include <netinet/sctp.h>
|
|
#include <netinet/vinet.h>
|
|
|
|
#include <netgraph/ng_ipfw.h>
|
|
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/icmp6.h>
|
|
#ifdef INET6
|
|
#include <netinet6/scope6_var.h>
|
|
#endif
|
|
|
|
#include <machine/in_cksum.h> /* XXX for in_cksum */
|
|
|
|
#ifdef MAC
|
|
#include <security/mac/mac_framework.h>
|
|
#endif
|
|
|
|
#ifndef VIMAGE
|
|
#ifndef VIMAGE_GLOBALS
|
|
struct vnet_ipfw vnet_ipfw_0;
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* set_disable contains one bit per set value (0..31).
|
|
* If the bit is set, all rules with the corresponding set
|
|
* are disabled. Set RESVD_SET(31) is reserved for the default rule
|
|
* and rules that are not deleted by the flush command,
|
|
* and CANNOT be disabled.
|
|
* Rules in set RESVD_SET can only be deleted explicitly.
|
|
*/
|
|
#ifdef VIMAGE_GLOBALS
|
|
static u_int32_t set_disable;
|
|
static int fw_verbose;
|
|
static struct callout ipfw_timeout;
|
|
static int verbose_limit;
|
|
#endif
|
|
|
|
static uma_zone_t ipfw_dyn_rule_zone;
|
|
|
|
/*
|
|
* Data structure to cache our ucred related
|
|
* information. This structure only gets used if
|
|
* the user specified UID/GID based constraints in
|
|
* a firewall rule.
|
|
*/
|
|
struct ip_fw_ugid {
|
|
gid_t fw_groups[NGROUPS];
|
|
int fw_ngroups;
|
|
uid_t fw_uid;
|
|
int fw_prid;
|
|
};
|
|
|
|
/*
|
|
* list of rules for layer 3
|
|
*/
|
|
#ifdef VIMAGE_GLOBALS
|
|
struct ip_fw_chain layer3_chain;
|
|
#endif
|
|
|
|
MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
|
|
MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
|
|
#define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
|
|
ipfw_nat_t *ipfw_nat_ptr = NULL;
|
|
ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
|
|
ipfw_nat_cfg_t *ipfw_nat_del_ptr;
|
|
ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
|
|
ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
|
|
|
|
struct table_entry {
|
|
struct radix_node rn[2];
|
|
struct sockaddr_in addr, mask;
|
|
u_int32_t value;
|
|
};
|
|
|
|
#ifdef VIMAGE_GLOBALS
|
|
static int autoinc_step;
|
|
#endif
|
|
|
|
extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
|
|
|
|
#ifdef SYSCTL_NODE
|
|
SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
|
|
SYSCTL_V_PROC(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, enable,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, fw_enable, 0,
|
|
ipfw_chg_hook, "I", "Enable ipfw");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, autoinc_step,
|
|
CTLFLAG_RW, autoinc_step, 0, "Rule number autincrement step");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_fw, OID_AUTO, one_pass,
|
|
CTLFLAG_RW | CTLFLAG_SECURE3, fw_one_pass, 0,
|
|
"Only do a single pass through ipfw when using dummynet(4)");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose,
|
|
CTLFLAG_RW | CTLFLAG_SECURE3,
|
|
fw_verbose, 0, "Log matches to ipfw rules");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, verbose_limit,
|
|
CTLFLAG_RW, verbose_limit, 0,
|
|
"Set upper limit of matches of ipfw rules logged");
|
|
SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
|
|
NULL, IPFW_DEFAULT_RULE, "The default/max possible rule number.");
|
|
SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
|
|
NULL, IPFW_TABLES_MAX, "The maximum number of tables.");
|
|
#endif /* SYSCTL_NODE */
|
|
|
|
/*
|
|
* Description of dynamic rules.
|
|
*
|
|
* Dynamic rules are stored in lists accessed through a hash table
|
|
* (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
|
|
* be modified through the sysctl variable dyn_buckets which is
|
|
* updated when the table becomes empty.
|
|
*
|
|
* XXX currently there is only one list, ipfw_dyn.
|
|
*
|
|
* When a packet is received, its address fields are first masked
|
|
* with the mask defined for the rule, then hashed, then matched
|
|
* against the entries in the corresponding list.
|
|
* Dynamic rules can be used for different purposes:
|
|
* + stateful rules;
|
|
* + enforcing limits on the number of sessions;
|
|
* + in-kernel NAT (not implemented yet)
|
|
*
|
|
* The lifetime of dynamic rules is regulated by dyn_*_lifetime,
|
|
* measured in seconds and depending on the flags.
|
|
*
|
|
* The total number of dynamic rules is stored in dyn_count.
|
|
* The max number of dynamic rules is dyn_max. When we reach
|
|
* the maximum number of rules we do not create anymore. This is
|
|
* done to avoid consuming too much memory, but also too much
|
|
* time when searching on each packet (ideally, we should try instead
|
|
* to put a limit on the length of the list on each bucket...).
|
|
*
|
|
* Each dynamic rule holds a pointer to the parent ipfw rule so
|
|
* we know what action to perform. Dynamic rules are removed when
|
|
* the parent rule is deleted. XXX we should make them survive.
|
|
*
|
|
* There are some limitations with dynamic rules -- we do not
|
|
* obey the 'randomized match', and we do not do multiple
|
|
* passes through the firewall. XXX check the latter!!!
|
|
*/
|
|
#ifdef VIMAGE_GLOBALS
|
|
static ipfw_dyn_rule **ipfw_dyn_v;
|
|
static u_int32_t dyn_buckets;
|
|
static u_int32_t curr_dyn_buckets;
|
|
#endif
|
|
|
|
static struct mtx ipfw_dyn_mtx; /* mutex guarding dynamic rules */
|
|
#define IPFW_DYN_LOCK_INIT() \
|
|
mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
|
|
#define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
|
|
#define IPFW_DYN_LOCK() mtx_lock(&ipfw_dyn_mtx)
|
|
#define IPFW_DYN_UNLOCK() mtx_unlock(&ipfw_dyn_mtx)
|
|
#define IPFW_DYN_LOCK_ASSERT() mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
|
|
|
|
/*
|
|
* Timeouts for various events in handing dynamic rules.
|
|
*/
|
|
#ifdef VIMAGE_GLOBALS
|
|
static u_int32_t dyn_ack_lifetime;
|
|
static u_int32_t dyn_syn_lifetime;
|
|
static u_int32_t dyn_fin_lifetime;
|
|
static u_int32_t dyn_rst_lifetime;
|
|
static u_int32_t dyn_udp_lifetime;
|
|
static u_int32_t dyn_short_lifetime;
|
|
|
|
/*
|
|
* Keepalives are sent if dyn_keepalive is set. They are sent every
|
|
* dyn_keepalive_period seconds, in the last dyn_keepalive_interval
|
|
* seconds of lifetime of a rule.
|
|
* dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
|
|
* than dyn_keepalive_period.
|
|
*/
|
|
|
|
static u_int32_t dyn_keepalive_interval;
|
|
static u_int32_t dyn_keepalive_period;
|
|
static u_int32_t dyn_keepalive;
|
|
|
|
static u_int32_t static_count; /* # of static rules */
|
|
static u_int32_t static_len; /* size in bytes of static rules */
|
|
static u_int32_t dyn_count; /* # of dynamic rules */
|
|
static u_int32_t dyn_max; /* max # of dynamic rules */
|
|
#endif /* VIMAGE_GLOBALS */
|
|
|
|
#ifdef SYSCTL_NODE
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_buckets,
|
|
CTLFLAG_RW, dyn_buckets, 0, "Number of dyn. buckets");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
|
|
CTLFLAG_RD, curr_dyn_buckets, 0, "Current Number of dyn. buckets");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_count,
|
|
CTLFLAG_RD, dyn_count, 0, "Number of dyn. rules");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_max,
|
|
CTLFLAG_RW, dyn_max, 0, "Max number of dyn. rules");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, static_count,
|
|
CTLFLAG_RD, static_count, 0, "Number of static rules");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
|
|
CTLFLAG_RW, dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
|
|
CTLFLAG_RW, dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
|
|
CTLFLAG_RW, dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
|
|
CTLFLAG_RW, dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
|
|
CTLFLAG_RW, dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
|
|
CTLFLAG_RW, dyn_short_lifetime, 0,
|
|
"Lifetime of dyn. rules for other situations");
|
|
SYSCTL_V_INT(V_NET, vnet_ipfw, _net_inet_ip_fw, OID_AUTO, dyn_keepalive,
|
|
CTLFLAG_RW, dyn_keepalive, 0, "Enable keepalives for dyn. rules");
|
|
#endif /* SYSCTL_NODE */
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* IPv6 specific variables
|
|
*/
|
|
#ifdef SYSCTL_NODE
|
|
SYSCTL_DECL(_net_inet6_ip6);
|
|
#endif /* SYSCTL_NODE */
|
|
|
|
static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
|
|
static struct sysctl_oid *ip6_fw_sysctl_tree;
|
|
#endif /* INET6 */
|
|
|
|
#ifdef VIMAGE_GLOBALS
|
|
static int fw_deny_unknown_exthdrs;
|
|
#endif
|
|
|
|
/*
|
|
* L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
|
|
* Other macros just cast void * into the appropriate type
|
|
*/
|
|
#define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
|
|
#define TCP(p) ((struct tcphdr *)(p))
|
|
#define SCTP(p) ((struct sctphdr *)(p))
|
|
#define UDP(p) ((struct udphdr *)(p))
|
|
#define ICMP(p) ((struct icmphdr *)(p))
|
|
#define ICMP6(p) ((struct icmp6_hdr *)(p))
|
|
|
|
static __inline int
|
|
icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
|
|
{
|
|
int type = icmp->icmp_type;
|
|
|
|
return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
|
|
}
|
|
|
|
#define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
|
|
(1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
|
|
|
|
static int
|
|
is_icmp_query(struct icmphdr *icmp)
|
|
{
|
|
int type = icmp->icmp_type;
|
|
|
|
return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
|
|
}
|
|
#undef TT
|
|
|
|
/*
|
|
* The following checks use two arrays of 8 or 16 bits to store the
|
|
* bits that we want set or clear, respectively. They are in the
|
|
* low and high half of cmd->arg1 or cmd->d[0].
|
|
*
|
|
* We scan options and store the bits we find set. We succeed if
|
|
*
|
|
* (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
|
|
*
|
|
* The code is sometimes optimized not to store additional variables.
|
|
*/
|
|
|
|
static int
|
|
flags_match(ipfw_insn *cmd, u_int8_t bits)
|
|
{
|
|
u_char want_clear;
|
|
bits = ~bits;
|
|
|
|
if ( ((cmd->arg1 & 0xff) & bits) != 0)
|
|
return 0; /* some bits we want set were clear */
|
|
want_clear = (cmd->arg1 >> 8) & 0xff;
|
|
if ( (want_clear & bits) != want_clear)
|
|
return 0; /* some bits we want clear were set */
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
ipopts_match(struct ip *ip, ipfw_insn *cmd)
|
|
{
|
|
int optlen, bits = 0;
|
|
u_char *cp = (u_char *)(ip + 1);
|
|
int x = (ip->ip_hl << 2) - sizeof (struct ip);
|
|
|
|
for (; x > 0; x -= optlen, cp += optlen) {
|
|
int opt = cp[IPOPT_OPTVAL];
|
|
|
|
if (opt == IPOPT_EOL)
|
|
break;
|
|
if (opt == IPOPT_NOP)
|
|
optlen = 1;
|
|
else {
|
|
optlen = cp[IPOPT_OLEN];
|
|
if (optlen <= 0 || optlen > x)
|
|
return 0; /* invalid or truncated */
|
|
}
|
|
switch (opt) {
|
|
|
|
default:
|
|
break;
|
|
|
|
case IPOPT_LSRR:
|
|
bits |= IP_FW_IPOPT_LSRR;
|
|
break;
|
|
|
|
case IPOPT_SSRR:
|
|
bits |= IP_FW_IPOPT_SSRR;
|
|
break;
|
|
|
|
case IPOPT_RR:
|
|
bits |= IP_FW_IPOPT_RR;
|
|
break;
|
|
|
|
case IPOPT_TS:
|
|
bits |= IP_FW_IPOPT_TS;
|
|
break;
|
|
}
|
|
}
|
|
return (flags_match(cmd, bits));
|
|
}
|
|
|
|
static int
|
|
tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
|
|
{
|
|
int optlen, bits = 0;
|
|
u_char *cp = (u_char *)(tcp + 1);
|
|
int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
|
|
|
|
for (; x > 0; x -= optlen, cp += optlen) {
|
|
int opt = cp[0];
|
|
if (opt == TCPOPT_EOL)
|
|
break;
|
|
if (opt == TCPOPT_NOP)
|
|
optlen = 1;
|
|
else {
|
|
optlen = cp[1];
|
|
if (optlen <= 0)
|
|
break;
|
|
}
|
|
|
|
switch (opt) {
|
|
|
|
default:
|
|
break;
|
|
|
|
case TCPOPT_MAXSEG:
|
|
bits |= IP_FW_TCPOPT_MSS;
|
|
break;
|
|
|
|
case TCPOPT_WINDOW:
|
|
bits |= IP_FW_TCPOPT_WINDOW;
|
|
break;
|
|
|
|
case TCPOPT_SACK_PERMITTED:
|
|
case TCPOPT_SACK:
|
|
bits |= IP_FW_TCPOPT_SACK;
|
|
break;
|
|
|
|
case TCPOPT_TIMESTAMP:
|
|
bits |= IP_FW_TCPOPT_TS;
|
|
break;
|
|
|
|
}
|
|
}
|
|
return (flags_match(cmd, bits));
|
|
}
|
|
|
|
static int
|
|
iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
|
|
{
|
|
if (ifp == NULL) /* no iface with this packet, match fails */
|
|
return 0;
|
|
/* Check by name or by IP address */
|
|
if (cmd->name[0] != '\0') { /* match by name */
|
|
/* Check name */
|
|
if (cmd->p.glob) {
|
|
if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
|
|
return(1);
|
|
} else {
|
|
if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
|
|
return(1);
|
|
}
|
|
} else {
|
|
struct ifaddr *ia;
|
|
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
|
|
if (ia->ifa_addr->sa_family != AF_INET)
|
|
continue;
|
|
if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
|
|
(ia->ifa_addr))->sin_addr.s_addr) {
|
|
IF_ADDR_UNLOCK(ifp);
|
|
return(1); /* match */
|
|
}
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
}
|
|
return(0); /* no match, fail ... */
|
|
}
|
|
|
|
/*
|
|
* The verify_path function checks if a route to the src exists and
|
|
* if it is reachable via ifp (when provided).
|
|
*
|
|
* The 'verrevpath' option checks that the interface that an IP packet
|
|
* arrives on is the same interface that traffic destined for the
|
|
* packet's source address would be routed out of. The 'versrcreach'
|
|
* option just checks that the source address is reachable via any route
|
|
* (except default) in the routing table. These two are a measure to block
|
|
* forged packets. This is also commonly known as "anti-spoofing" or Unicast
|
|
* Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
|
|
* is purposely reminiscent of the Cisco IOS command,
|
|
*
|
|
* ip verify unicast reverse-path
|
|
* ip verify unicast source reachable-via any
|
|
*
|
|
* which implements the same functionality. But note that syntax is
|
|
* misleading. The check may be performed on all IP packets whether unicast,
|
|
* multicast, or broadcast.
|
|
*/
|
|
static int
|
|
verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
|
|
{
|
|
struct route ro;
|
|
struct sockaddr_in *dst;
|
|
|
|
bzero(&ro, sizeof(ro));
|
|
|
|
dst = (struct sockaddr_in *)&(ro.ro_dst);
|
|
dst->sin_family = AF_INET;
|
|
dst->sin_len = sizeof(*dst);
|
|
dst->sin_addr = src;
|
|
in_rtalloc_ign(&ro, 0, fib);
|
|
|
|
if (ro.ro_rt == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* If ifp is provided, check for equality with rtentry.
|
|
* We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
|
|
* in order to pass packets injected back by if_simloop():
|
|
* if useloopback == 1 routing entry (via lo0) for our own address
|
|
* may exist, so we need to handle routing assymetry.
|
|
*/
|
|
if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
|
|
RTFREE(ro.ro_rt);
|
|
return 0;
|
|
}
|
|
|
|
/* if no ifp provided, check if rtentry is not default route */
|
|
if (ifp == NULL &&
|
|
satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
|
|
RTFREE(ro.ro_rt);
|
|
return 0;
|
|
}
|
|
|
|
/* or if this is a blackhole/reject route */
|
|
if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
|
|
RTFREE(ro.ro_rt);
|
|
return 0;
|
|
}
|
|
|
|
/* found valid route */
|
|
RTFREE(ro.ro_rt);
|
|
return 1;
|
|
}
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* ipv6 specific rules here...
|
|
*/
|
|
static __inline int
|
|
icmp6type_match (int type, ipfw_insn_u32 *cmd)
|
|
{
|
|
return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
|
|
}
|
|
|
|
static int
|
|
flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
|
|
{
|
|
int i;
|
|
for (i=0; i <= cmd->o.arg1; ++i )
|
|
if (curr_flow == cmd->d[i] )
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* support for IP6_*_ME opcodes */
|
|
static int
|
|
search_ip6_addr_net (struct in6_addr * ip6_addr)
|
|
{
|
|
INIT_VNET_NET(curvnet);
|
|
struct ifnet *mdc;
|
|
struct ifaddr *mdc2;
|
|
struct in6_ifaddr *fdm;
|
|
struct in6_addr copia;
|
|
|
|
TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
|
|
IF_ADDR_LOCK(mdc);
|
|
TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
|
|
if (mdc2->ifa_addr->sa_family == AF_INET6) {
|
|
fdm = (struct in6_ifaddr *)mdc2;
|
|
copia = fdm->ia_addr.sin6_addr;
|
|
/* need for leaving scope_id in the sock_addr */
|
|
in6_clearscope(&copia);
|
|
if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
|
|
IF_ADDR_UNLOCK(mdc);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
IF_ADDR_UNLOCK(mdc);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
verify_path6(struct in6_addr *src, struct ifnet *ifp)
|
|
{
|
|
struct route_in6 ro;
|
|
struct sockaddr_in6 *dst;
|
|
|
|
bzero(&ro, sizeof(ro));
|
|
|
|
dst = (struct sockaddr_in6 * )&(ro.ro_dst);
|
|
dst->sin6_family = AF_INET6;
|
|
dst->sin6_len = sizeof(*dst);
|
|
dst->sin6_addr = *src;
|
|
/* XXX MRT 0 for ipv6 at this time */
|
|
rtalloc_ign((struct route *)&ro, 0);
|
|
|
|
if (ro.ro_rt == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* if ifp is provided, check for equality with rtentry
|
|
* We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
|
|
* to support the case of sending packets to an address of our own.
|
|
* (where the former interface is the first argument of if_simloop()
|
|
* (=ifp), the latter is lo0)
|
|
*/
|
|
if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
|
|
RTFREE(ro.ro_rt);
|
|
return 0;
|
|
}
|
|
|
|
/* if no ifp provided, check if rtentry is not default route */
|
|
if (ifp == NULL &&
|
|
IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
|
|
RTFREE(ro.ro_rt);
|
|
return 0;
|
|
}
|
|
|
|
/* or if this is a blackhole/reject route */
|
|
if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
|
|
RTFREE(ro.ro_rt);
|
|
return 0;
|
|
}
|
|
|
|
/* found valid route */
|
|
RTFREE(ro.ro_rt);
|
|
return 1;
|
|
|
|
}
|
|
static __inline int
|
|
hash_packet6(struct ipfw_flow_id *id)
|
|
{
|
|
u_int32_t i;
|
|
i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
|
|
(id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
|
|
(id->src_ip6.__u6_addr.__u6_addr32[2]) ^
|
|
(id->src_ip6.__u6_addr.__u6_addr32[3]) ^
|
|
(id->dst_port) ^ (id->src_port);
|
|
return i;
|
|
}
|
|
|
|
static int
|
|
is_icmp6_query(int icmp6_type)
|
|
{
|
|
if ((icmp6_type <= ICMP6_MAXTYPE) &&
|
|
(icmp6_type == ICMP6_ECHO_REQUEST ||
|
|
icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
|
|
icmp6_type == ICMP6_WRUREQUEST ||
|
|
icmp6_type == ICMP6_FQDN_QUERY ||
|
|
icmp6_type == ICMP6_NI_QUERY))
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
m = args->m;
|
|
if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
|
|
struct tcphdr *tcp;
|
|
tcp_seq ack, seq;
|
|
int flags;
|
|
struct {
|
|
struct ip6_hdr ip6;
|
|
struct tcphdr th;
|
|
} ti;
|
|
tcp = (struct tcphdr *)((char *)ip6 + hlen);
|
|
|
|
if ((tcp->th_flags & TH_RST) != 0) {
|
|
m_freem(m);
|
|
args->m = NULL;
|
|
return;
|
|
}
|
|
|
|
ti.ip6 = *ip6;
|
|
ti.th = *tcp;
|
|
ti.th.th_seq = ntohl(ti.th.th_seq);
|
|
ti.th.th_ack = ntohl(ti.th.th_ack);
|
|
ti.ip6.ip6_nxt = IPPROTO_TCP;
|
|
|
|
if (ti.th.th_flags & TH_ACK) {
|
|
ack = 0;
|
|
seq = ti.th.th_ack;
|
|
flags = TH_RST;
|
|
} else {
|
|
ack = ti.th.th_seq;
|
|
if ((m->m_flags & M_PKTHDR) != 0) {
|
|
/*
|
|
* total new data to ACK is:
|
|
* total packet length,
|
|
* minus the header length,
|
|
* minus the tcp header length.
|
|
*/
|
|
ack += m->m_pkthdr.len - hlen
|
|
- (ti.th.th_off << 2);
|
|
} else if (ip6->ip6_plen) {
|
|
ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
|
|
hlen - (ti.th.th_off << 2);
|
|
} else {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
if (tcp->th_flags & TH_SYN)
|
|
ack++;
|
|
seq = 0;
|
|
flags = TH_RST|TH_ACK;
|
|
}
|
|
bcopy(&ti, ip6, sizeof(ti));
|
|
/*
|
|
* m is only used to recycle the mbuf
|
|
* The data in it is never read so we don't need
|
|
* to correct the offsets or anything
|
|
*/
|
|
tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
|
|
} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
|
|
#if 0
|
|
/*
|
|
* Unlike above, the mbufs need to line up with the ip6 hdr,
|
|
* as the contents are read. We need to m_adj() the
|
|
* needed amount.
|
|
* The mbuf will however be thrown away so we can adjust it.
|
|
* Remember we did an m_pullup on it already so we
|
|
* can make some assumptions about contiguousness.
|
|
*/
|
|
if (args->L3offset)
|
|
m_adj(m, args->L3offset);
|
|
#endif
|
|
icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
|
|
} else
|
|
m_freem(m);
|
|
|
|
args->m = NULL;
|
|
}
|
|
|
|
#endif /* INET6 */
|
|
|
|
#ifdef VIMAGE_GLOBALS
|
|
static u_int64_t norule_counter; /* counter for ipfw_log(NULL...) */
|
|
#endif
|
|
|
|
#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
|
|
#define SNP(buf) buf, sizeof(buf)
|
|
|
|
/*
|
|
* We enter here when we have a rule with O_LOG.
|
|
* XXX this function alone takes about 2Kbytes of code!
|
|
*/
|
|
static void
|
|
ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
|
|
struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
|
|
struct ip *ip)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
struct ether_header *eh = args->eh;
|
|
char *action;
|
|
int limit_reached = 0;
|
|
char action2[40], proto[128], fragment[32];
|
|
|
|
fragment[0] = '\0';
|
|
proto[0] = '\0';
|
|
|
|
if (f == NULL) { /* bogus pkt */
|
|
if (V_verbose_limit != 0 && V_norule_counter >= V_verbose_limit)
|
|
return;
|
|
V_norule_counter++;
|
|
if (V_norule_counter == V_verbose_limit)
|
|
limit_reached = V_verbose_limit;
|
|
action = "Refuse";
|
|
} else { /* O_LOG is the first action, find the real one */
|
|
ipfw_insn *cmd = ACTION_PTR(f);
|
|
ipfw_insn_log *l = (ipfw_insn_log *)cmd;
|
|
|
|
if (l->max_log != 0 && l->log_left == 0)
|
|
return;
|
|
l->log_left--;
|
|
if (l->log_left == 0)
|
|
limit_reached = l->max_log;
|
|
cmd += F_LEN(cmd); /* point to first action */
|
|
if (cmd->opcode == O_ALTQ) {
|
|
ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
|
|
|
|
snprintf(SNPARGS(action2, 0), "Altq %d",
|
|
altq->qid);
|
|
cmd += F_LEN(cmd);
|
|
}
|
|
if (cmd->opcode == O_PROB)
|
|
cmd += F_LEN(cmd);
|
|
|
|
if (cmd->opcode == O_TAG)
|
|
cmd += F_LEN(cmd);
|
|
|
|
action = action2;
|
|
switch (cmd->opcode) {
|
|
case O_DENY:
|
|
action = "Deny";
|
|
break;
|
|
|
|
case O_REJECT:
|
|
if (cmd->arg1==ICMP_REJECT_RST)
|
|
action = "Reset";
|
|
else if (cmd->arg1==ICMP_UNREACH_HOST)
|
|
action = "Reject";
|
|
else
|
|
snprintf(SNPARGS(action2, 0), "Unreach %d",
|
|
cmd->arg1);
|
|
break;
|
|
|
|
case O_UNREACH6:
|
|
if (cmd->arg1==ICMP6_UNREACH_RST)
|
|
action = "Reset";
|
|
else
|
|
snprintf(SNPARGS(action2, 0), "Unreach %d",
|
|
cmd->arg1);
|
|
break;
|
|
|
|
case O_ACCEPT:
|
|
action = "Accept";
|
|
break;
|
|
case O_COUNT:
|
|
action = "Count";
|
|
break;
|
|
case O_DIVERT:
|
|
snprintf(SNPARGS(action2, 0), "Divert %d",
|
|
cmd->arg1);
|
|
break;
|
|
case O_TEE:
|
|
snprintf(SNPARGS(action2, 0), "Tee %d",
|
|
cmd->arg1);
|
|
break;
|
|
case O_SETFIB:
|
|
snprintf(SNPARGS(action2, 0), "SetFib %d",
|
|
cmd->arg1);
|
|
break;
|
|
case O_SKIPTO:
|
|
snprintf(SNPARGS(action2, 0), "SkipTo %d",
|
|
cmd->arg1);
|
|
break;
|
|
case O_PIPE:
|
|
snprintf(SNPARGS(action2, 0), "Pipe %d",
|
|
cmd->arg1);
|
|
break;
|
|
case O_QUEUE:
|
|
snprintf(SNPARGS(action2, 0), "Queue %d",
|
|
cmd->arg1);
|
|
break;
|
|
case O_FORWARD_IP: {
|
|
ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
|
|
int len;
|
|
struct in_addr dummyaddr;
|
|
if (sa->sa.sin_addr.s_addr == INADDR_ANY)
|
|
dummyaddr.s_addr = htonl(tablearg);
|
|
else
|
|
dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
|
|
|
|
len = snprintf(SNPARGS(action2, 0), "Forward to %s",
|
|
inet_ntoa(dummyaddr));
|
|
|
|
if (sa->sa.sin_port)
|
|
snprintf(SNPARGS(action2, len), ":%d",
|
|
sa->sa.sin_port);
|
|
}
|
|
break;
|
|
case O_NETGRAPH:
|
|
snprintf(SNPARGS(action2, 0), "Netgraph %d",
|
|
cmd->arg1);
|
|
break;
|
|
case O_NGTEE:
|
|
snprintf(SNPARGS(action2, 0), "Ngtee %d",
|
|
cmd->arg1);
|
|
break;
|
|
case O_NAT:
|
|
action = "Nat";
|
|
break;
|
|
case O_REASS:
|
|
action = "Reass";
|
|
break;
|
|
default:
|
|
action = "UNKNOWN";
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (hlen == 0) { /* non-ip */
|
|
snprintf(SNPARGS(proto, 0), "MAC");
|
|
|
|
} else {
|
|
int len;
|
|
char src[48], dst[48];
|
|
struct icmphdr *icmp;
|
|
struct tcphdr *tcp;
|
|
struct udphdr *udp;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6 = NULL;
|
|
struct icmp6_hdr *icmp6;
|
|
#endif
|
|
src[0] = '\0';
|
|
dst[0] = '\0';
|
|
#ifdef INET6
|
|
if (IS_IP6_FLOW_ID(&(args->f_id))) {
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
snprintf(src, sizeof(src), "[%s]",
|
|
ip6_sprintf(ip6buf, &args->f_id.src_ip6));
|
|
snprintf(dst, sizeof(dst), "[%s]",
|
|
ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
|
|
|
|
ip6 = (struct ip6_hdr *)ip;
|
|
tcp = (struct tcphdr *)(((char *)ip) + hlen);
|
|
udp = (struct udphdr *)(((char *)ip) + hlen);
|
|
} else
|
|
#endif
|
|
{
|
|
tcp = L3HDR(struct tcphdr, ip);
|
|
udp = L3HDR(struct udphdr, ip);
|
|
|
|
inet_ntoa_r(ip->ip_src, src);
|
|
inet_ntoa_r(ip->ip_dst, dst);
|
|
}
|
|
|
|
switch (args->f_id.proto) {
|
|
case IPPROTO_TCP:
|
|
len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
|
|
if (offset == 0)
|
|
snprintf(SNPARGS(proto, len), ":%d %s:%d",
|
|
ntohs(tcp->th_sport),
|
|
dst,
|
|
ntohs(tcp->th_dport));
|
|
else
|
|
snprintf(SNPARGS(proto, len), " %s", dst);
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
|
|
if (offset == 0)
|
|
snprintf(SNPARGS(proto, len), ":%d %s:%d",
|
|
ntohs(udp->uh_sport),
|
|
dst,
|
|
ntohs(udp->uh_dport));
|
|
else
|
|
snprintf(SNPARGS(proto, len), " %s", dst);
|
|
break;
|
|
|
|
case IPPROTO_ICMP:
|
|
icmp = L3HDR(struct icmphdr, ip);
|
|
if (offset == 0)
|
|
len = snprintf(SNPARGS(proto, 0),
|
|
"ICMP:%u.%u ",
|
|
icmp->icmp_type, icmp->icmp_code);
|
|
else
|
|
len = snprintf(SNPARGS(proto, 0), "ICMP ");
|
|
len += snprintf(SNPARGS(proto, len), "%s", src);
|
|
snprintf(SNPARGS(proto, len), " %s", dst);
|
|
break;
|
|
#ifdef INET6
|
|
case IPPROTO_ICMPV6:
|
|
icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
|
|
if (offset == 0)
|
|
len = snprintf(SNPARGS(proto, 0),
|
|
"ICMPv6:%u.%u ",
|
|
icmp6->icmp6_type, icmp6->icmp6_code);
|
|
else
|
|
len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
|
|
len += snprintf(SNPARGS(proto, len), "%s", src);
|
|
snprintf(SNPARGS(proto, len), " %s", dst);
|
|
break;
|
|
#endif
|
|
default:
|
|
len = snprintf(SNPARGS(proto, 0), "P:%d %s",
|
|
args->f_id.proto, src);
|
|
snprintf(SNPARGS(proto, len), " %s", dst);
|
|
break;
|
|
}
|
|
|
|
#ifdef INET6
|
|
if (IS_IP6_FLOW_ID(&(args->f_id))) {
|
|
if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
|
|
snprintf(SNPARGS(fragment, 0),
|
|
" (frag %08x:%d@%d%s)",
|
|
args->f_id.frag_id6,
|
|
ntohs(ip6->ip6_plen) - hlen,
|
|
ntohs(offset & IP6F_OFF_MASK) << 3,
|
|
(offset & IP6F_MORE_FRAG) ? "+" : "");
|
|
} else
|
|
#endif
|
|
{
|
|
int ip_off, ip_len;
|
|
if (eh != NULL) { /* layer 2 packets are as on the wire */
|
|
ip_off = ntohs(ip->ip_off);
|
|
ip_len = ntohs(ip->ip_len);
|
|
} else {
|
|
ip_off = ip->ip_off;
|
|
ip_len = ip->ip_len;
|
|
}
|
|
if (ip_off & (IP_MF | IP_OFFMASK))
|
|
snprintf(SNPARGS(fragment, 0),
|
|
" (frag %d:%d@%d%s)",
|
|
ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
|
|
offset << 3,
|
|
(ip_off & IP_MF) ? "+" : "");
|
|
}
|
|
}
|
|
if (oif || m->m_pkthdr.rcvif)
|
|
log(LOG_SECURITY | LOG_INFO,
|
|
"ipfw: %d %s %s %s via %s%s\n",
|
|
f ? f->rulenum : -1,
|
|
action, proto, oif ? "out" : "in",
|
|
oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
|
|
fragment);
|
|
else
|
|
log(LOG_SECURITY | LOG_INFO,
|
|
"ipfw: %d %s %s [no if info]%s\n",
|
|
f ? f->rulenum : -1,
|
|
action, proto, fragment);
|
|
if (limit_reached)
|
|
log(LOG_SECURITY | LOG_NOTICE,
|
|
"ipfw: limit %d reached on entry %d\n",
|
|
limit_reached, f ? f->rulenum : -1);
|
|
}
|
|
|
|
/*
|
|
* IMPORTANT: the hash function for dynamic rules must be commutative
|
|
* in source and destination (ip,port), because rules are bidirectional
|
|
* and we want to find both in the same bucket.
|
|
*/
|
|
static __inline int
|
|
hash_packet(struct ipfw_flow_id *id)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
u_int32_t i;
|
|
|
|
#ifdef INET6
|
|
if (IS_IP6_FLOW_ID(id))
|
|
i = hash_packet6(id);
|
|
else
|
|
#endif /* INET6 */
|
|
i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
|
|
i &= (V_curr_dyn_buckets - 1);
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* unlink a dynamic rule from a chain. prev is a pointer to
|
|
* the previous one, q is a pointer to the rule to delete,
|
|
* head is a pointer to the head of the queue.
|
|
* Modifies q and potentially also head.
|
|
*/
|
|
#define UNLINK_DYN_RULE(prev, head, q) { \
|
|
ipfw_dyn_rule *old_q = q; \
|
|
\
|
|
/* remove a refcount to the parent */ \
|
|
if (q->dyn_type == O_LIMIT) \
|
|
q->parent->count--; \
|
|
DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
|
|
(q->id.src_ip), (q->id.src_port), \
|
|
(q->id.dst_ip), (q->id.dst_port), V_dyn_count-1 ); ) \
|
|
if (prev != NULL) \
|
|
prev->next = q = q->next; \
|
|
else \
|
|
head = q = q->next; \
|
|
V_dyn_count--; \
|
|
uma_zfree(ipfw_dyn_rule_zone, old_q); }
|
|
|
|
#define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
|
|
|
|
/**
|
|
* Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
|
|
*
|
|
* If keep_me == NULL, rules are deleted even if not expired,
|
|
* otherwise only expired rules are removed.
|
|
*
|
|
* The value of the second parameter is also used to point to identify
|
|
* a rule we absolutely do not want to remove (e.g. because we are
|
|
* holding a reference to it -- this is the case with O_LIMIT_PARENT
|
|
* rules). The pointer is only used for comparison, so any non-null
|
|
* value will do.
|
|
*/
|
|
static void
|
|
remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
static u_int32_t last_remove = 0;
|
|
|
|
#define FORCE (keep_me == NULL)
|
|
|
|
ipfw_dyn_rule *prev, *q;
|
|
int i, pass = 0, max_pass = 0;
|
|
|
|
IPFW_DYN_LOCK_ASSERT();
|
|
|
|
if (V_ipfw_dyn_v == NULL || V_dyn_count == 0)
|
|
return;
|
|
/* do not expire more than once per second, it is useless */
|
|
if (!FORCE && last_remove == time_uptime)
|
|
return;
|
|
last_remove = time_uptime;
|
|
|
|
/*
|
|
* because O_LIMIT refer to parent rules, during the first pass only
|
|
* remove child and mark any pending LIMIT_PARENT, and remove
|
|
* them in a second pass.
|
|
*/
|
|
next_pass:
|
|
for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
|
|
for (prev=NULL, q = V_ipfw_dyn_v[i] ; q ; ) {
|
|
/*
|
|
* Logic can become complex here, so we split tests.
|
|
*/
|
|
if (q == keep_me)
|
|
goto next;
|
|
if (rule != NULL && rule != q->rule)
|
|
goto next; /* not the one we are looking for */
|
|
if (q->dyn_type == O_LIMIT_PARENT) {
|
|
/*
|
|
* handle parent in the second pass,
|
|
* record we need one.
|
|
*/
|
|
max_pass = 1;
|
|
if (pass == 0)
|
|
goto next;
|
|
if (FORCE && q->count != 0 ) {
|
|
/* XXX should not happen! */
|
|
printf("ipfw: OUCH! cannot remove rule,"
|
|
" count %d\n", q->count);
|
|
}
|
|
} else {
|
|
if (!FORCE &&
|
|
!TIME_LEQ( q->expire, time_uptime ))
|
|
goto next;
|
|
}
|
|
if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
|
|
UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
|
|
continue;
|
|
}
|
|
next:
|
|
prev=q;
|
|
q=q->next;
|
|
}
|
|
}
|
|
if (pass++ < max_pass)
|
|
goto next_pass;
|
|
}
|
|
|
|
|
|
/**
|
|
* lookup a dynamic rule.
|
|
*/
|
|
static ipfw_dyn_rule *
|
|
lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
|
|
struct tcphdr *tcp)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
/*
|
|
* stateful ipfw extensions.
|
|
* Lookup into dynamic session queue
|
|
*/
|
|
#define MATCH_REVERSE 0
|
|
#define MATCH_FORWARD 1
|
|
#define MATCH_NONE 2
|
|
#define MATCH_UNKNOWN 3
|
|
int i, dir = MATCH_NONE;
|
|
ipfw_dyn_rule *prev, *q=NULL;
|
|
|
|
IPFW_DYN_LOCK_ASSERT();
|
|
|
|
if (V_ipfw_dyn_v == NULL)
|
|
goto done; /* not found */
|
|
i = hash_packet( pkt );
|
|
for (prev=NULL, q = V_ipfw_dyn_v[i] ; q != NULL ; ) {
|
|
if (q->dyn_type == O_LIMIT_PARENT && q->count)
|
|
goto next;
|
|
if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
|
|
UNLINK_DYN_RULE(prev, V_ipfw_dyn_v[i], q);
|
|
continue;
|
|
}
|
|
if (pkt->proto == q->id.proto &&
|
|
q->dyn_type != O_LIMIT_PARENT) {
|
|
if (IS_IP6_FLOW_ID(pkt)) {
|
|
if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
|
|
&(q->id.src_ip6)) &&
|
|
IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
|
|
&(q->id.dst_ip6)) &&
|
|
pkt->src_port == q->id.src_port &&
|
|
pkt->dst_port == q->id.dst_port ) {
|
|
dir = MATCH_FORWARD;
|
|
break;
|
|
}
|
|
if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
|
|
&(q->id.dst_ip6)) &&
|
|
IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
|
|
&(q->id.src_ip6)) &&
|
|
pkt->src_port == q->id.dst_port &&
|
|
pkt->dst_port == q->id.src_port ) {
|
|
dir = MATCH_REVERSE;
|
|
break;
|
|
}
|
|
} else {
|
|
if (pkt->src_ip == q->id.src_ip &&
|
|
pkt->dst_ip == q->id.dst_ip &&
|
|
pkt->src_port == q->id.src_port &&
|
|
pkt->dst_port == q->id.dst_port ) {
|
|
dir = MATCH_FORWARD;
|
|
break;
|
|
}
|
|
if (pkt->src_ip == q->id.dst_ip &&
|
|
pkt->dst_ip == q->id.src_ip &&
|
|
pkt->src_port == q->id.dst_port &&
|
|
pkt->dst_port == q->id.src_port ) {
|
|
dir = MATCH_REVERSE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
next:
|
|
prev = q;
|
|
q = q->next;
|
|
}
|
|
if (q == NULL)
|
|
goto done; /* q = NULL, not found */
|
|
|
|
if ( prev != NULL) { /* found and not in front */
|
|
prev->next = q->next;
|
|
q->next = V_ipfw_dyn_v[i];
|
|
V_ipfw_dyn_v[i] = q;
|
|
}
|
|
if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
|
|
u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
|
|
|
|
#define BOTH_SYN (TH_SYN | (TH_SYN << 8))
|
|
#define BOTH_FIN (TH_FIN | (TH_FIN << 8))
|
|
q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
|
|
switch (q->state) {
|
|
case TH_SYN: /* opening */
|
|
q->expire = time_uptime + V_dyn_syn_lifetime;
|
|
break;
|
|
|
|
case BOTH_SYN: /* move to established */
|
|
case BOTH_SYN | TH_FIN : /* one side tries to close */
|
|
case BOTH_SYN | (TH_FIN << 8) :
|
|
if (tcp) {
|
|
#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
|
|
u_int32_t ack = ntohl(tcp->th_ack);
|
|
if (dir == MATCH_FORWARD) {
|
|
if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
|
|
q->ack_fwd = ack;
|
|
else { /* ignore out-of-sequence */
|
|
break;
|
|
}
|
|
} else {
|
|
if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
|
|
q->ack_rev = ack;
|
|
else { /* ignore out-of-sequence */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
q->expire = time_uptime + V_dyn_ack_lifetime;
|
|
break;
|
|
|
|
case BOTH_SYN | BOTH_FIN: /* both sides closed */
|
|
if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
|
|
V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
|
|
q->expire = time_uptime + V_dyn_fin_lifetime;
|
|
break;
|
|
|
|
default:
|
|
#if 0
|
|
/*
|
|
* reset or some invalid combination, but can also
|
|
* occur if we use keep-state the wrong way.
|
|
*/
|
|
if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
|
|
printf("invalid state: 0x%x\n", q->state);
|
|
#endif
|
|
if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
|
|
V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
|
|
q->expire = time_uptime + V_dyn_rst_lifetime;
|
|
break;
|
|
}
|
|
} else if (pkt->proto == IPPROTO_UDP) {
|
|
q->expire = time_uptime + V_dyn_udp_lifetime;
|
|
} else {
|
|
/* other protocols */
|
|
q->expire = time_uptime + V_dyn_short_lifetime;
|
|
}
|
|
done:
|
|
if (match_direction)
|
|
*match_direction = dir;
|
|
return q;
|
|
}
|
|
|
|
static ipfw_dyn_rule *
|
|
lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
|
|
struct tcphdr *tcp)
|
|
{
|
|
ipfw_dyn_rule *q;
|
|
|
|
IPFW_DYN_LOCK();
|
|
q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
|
|
if (q == NULL)
|
|
IPFW_DYN_UNLOCK();
|
|
/* NB: return table locked when q is not NULL */
|
|
return q;
|
|
}
|
|
|
|
static void
|
|
realloc_dynamic_table(void)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
IPFW_DYN_LOCK_ASSERT();
|
|
|
|
/*
|
|
* Try reallocation, make sure we have a power of 2 and do
|
|
* not allow more than 64k entries. In case of overflow,
|
|
* default to 1024.
|
|
*/
|
|
|
|
if (V_dyn_buckets > 65536)
|
|
V_dyn_buckets = 1024;
|
|
if ((V_dyn_buckets & (V_dyn_buckets-1)) != 0) { /* not a power of 2 */
|
|
V_dyn_buckets = V_curr_dyn_buckets; /* reset */
|
|
return;
|
|
}
|
|
V_curr_dyn_buckets = V_dyn_buckets;
|
|
if (V_ipfw_dyn_v != NULL)
|
|
free(V_ipfw_dyn_v, M_IPFW);
|
|
for (;;) {
|
|
V_ipfw_dyn_v = malloc(V_curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
|
|
M_IPFW, M_NOWAIT | M_ZERO);
|
|
if (V_ipfw_dyn_v != NULL || V_curr_dyn_buckets <= 2)
|
|
break;
|
|
V_curr_dyn_buckets /= 2;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Install state of type 'type' for a dynamic session.
|
|
* The hash table contains two type of rules:
|
|
* - regular rules (O_KEEP_STATE)
|
|
* - rules for sessions with limited number of sess per user
|
|
* (O_LIMIT). When they are created, the parent is
|
|
* increased by 1, and decreased on delete. In this case,
|
|
* the third parameter is the parent rule and not the chain.
|
|
* - "parent" rules for the above (O_LIMIT_PARENT).
|
|
*/
|
|
static ipfw_dyn_rule *
|
|
add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
ipfw_dyn_rule *r;
|
|
int i;
|
|
|
|
IPFW_DYN_LOCK_ASSERT();
|
|
|
|
if (V_ipfw_dyn_v == NULL ||
|
|
(V_dyn_count == 0 && V_dyn_buckets != V_curr_dyn_buckets)) {
|
|
realloc_dynamic_table();
|
|
if (V_ipfw_dyn_v == NULL)
|
|
return NULL; /* failed ! */
|
|
}
|
|
i = hash_packet(id);
|
|
|
|
r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
|
|
if (r == NULL) {
|
|
printf ("ipfw: sorry cannot allocate state\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* increase refcount on parent, and set pointer */
|
|
if (dyn_type == O_LIMIT) {
|
|
ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
|
|
if ( parent->dyn_type != O_LIMIT_PARENT)
|
|
panic("invalid parent");
|
|
parent->count++;
|
|
r->parent = parent;
|
|
rule = parent->rule;
|
|
}
|
|
|
|
r->id = *id;
|
|
r->expire = time_uptime + V_dyn_syn_lifetime;
|
|
r->rule = rule;
|
|
r->dyn_type = dyn_type;
|
|
r->pcnt = r->bcnt = 0;
|
|
r->count = 0;
|
|
|
|
r->bucket = i;
|
|
r->next = V_ipfw_dyn_v[i];
|
|
V_ipfw_dyn_v[i] = r;
|
|
V_dyn_count++;
|
|
DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
|
|
dyn_type,
|
|
(r->id.src_ip), (r->id.src_port),
|
|
(r->id.dst_ip), (r->id.dst_port),
|
|
V_dyn_count ); )
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* lookup dynamic parent rule using pkt and rule as search keys.
|
|
* If the lookup fails, then install one.
|
|
*/
|
|
static ipfw_dyn_rule *
|
|
lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
ipfw_dyn_rule *q;
|
|
int i;
|
|
|
|
IPFW_DYN_LOCK_ASSERT();
|
|
|
|
if (V_ipfw_dyn_v) {
|
|
int is_v6 = IS_IP6_FLOW_ID(pkt);
|
|
i = hash_packet( pkt );
|
|
for (q = V_ipfw_dyn_v[i] ; q != NULL ; q=q->next)
|
|
if (q->dyn_type == O_LIMIT_PARENT &&
|
|
rule== q->rule &&
|
|
pkt->proto == q->id.proto &&
|
|
pkt->src_port == q->id.src_port &&
|
|
pkt->dst_port == q->id.dst_port &&
|
|
(
|
|
(is_v6 &&
|
|
IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
|
|
&(q->id.src_ip6)) &&
|
|
IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
|
|
&(q->id.dst_ip6))) ||
|
|
(!is_v6 &&
|
|
pkt->src_ip == q->id.src_ip &&
|
|
pkt->dst_ip == q->id.dst_ip)
|
|
)
|
|
) {
|
|
q->expire = time_uptime + V_dyn_short_lifetime;
|
|
DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
|
|
return q;
|
|
}
|
|
}
|
|
return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
|
|
}
|
|
|
|
/**
|
|
* Install dynamic state for rule type cmd->o.opcode
|
|
*
|
|
* Returns 1 (failure) if state is not installed because of errors or because
|
|
* session limitations are enforced.
|
|
*/
|
|
static int
|
|
install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
|
|
struct ip_fw_args *args, uint32_t tablearg)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
static int last_log;
|
|
ipfw_dyn_rule *q;
|
|
struct in_addr da;
|
|
char src[48], dst[48];
|
|
|
|
src[0] = '\0';
|
|
dst[0] = '\0';
|
|
|
|
DEB(
|
|
printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
|
|
__func__, cmd->o.opcode,
|
|
(args->f_id.src_ip), (args->f_id.src_port),
|
|
(args->f_id.dst_ip), (args->f_id.dst_port));
|
|
)
|
|
|
|
IPFW_DYN_LOCK();
|
|
|
|
q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
|
|
|
|
if (q != NULL) { /* should never occur */
|
|
if (last_log != time_uptime) {
|
|
last_log = time_uptime;
|
|
printf("ipfw: %s: entry already present, done\n",
|
|
__func__);
|
|
}
|
|
IPFW_DYN_UNLOCK();
|
|
return (0);
|
|
}
|
|
|
|
if (V_dyn_count >= V_dyn_max)
|
|
/* Run out of slots, try to remove any expired rule. */
|
|
remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
|
|
|
|
if (V_dyn_count >= V_dyn_max) {
|
|
if (last_log != time_uptime) {
|
|
last_log = time_uptime;
|
|
printf("ipfw: %s: Too many dynamic rules\n", __func__);
|
|
}
|
|
IPFW_DYN_UNLOCK();
|
|
return (1); /* cannot install, notify caller */
|
|
}
|
|
|
|
switch (cmd->o.opcode) {
|
|
case O_KEEP_STATE: /* bidir rule */
|
|
add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
|
|
break;
|
|
|
|
case O_LIMIT: { /* limit number of sessions */
|
|
struct ipfw_flow_id id;
|
|
ipfw_dyn_rule *parent;
|
|
uint32_t conn_limit;
|
|
uint16_t limit_mask = cmd->limit_mask;
|
|
|
|
conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
|
|
tablearg : cmd->conn_limit;
|
|
|
|
DEB(
|
|
if (cmd->conn_limit == IP_FW_TABLEARG)
|
|
printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
|
|
"(tablearg)\n", __func__, conn_limit);
|
|
else
|
|
printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
|
|
__func__, conn_limit);
|
|
)
|
|
|
|
id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
|
|
id.proto = args->f_id.proto;
|
|
id.addr_type = args->f_id.addr_type;
|
|
id.fib = M_GETFIB(args->m);
|
|
|
|
if (IS_IP6_FLOW_ID (&(args->f_id))) {
|
|
if (limit_mask & DYN_SRC_ADDR)
|
|
id.src_ip6 = args->f_id.src_ip6;
|
|
if (limit_mask & DYN_DST_ADDR)
|
|
id.dst_ip6 = args->f_id.dst_ip6;
|
|
} else {
|
|
if (limit_mask & DYN_SRC_ADDR)
|
|
id.src_ip = args->f_id.src_ip;
|
|
if (limit_mask & DYN_DST_ADDR)
|
|
id.dst_ip = args->f_id.dst_ip;
|
|
}
|
|
if (limit_mask & DYN_SRC_PORT)
|
|
id.src_port = args->f_id.src_port;
|
|
if (limit_mask & DYN_DST_PORT)
|
|
id.dst_port = args->f_id.dst_port;
|
|
if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
|
|
printf("ipfw: %s: add parent failed\n", __func__);
|
|
IPFW_DYN_UNLOCK();
|
|
return (1);
|
|
}
|
|
|
|
if (parent->count >= conn_limit) {
|
|
/* See if we can remove some expired rule. */
|
|
remove_dyn_rule(rule, parent);
|
|
if (parent->count >= conn_limit) {
|
|
if (V_fw_verbose && last_log != time_uptime) {
|
|
last_log = time_uptime;
|
|
#ifdef INET6
|
|
/*
|
|
* XXX IPv6 flows are not
|
|
* supported yet.
|
|
*/
|
|
if (IS_IP6_FLOW_ID(&(args->f_id))) {
|
|
char ip6buf[INET6_ADDRSTRLEN];
|
|
snprintf(src, sizeof(src),
|
|
"[%s]", ip6_sprintf(ip6buf,
|
|
&args->f_id.src_ip6));
|
|
snprintf(dst, sizeof(dst),
|
|
"[%s]", ip6_sprintf(ip6buf,
|
|
&args->f_id.dst_ip6));
|
|
} else
|
|
#endif
|
|
{
|
|
da.s_addr =
|
|
htonl(args->f_id.src_ip);
|
|
inet_ntoa_r(da, src);
|
|
da.s_addr =
|
|
htonl(args->f_id.dst_ip);
|
|
inet_ntoa_r(da, dst);
|
|
}
|
|
log(LOG_SECURITY | LOG_DEBUG,
|
|
"ipfw: %d %s %s:%u -> %s:%u, %s\n",
|
|
parent->rule->rulenum,
|
|
"drop session",
|
|
src, (args->f_id.src_port),
|
|
dst, (args->f_id.dst_port),
|
|
"too many entries");
|
|
}
|
|
IPFW_DYN_UNLOCK();
|
|
return (1);
|
|
}
|
|
}
|
|
add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
|
|
break;
|
|
}
|
|
default:
|
|
printf("ipfw: %s: unknown dynamic rule type %u\n",
|
|
__func__, cmd->o.opcode);
|
|
IPFW_DYN_UNLOCK();
|
|
return (1);
|
|
}
|
|
|
|
/* XXX just set lifetime */
|
|
lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
|
|
|
|
IPFW_DYN_UNLOCK();
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Generate a TCP packet, containing either a RST or a keepalive.
|
|
* When flags & TH_RST, we are sending a RST packet, because of a
|
|
* "reset" action matched the packet.
|
|
* Otherwise we are sending a keepalive, and flags & TH_
|
|
* The 'replyto' mbuf is the mbuf being replied to, if any, and is required
|
|
* so that MAC can label the reply appropriately.
|
|
*/
|
|
static struct mbuf *
|
|
send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
|
|
u_int32_t ack, int flags)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
struct mbuf *m;
|
|
struct ip *ip;
|
|
struct tcphdr *tcp;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
return (NULL);
|
|
m->m_pkthdr.rcvif = (struct ifnet *)0;
|
|
|
|
M_SETFIB(m, id->fib);
|
|
#ifdef MAC
|
|
if (replyto != NULL)
|
|
mac_netinet_firewall_reply(replyto, m);
|
|
else
|
|
mac_netinet_firewall_send(m);
|
|
#else
|
|
(void)replyto; /* don't warn about unused arg */
|
|
#endif
|
|
|
|
m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
|
|
m->m_data += max_linkhdr;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
bzero(ip, m->m_len);
|
|
tcp = (struct tcphdr *)(ip + 1); /* no IP options */
|
|
ip->ip_p = IPPROTO_TCP;
|
|
tcp->th_off = 5;
|
|
/*
|
|
* Assume we are sending a RST (or a keepalive in the reverse
|
|
* direction), swap src and destination addresses and ports.
|
|
*/
|
|
ip->ip_src.s_addr = htonl(id->dst_ip);
|
|
ip->ip_dst.s_addr = htonl(id->src_ip);
|
|
tcp->th_sport = htons(id->dst_port);
|
|
tcp->th_dport = htons(id->src_port);
|
|
if (flags & TH_RST) { /* we are sending a RST */
|
|
if (flags & TH_ACK) {
|
|
tcp->th_seq = htonl(ack);
|
|
tcp->th_ack = htonl(0);
|
|
tcp->th_flags = TH_RST;
|
|
} else {
|
|
if (flags & TH_SYN)
|
|
seq++;
|
|
tcp->th_seq = htonl(0);
|
|
tcp->th_ack = htonl(seq);
|
|
tcp->th_flags = TH_RST | TH_ACK;
|
|
}
|
|
} else {
|
|
/*
|
|
* We are sending a keepalive. flags & TH_SYN determines
|
|
* the direction, forward if set, reverse if clear.
|
|
* NOTE: seq and ack are always assumed to be correct
|
|
* as set by the caller. This may be confusing...
|
|
*/
|
|
if (flags & TH_SYN) {
|
|
/*
|
|
* we have to rewrite the correct addresses!
|
|
*/
|
|
ip->ip_dst.s_addr = htonl(id->dst_ip);
|
|
ip->ip_src.s_addr = htonl(id->src_ip);
|
|
tcp->th_dport = htons(id->dst_port);
|
|
tcp->th_sport = htons(id->src_port);
|
|
}
|
|
tcp->th_seq = htonl(seq);
|
|
tcp->th_ack = htonl(ack);
|
|
tcp->th_flags = TH_ACK;
|
|
}
|
|
/*
|
|
* set ip_len to the payload size so we can compute
|
|
* the tcp checksum on the pseudoheader
|
|
* XXX check this, could save a couple of words ?
|
|
*/
|
|
ip->ip_len = htons(sizeof(struct tcphdr));
|
|
tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
|
|
/*
|
|
* now fill fields left out earlier
|
|
*/
|
|
ip->ip_ttl = V_ip_defttl;
|
|
ip->ip_len = m->m_pkthdr.len;
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* sends a reject message, consuming the mbuf passed as an argument.
|
|
*/
|
|
static void
|
|
send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
|
|
{
|
|
|
|
#if 0
|
|
/* XXX When ip is not guaranteed to be at mtod() we will
|
|
* need to account for this */
|
|
* The mbuf will however be thrown away so we can adjust it.
|
|
* Remember we did an m_pullup on it already so we
|
|
* can make some assumptions about contiguousness.
|
|
*/
|
|
if (args->L3offset)
|
|
m_adj(m, args->L3offset);
|
|
#endif
|
|
if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
|
|
/* We need the IP header in host order for icmp_error(). */
|
|
if (args->eh != NULL) {
|
|
ip->ip_len = ntohs(ip->ip_len);
|
|
ip->ip_off = ntohs(ip->ip_off);
|
|
}
|
|
icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
|
|
} else if (args->f_id.proto == IPPROTO_TCP) {
|
|
struct tcphdr *const tcp =
|
|
L3HDR(struct tcphdr, mtod(args->m, struct ip *));
|
|
if ( (tcp->th_flags & TH_RST) == 0) {
|
|
struct mbuf *m;
|
|
m = send_pkt(args->m, &(args->f_id),
|
|
ntohl(tcp->th_seq), ntohl(tcp->th_ack),
|
|
tcp->th_flags | TH_RST);
|
|
if (m != NULL)
|
|
ip_output(m, NULL, NULL, 0, NULL, NULL);
|
|
}
|
|
m_freem(args->m);
|
|
} else
|
|
m_freem(args->m);
|
|
args->m = NULL;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* Given an ip_fw *, lookup_next_rule will return a pointer
|
|
* to the next rule, which can be either the jump
|
|
* target (for skipto instructions) or the next one in the list (in
|
|
* all other cases including a missing jump target).
|
|
* The result is also written in the "next_rule" field of the rule.
|
|
* Backward jumps are not allowed, so start looking from the next
|
|
* rule...
|
|
*
|
|
* This never returns NULL -- in case we do not have an exact match,
|
|
* the next rule is returned. When the ruleset is changed,
|
|
* pointers are flushed so we are always correct.
|
|
*/
|
|
|
|
static struct ip_fw *
|
|
lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
|
|
{
|
|
struct ip_fw *rule = NULL;
|
|
ipfw_insn *cmd;
|
|
u_int16_t rulenum;
|
|
|
|
/* look for action, in case it is a skipto */
|
|
cmd = ACTION_PTR(me);
|
|
if (cmd->opcode == O_LOG)
|
|
cmd += F_LEN(cmd);
|
|
if (cmd->opcode == O_ALTQ)
|
|
cmd += F_LEN(cmd);
|
|
if (cmd->opcode == O_TAG)
|
|
cmd += F_LEN(cmd);
|
|
if (cmd->opcode == O_SKIPTO ) {
|
|
if (tablearg != 0) {
|
|
rulenum = (u_int16_t)tablearg;
|
|
} else {
|
|
rulenum = cmd->arg1;
|
|
}
|
|
for (rule = me->next; rule ; rule = rule->next) {
|
|
if (rule->rulenum >= rulenum) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (rule == NULL) /* failure or not a skipto */
|
|
rule = me->next;
|
|
me->next_rule = rule;
|
|
return rule;
|
|
}
|
|
|
|
static int
|
|
add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
|
|
uint8_t mlen, uint32_t value)
|
|
{
|
|
struct radix_node_head *rnh;
|
|
struct table_entry *ent;
|
|
struct radix_node *rn;
|
|
|
|
if (tbl >= IPFW_TABLES_MAX)
|
|
return (EINVAL);
|
|
rnh = ch->tables[tbl];
|
|
ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
|
|
if (ent == NULL)
|
|
return (ENOMEM);
|
|
ent->value = value;
|
|
ent->addr.sin_len = ent->mask.sin_len = 8;
|
|
ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
|
|
ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
|
|
IPFW_WLOCK(ch);
|
|
rn = rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent);
|
|
if (rn == NULL) {
|
|
IPFW_WUNLOCK(ch);
|
|
free(ent, M_IPFW_TBL);
|
|
return (EEXIST);
|
|
}
|
|
IPFW_WUNLOCK(ch);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
|
|
uint8_t mlen)
|
|
{
|
|
struct radix_node_head *rnh;
|
|
struct table_entry *ent;
|
|
struct sockaddr_in sa, mask;
|
|
|
|
if (tbl >= IPFW_TABLES_MAX)
|
|
return (EINVAL);
|
|
rnh = ch->tables[tbl];
|
|
sa.sin_len = mask.sin_len = 8;
|
|
mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
|
|
sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
|
|
IPFW_WLOCK(ch);
|
|
ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
|
|
if (ent == NULL) {
|
|
IPFW_WUNLOCK(ch);
|
|
return (ESRCH);
|
|
}
|
|
IPFW_WUNLOCK(ch);
|
|
free(ent, M_IPFW_TBL);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
flush_table_entry(struct radix_node *rn, void *arg)
|
|
{
|
|
struct radix_node_head * const rnh = arg;
|
|
struct table_entry *ent;
|
|
|
|
ent = (struct table_entry *)
|
|
rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
|
|
if (ent != NULL)
|
|
free(ent, M_IPFW_TBL);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
flush_table(struct ip_fw_chain *ch, uint16_t tbl)
|
|
{
|
|
struct radix_node_head *rnh;
|
|
|
|
IPFW_WLOCK_ASSERT(ch);
|
|
|
|
if (tbl >= IPFW_TABLES_MAX)
|
|
return (EINVAL);
|
|
rnh = ch->tables[tbl];
|
|
KASSERT(rnh != NULL, ("NULL IPFW table"));
|
|
rnh->rnh_walktree(rnh, flush_table_entry, rnh);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
flush_tables(struct ip_fw_chain *ch)
|
|
{
|
|
uint16_t tbl;
|
|
|
|
IPFW_WLOCK_ASSERT(ch);
|
|
|
|
for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
|
|
flush_table(ch, tbl);
|
|
}
|
|
|
|
static int
|
|
init_tables(struct ip_fw_chain *ch)
|
|
{
|
|
int i;
|
|
uint16_t j;
|
|
|
|
for (i = 0; i < IPFW_TABLES_MAX; i++) {
|
|
if (!rn_inithead((void **)&ch->tables[i], 32)) {
|
|
for (j = 0; j < i; j++) {
|
|
(void) flush_table(ch, j);
|
|
}
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
|
|
uint32_t *val)
|
|
{
|
|
struct radix_node_head *rnh;
|
|
struct table_entry *ent;
|
|
struct sockaddr_in sa;
|
|
|
|
if (tbl >= IPFW_TABLES_MAX)
|
|
return (0);
|
|
rnh = ch->tables[tbl];
|
|
sa.sin_len = 8;
|
|
sa.sin_addr.s_addr = addr;
|
|
ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
|
|
if (ent != NULL) {
|
|
*val = ent->value;
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
count_table_entry(struct radix_node *rn, void *arg)
|
|
{
|
|
u_int32_t * const cnt = arg;
|
|
|
|
(*cnt)++;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
|
|
{
|
|
struct radix_node_head *rnh;
|
|
|
|
if (tbl >= IPFW_TABLES_MAX)
|
|
return (EINVAL);
|
|
rnh = ch->tables[tbl];
|
|
*cnt = 0;
|
|
rnh->rnh_walktree(rnh, count_table_entry, cnt);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_table_entry(struct radix_node *rn, void *arg)
|
|
{
|
|
struct table_entry * const n = (struct table_entry *)rn;
|
|
ipfw_table * const tbl = arg;
|
|
ipfw_table_entry *ent;
|
|
|
|
if (tbl->cnt == tbl->size)
|
|
return (1);
|
|
ent = &tbl->ent[tbl->cnt];
|
|
ent->tbl = tbl->tbl;
|
|
if (in_nullhost(n->mask.sin_addr))
|
|
ent->masklen = 0;
|
|
else
|
|
ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
|
|
ent->addr = n->addr.sin_addr.s_addr;
|
|
ent->value = n->value;
|
|
tbl->cnt++;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
|
|
{
|
|
struct radix_node_head *rnh;
|
|
|
|
if (tbl->tbl >= IPFW_TABLES_MAX)
|
|
return (EINVAL);
|
|
rnh = ch->tables[tbl->tbl];
|
|
tbl->cnt = 0;
|
|
rnh->rnh_walktree(rnh, dump_table_entry, tbl);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
|
|
{
|
|
struct ucred *cr;
|
|
|
|
cr = inp->inp_cred;
|
|
ugp->fw_prid = jailed(cr) ? cr->cr_prison->pr_id : -1;
|
|
ugp->fw_uid = cr->cr_uid;
|
|
ugp->fw_ngroups = cr->cr_ngroups;
|
|
bcopy(cr->cr_groups, ugp->fw_groups, sizeof(ugp->fw_groups));
|
|
}
|
|
|
|
static int
|
|
check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
|
|
struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
|
|
u_int16_t src_port, struct ip_fw_ugid *ugp, int *ugid_lookupp,
|
|
struct inpcb *inp)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
struct inpcbinfo *pi;
|
|
int wildcard;
|
|
struct inpcb *pcb;
|
|
int match;
|
|
gid_t *gp;
|
|
|
|
/*
|
|
* Check to see if the UDP or TCP stack supplied us with
|
|
* the PCB. If so, rather then holding a lock and looking
|
|
* up the PCB, we can use the one that was supplied.
|
|
*/
|
|
if (inp && *ugid_lookupp == 0) {
|
|
INP_LOCK_ASSERT(inp);
|
|
if (inp->inp_socket != NULL) {
|
|
fill_ugid_cache(inp, ugp);
|
|
*ugid_lookupp = 1;
|
|
} else
|
|
*ugid_lookupp = -1;
|
|
}
|
|
/*
|
|
* If we have already been here and the packet has no
|
|
* PCB entry associated with it, then we can safely
|
|
* assume that this is a no match.
|
|
*/
|
|
if (*ugid_lookupp == -1)
|
|
return (0);
|
|
if (proto == IPPROTO_TCP) {
|
|
wildcard = 0;
|
|
pi = &V_tcbinfo;
|
|
} else if (proto == IPPROTO_UDP) {
|
|
wildcard = INPLOOKUP_WILDCARD;
|
|
pi = &V_udbinfo;
|
|
} else
|
|
return 0;
|
|
match = 0;
|
|
if (*ugid_lookupp == 0) {
|
|
INP_INFO_RLOCK(pi);
|
|
pcb = (oif) ?
|
|
in_pcblookup_hash(pi,
|
|
dst_ip, htons(dst_port),
|
|
src_ip, htons(src_port),
|
|
wildcard, oif) :
|
|
in_pcblookup_hash(pi,
|
|
src_ip, htons(src_port),
|
|
dst_ip, htons(dst_port),
|
|
wildcard, NULL);
|
|
if (pcb != NULL) {
|
|
fill_ugid_cache(pcb, ugp);
|
|
*ugid_lookupp = 1;
|
|
}
|
|
INP_INFO_RUNLOCK(pi);
|
|
if (*ugid_lookupp == 0) {
|
|
/*
|
|
* If the lookup did not yield any results, there
|
|
* is no sense in coming back and trying again. So
|
|
* we can set lookup to -1 and ensure that we wont
|
|
* bother the pcb system again.
|
|
*/
|
|
*ugid_lookupp = -1;
|
|
return (0);
|
|
}
|
|
}
|
|
if (insn->o.opcode == O_UID)
|
|
match = (ugp->fw_uid == (uid_t)insn->d[0]);
|
|
else if (insn->o.opcode == O_GID) {
|
|
for (gp = ugp->fw_groups;
|
|
gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
|
|
if (*gp == (gid_t)insn->d[0]) {
|
|
match = 1;
|
|
break;
|
|
}
|
|
} else if (insn->o.opcode == O_JAIL)
|
|
match = (ugp->fw_prid == (int)insn->d[0]);
|
|
return match;
|
|
}
|
|
|
|
/*
|
|
* The main check routine for the firewall.
|
|
*
|
|
* All arguments are in args so we can modify them and return them
|
|
* back to the caller.
|
|
*
|
|
* Parameters:
|
|
*
|
|
* args->m (in/out) The packet; we set to NULL when/if we nuke it.
|
|
* Starts with the IP header.
|
|
* args->eh (in) Mac header if present, or NULL for layer3 packet.
|
|
* args->L3offset Number of bytes bypassed if we came from L2.
|
|
* e.g. often sizeof(eh) ** NOTYET **
|
|
* args->oif Outgoing interface, or NULL if packet is incoming.
|
|
* The incoming interface is in the mbuf. (in)
|
|
* args->divert_rule (in/out)
|
|
* Skip up to the first rule past this rule number;
|
|
* upon return, non-zero port number for divert or tee.
|
|
*
|
|
* args->rule Pointer to the last matching rule (in/out)
|
|
* args->next_hop Socket we are forwarding to (out).
|
|
* args->f_id Addresses grabbed from the packet (out)
|
|
* args->cookie a cookie depending on rule action
|
|
*
|
|
* Return value:
|
|
*
|
|
* IP_FW_PASS the packet must be accepted
|
|
* IP_FW_DENY the packet must be dropped
|
|
* IP_FW_DIVERT divert packet, port in m_tag
|
|
* IP_FW_TEE tee packet, port in m_tag
|
|
* IP_FW_DUMMYNET to dummynet, pipe in args->cookie
|
|
* IP_FW_NETGRAPH into netgraph, cookie args->cookie
|
|
*
|
|
*/
|
|
int
|
|
ipfw_chk(struct ip_fw_args *args)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
INIT_VNET_IPFW(curvnet);
|
|
|
|
/*
|
|
* Local variables holding state during the processing of a packet:
|
|
*
|
|
* IMPORTANT NOTE: to speed up the processing of rules, there
|
|
* are some assumption on the values of the variables, which
|
|
* are documented here. Should you change them, please check
|
|
* the implementation of the various instructions to make sure
|
|
* that they still work.
|
|
*
|
|
* args->eh The MAC header. It is non-null for a layer2
|
|
* packet, it is NULL for a layer-3 packet.
|
|
* **notyet**
|
|
* args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
|
|
*
|
|
* m | args->m Pointer to the mbuf, as received from the caller.
|
|
* It may change if ipfw_chk() does an m_pullup, or if it
|
|
* consumes the packet because it calls send_reject().
|
|
* XXX This has to change, so that ipfw_chk() never modifies
|
|
* or consumes the buffer.
|
|
* ip is the beginning of the ip(4 or 6) header.
|
|
* Calculated by adding the L3offset to the start of data.
|
|
* (Until we start using L3offset, the packet is
|
|
* supposed to start with the ip header).
|
|
*/
|
|
struct mbuf *m = args->m;
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
|
|
/*
|
|
* For rules which contain uid/gid or jail constraints, cache
|
|
* a copy of the users credentials after the pcb lookup has been
|
|
* executed. This will speed up the processing of rules with
|
|
* these types of constraints, as well as decrease contention
|
|
* on pcb related locks.
|
|
*/
|
|
struct ip_fw_ugid fw_ugid_cache;
|
|
int ugid_lookup = 0;
|
|
|
|
/*
|
|
* divinput_flags If non-zero, set to the IP_FW_DIVERT_*_FLAG
|
|
* associated with a packet input on a divert socket. This
|
|
* will allow to distinguish traffic and its direction when
|
|
* it originates from a divert socket.
|
|
*/
|
|
u_int divinput_flags = 0;
|
|
|
|
/*
|
|
* oif | args->oif If NULL, ipfw_chk has been called on the
|
|
* inbound path (ether_input, ip_input).
|
|
* If non-NULL, ipfw_chk has been called on the outbound path
|
|
* (ether_output, ip_output).
|
|
*/
|
|
struct ifnet *oif = args->oif;
|
|
|
|
struct ip_fw *f = NULL; /* matching rule */
|
|
int retval = 0;
|
|
|
|
/*
|
|
* hlen The length of the IP header.
|
|
*/
|
|
u_int hlen = 0; /* hlen >0 means we have an IP pkt */
|
|
|
|
/*
|
|
* offset The offset of a fragment. offset != 0 means that
|
|
* we have a fragment at this offset of an IPv4 packet.
|
|
* offset == 0 means that (if this is an IPv4 packet)
|
|
* this is the first or only fragment.
|
|
* For IPv6 offset == 0 means there is no Fragment Header.
|
|
* If offset != 0 for IPv6 always use correct mask to
|
|
* get the correct offset because we add IP6F_MORE_FRAG
|
|
* to be able to dectect the first fragment which would
|
|
* otherwise have offset = 0.
|
|
*/
|
|
u_short offset = 0;
|
|
|
|
/*
|
|
* Local copies of addresses. They are only valid if we have
|
|
* an IP packet.
|
|
*
|
|
* proto The protocol. Set to 0 for non-ip packets,
|
|
* or to the protocol read from the packet otherwise.
|
|
* proto != 0 means that we have an IPv4 packet.
|
|
*
|
|
* src_port, dst_port port numbers, in HOST format. Only
|
|
* valid for TCP and UDP packets.
|
|
*
|
|
* src_ip, dst_ip ip addresses, in NETWORK format.
|
|
* Only valid for IPv4 packets.
|
|
*/
|
|
u_int8_t proto;
|
|
u_int16_t src_port = 0, dst_port = 0; /* NOTE: host format */
|
|
struct in_addr src_ip, dst_ip; /* NOTE: network format */
|
|
u_int16_t ip_len=0;
|
|
int pktlen;
|
|
u_int16_t etype = 0; /* Host order stored ether type */
|
|
|
|
/*
|
|
* dyn_dir = MATCH_UNKNOWN when rules unchecked,
|
|
* MATCH_NONE when checked and not matched (q = NULL),
|
|
* MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
|
|
*/
|
|
int dyn_dir = MATCH_UNKNOWN;
|
|
ipfw_dyn_rule *q = NULL;
|
|
struct ip_fw_chain *chain = &V_layer3_chain;
|
|
struct m_tag *mtag;
|
|
|
|
/*
|
|
* We store in ulp a pointer to the upper layer protocol header.
|
|
* In the ipv4 case this is easy to determine from the header,
|
|
* but for ipv6 we might have some additional headers in the middle.
|
|
* ulp is NULL if not found.
|
|
*/
|
|
void *ulp = NULL; /* upper layer protocol pointer. */
|
|
/* XXX ipv6 variables */
|
|
int is_ipv6 = 0;
|
|
u_int16_t ext_hd = 0; /* bits vector for extension header filtering */
|
|
/* end of ipv6 variables */
|
|
int is_ipv4 = 0;
|
|
|
|
if (m->m_flags & M_SKIP_FIREWALL)
|
|
return (IP_FW_PASS); /* accept */
|
|
|
|
dst_ip.s_addr = 0; /* make sure it is initialized */
|
|
pktlen = m->m_pkthdr.len;
|
|
args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
|
|
proto = args->f_id.proto = 0; /* mark f_id invalid */
|
|
/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
|
|
|
|
/*
|
|
* PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
|
|
* then it sets p to point at the offset "len" in the mbuf. WARNING: the
|
|
* pointer might become stale after other pullups (but we never use it
|
|
* this way).
|
|
*/
|
|
#define PULLUP_TO(len, p, T) \
|
|
do { \
|
|
int x = (len) + sizeof(T); \
|
|
if ((m)->m_len < x) { \
|
|
args->m = m = m_pullup(m, x); \
|
|
if (m == NULL) \
|
|
goto pullup_failed; \
|
|
} \
|
|
p = (mtod(m, char *) + (len)); \
|
|
} while (0)
|
|
|
|
/*
|
|
* if we have an ether header,
|
|
*/
|
|
if (args->eh)
|
|
etype = ntohs(args->eh->ether_type);
|
|
|
|
/* Identify IP packets and fill up variables. */
|
|
if (pktlen >= sizeof(struct ip6_hdr) &&
|
|
(args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
|
|
struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
|
|
is_ipv6 = 1;
|
|
args->f_id.addr_type = 6;
|
|
hlen = sizeof(struct ip6_hdr);
|
|
proto = ip6->ip6_nxt;
|
|
|
|
/* Search extension headers to find upper layer protocols */
|
|
while (ulp == NULL) {
|
|
switch (proto) {
|
|
case IPPROTO_ICMPV6:
|
|
PULLUP_TO(hlen, ulp, struct icmp6_hdr);
|
|
args->f_id.flags = ICMP6(ulp)->icmp6_type;
|
|
break;
|
|
|
|
case IPPROTO_TCP:
|
|
PULLUP_TO(hlen, ulp, struct tcphdr);
|
|
dst_port = TCP(ulp)->th_dport;
|
|
src_port = TCP(ulp)->th_sport;
|
|
args->f_id.flags = TCP(ulp)->th_flags;
|
|
break;
|
|
|
|
case IPPROTO_SCTP:
|
|
PULLUP_TO(hlen, ulp, struct sctphdr);
|
|
src_port = SCTP(ulp)->src_port;
|
|
dst_port = SCTP(ulp)->dest_port;
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
PULLUP_TO(hlen, ulp, struct udphdr);
|
|
dst_port = UDP(ulp)->uh_dport;
|
|
src_port = UDP(ulp)->uh_sport;
|
|
break;
|
|
|
|
case IPPROTO_HOPOPTS: /* RFC 2460 */
|
|
PULLUP_TO(hlen, ulp, struct ip6_hbh);
|
|
ext_hd |= EXT_HOPOPTS;
|
|
hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
|
|
proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
|
|
ulp = NULL;
|
|
break;
|
|
|
|
case IPPROTO_ROUTING: /* RFC 2460 */
|
|
PULLUP_TO(hlen, ulp, struct ip6_rthdr);
|
|
switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
|
|
case 0:
|
|
ext_hd |= EXT_RTHDR0;
|
|
break;
|
|
case 2:
|
|
ext_hd |= EXT_RTHDR2;
|
|
break;
|
|
default:
|
|
printf("IPFW2: IPV6 - Unknown Routing "
|
|
"Header type(%d)\n",
|
|
((struct ip6_rthdr *)ulp)->ip6r_type);
|
|
if (V_fw_deny_unknown_exthdrs)
|
|
return (IP_FW_DENY);
|
|
break;
|
|
}
|
|
ext_hd |= EXT_ROUTING;
|
|
hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
|
|
proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
|
|
ulp = NULL;
|
|
break;
|
|
|
|
case IPPROTO_FRAGMENT: /* RFC 2460 */
|
|
PULLUP_TO(hlen, ulp, struct ip6_frag);
|
|
ext_hd |= EXT_FRAGMENT;
|
|
hlen += sizeof (struct ip6_frag);
|
|
proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
|
|
offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
|
|
IP6F_OFF_MASK;
|
|
/* Add IP6F_MORE_FRAG for offset of first
|
|
* fragment to be != 0. */
|
|
offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
|
|
IP6F_MORE_FRAG;
|
|
if (offset == 0) {
|
|
printf("IPFW2: IPV6 - Invalid Fragment "
|
|
"Header\n");
|
|
if (V_fw_deny_unknown_exthdrs)
|
|
return (IP_FW_DENY);
|
|
break;
|
|
}
|
|
args->f_id.frag_id6 =
|
|
ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
|
|
ulp = NULL;
|
|
break;
|
|
|
|
case IPPROTO_DSTOPTS: /* RFC 2460 */
|
|
PULLUP_TO(hlen, ulp, struct ip6_hbh);
|
|
ext_hd |= EXT_DSTOPTS;
|
|
hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
|
|
proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
|
|
ulp = NULL;
|
|
break;
|
|
|
|
case IPPROTO_AH: /* RFC 2402 */
|
|
PULLUP_TO(hlen, ulp, struct ip6_ext);
|
|
ext_hd |= EXT_AH;
|
|
hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
|
|
proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
|
|
ulp = NULL;
|
|
break;
|
|
|
|
case IPPROTO_ESP: /* RFC 2406 */
|
|
PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
|
|
/* Anything past Seq# is variable length and
|
|
* data past this ext. header is encrypted. */
|
|
ext_hd |= EXT_ESP;
|
|
break;
|
|
|
|
case IPPROTO_NONE: /* RFC 2460 */
|
|
/*
|
|
* Packet ends here, and IPv6 header has
|
|
* already been pulled up. If ip6e_len!=0
|
|
* then octets must be ignored.
|
|
*/
|
|
ulp = ip; /* non-NULL to get out of loop. */
|
|
break;
|
|
|
|
case IPPROTO_OSPFIGP:
|
|
/* XXX OSPF header check? */
|
|
PULLUP_TO(hlen, ulp, struct ip6_ext);
|
|
break;
|
|
|
|
case IPPROTO_PIM:
|
|
/* XXX PIM header check? */
|
|
PULLUP_TO(hlen, ulp, struct pim);
|
|
break;
|
|
|
|
case IPPROTO_CARP:
|
|
PULLUP_TO(hlen, ulp, struct carp_header);
|
|
if (((struct carp_header *)ulp)->carp_version !=
|
|
CARP_VERSION)
|
|
return (IP_FW_DENY);
|
|
if (((struct carp_header *)ulp)->carp_type !=
|
|
CARP_ADVERTISEMENT)
|
|
return (IP_FW_DENY);
|
|
break;
|
|
|
|
case IPPROTO_IPV6: /* RFC 2893 */
|
|
PULLUP_TO(hlen, ulp, struct ip6_hdr);
|
|
break;
|
|
|
|
case IPPROTO_IPV4: /* RFC 2893 */
|
|
PULLUP_TO(hlen, ulp, struct ip);
|
|
break;
|
|
|
|
default:
|
|
printf("IPFW2: IPV6 - Unknown Extension "
|
|
"Header(%d), ext_hd=%x\n", proto, ext_hd);
|
|
if (V_fw_deny_unknown_exthdrs)
|
|
return (IP_FW_DENY);
|
|
PULLUP_TO(hlen, ulp, struct ip6_ext);
|
|
break;
|
|
} /*switch */
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
ip6 = (struct ip6_hdr *)ip;
|
|
args->f_id.src_ip6 = ip6->ip6_src;
|
|
args->f_id.dst_ip6 = ip6->ip6_dst;
|
|
args->f_id.src_ip = 0;
|
|
args->f_id.dst_ip = 0;
|
|
args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
|
|
} else if (pktlen >= sizeof(struct ip) &&
|
|
(args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
|
|
is_ipv4 = 1;
|
|
hlen = ip->ip_hl << 2;
|
|
args->f_id.addr_type = 4;
|
|
|
|
/*
|
|
* Collect parameters into local variables for faster matching.
|
|
*/
|
|
proto = ip->ip_p;
|
|
src_ip = ip->ip_src;
|
|
dst_ip = ip->ip_dst;
|
|
if (args->eh != NULL) { /* layer 2 packets are as on the wire */
|
|
offset = ntohs(ip->ip_off) & IP_OFFMASK;
|
|
ip_len = ntohs(ip->ip_len);
|
|
} else {
|
|
offset = ip->ip_off & IP_OFFMASK;
|
|
ip_len = ip->ip_len;
|
|
}
|
|
pktlen = ip_len < pktlen ? ip_len : pktlen;
|
|
|
|
if (offset == 0) {
|
|
switch (proto) {
|
|
case IPPROTO_TCP:
|
|
PULLUP_TO(hlen, ulp, struct tcphdr);
|
|
dst_port = TCP(ulp)->th_dport;
|
|
src_port = TCP(ulp)->th_sport;
|
|
args->f_id.flags = TCP(ulp)->th_flags;
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
PULLUP_TO(hlen, ulp, struct udphdr);
|
|
dst_port = UDP(ulp)->uh_dport;
|
|
src_port = UDP(ulp)->uh_sport;
|
|
break;
|
|
|
|
case IPPROTO_ICMP:
|
|
PULLUP_TO(hlen, ulp, struct icmphdr);
|
|
args->f_id.flags = ICMP(ulp)->icmp_type;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ip = mtod(m, struct ip *);
|
|
args->f_id.src_ip = ntohl(src_ip.s_addr);
|
|
args->f_id.dst_ip = ntohl(dst_ip.s_addr);
|
|
}
|
|
#undef PULLUP_TO
|
|
if (proto) { /* we may have port numbers, store them */
|
|
args->f_id.proto = proto;
|
|
args->f_id.src_port = src_port = ntohs(src_port);
|
|
args->f_id.dst_port = dst_port = ntohs(dst_port);
|
|
}
|
|
|
|
IPFW_RLOCK(chain);
|
|
mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
|
|
if (args->rule) {
|
|
/*
|
|
* Packet has already been tagged. Look for the next rule
|
|
* to restart processing.
|
|
*/
|
|
f = args->rule->next_rule;
|
|
if (f == NULL)
|
|
f = lookup_next_rule(args->rule, 0);
|
|
} else {
|
|
/*
|
|
* Find the starting rule. It can be either the first
|
|
* one, or the one after divert_rule if asked so.
|
|
*/
|
|
int skipto = mtag ? divert_cookie(mtag) : 0;
|
|
|
|
f = chain->rules;
|
|
if (args->eh == NULL && skipto != 0) {
|
|
if (skipto >= IPFW_DEFAULT_RULE) {
|
|
IPFW_RUNLOCK(chain);
|
|
return (IP_FW_DENY); /* invalid */
|
|
}
|
|
while (f && f->rulenum <= skipto)
|
|
f = f->next;
|
|
if (f == NULL) { /* drop packet */
|
|
IPFW_RUNLOCK(chain);
|
|
return (IP_FW_DENY);
|
|
}
|
|
}
|
|
}
|
|
/* reset divert rule to avoid confusion later */
|
|
if (mtag) {
|
|
divinput_flags = divert_info(mtag) &
|
|
(IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
|
|
m_tag_delete(m, mtag);
|
|
}
|
|
|
|
/*
|
|
* Now scan the rules, and parse microinstructions for each rule.
|
|
*/
|
|
for (; f; f = f->next) {
|
|
ipfw_insn *cmd;
|
|
uint32_t tablearg = 0;
|
|
int l, cmdlen, skip_or; /* skip rest of OR block */
|
|
|
|
again:
|
|
if (V_set_disable & (1 << f->set) )
|
|
continue;
|
|
|
|
skip_or = 0;
|
|
for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
|
|
l -= cmdlen, cmd += cmdlen) {
|
|
int match;
|
|
|
|
/*
|
|
* check_body is a jump target used when we find a
|
|
* CHECK_STATE, and need to jump to the body of
|
|
* the target rule.
|
|
*/
|
|
|
|
check_body:
|
|
cmdlen = F_LEN(cmd);
|
|
/*
|
|
* An OR block (insn_1 || .. || insn_n) has the
|
|
* F_OR bit set in all but the last instruction.
|
|
* The first match will set "skip_or", and cause
|
|
* the following instructions to be skipped until
|
|
* past the one with the F_OR bit clear.
|
|
*/
|
|
if (skip_or) { /* skip this instruction */
|
|
if ((cmd->len & F_OR) == 0)
|
|
skip_or = 0; /* next one is good */
|
|
continue;
|
|
}
|
|
match = 0; /* set to 1 if we succeed */
|
|
|
|
switch (cmd->opcode) {
|
|
/*
|
|
* The first set of opcodes compares the packet's
|
|
* fields with some pattern, setting 'match' if a
|
|
* match is found. At the end of the loop there is
|
|
* logic to deal with F_NOT and F_OR flags associated
|
|
* with the opcode.
|
|
*/
|
|
case O_NOP:
|
|
match = 1;
|
|
break;
|
|
|
|
case O_FORWARD_MAC:
|
|
printf("ipfw: opcode %d unimplemented\n",
|
|
cmd->opcode);
|
|
break;
|
|
|
|
case O_GID:
|
|
case O_UID:
|
|
case O_JAIL:
|
|
/*
|
|
* We only check offset == 0 && proto != 0,
|
|
* as this ensures that we have a
|
|
* packet with the ports info.
|
|
*/
|
|
if (offset!=0)
|
|
break;
|
|
if (is_ipv6) /* XXX to be fixed later */
|
|
break;
|
|
if (proto == IPPROTO_TCP ||
|
|
proto == IPPROTO_UDP)
|
|
match = check_uidgid(
|
|
(ipfw_insn_u32 *)cmd,
|
|
proto, oif,
|
|
dst_ip, dst_port,
|
|
src_ip, src_port, &fw_ugid_cache,
|
|
&ugid_lookup, args->inp);
|
|
break;
|
|
|
|
case O_RECV:
|
|
match = iface_match(m->m_pkthdr.rcvif,
|
|
(ipfw_insn_if *)cmd);
|
|
break;
|
|
|
|
case O_XMIT:
|
|
match = iface_match(oif, (ipfw_insn_if *)cmd);
|
|
break;
|
|
|
|
case O_VIA:
|
|
match = iface_match(oif ? oif :
|
|
m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
|
|
break;
|
|
|
|
case O_MACADDR2:
|
|
if (args->eh != NULL) { /* have MAC header */
|
|
u_int32_t *want = (u_int32_t *)
|
|
((ipfw_insn_mac *)cmd)->addr;
|
|
u_int32_t *mask = (u_int32_t *)
|
|
((ipfw_insn_mac *)cmd)->mask;
|
|
u_int32_t *hdr = (u_int32_t *)args->eh;
|
|
|
|
match =
|
|
( want[0] == (hdr[0] & mask[0]) &&
|
|
want[1] == (hdr[1] & mask[1]) &&
|
|
want[2] == (hdr[2] & mask[2]) );
|
|
}
|
|
break;
|
|
|
|
case O_MAC_TYPE:
|
|
if (args->eh != NULL) {
|
|
u_int16_t *p =
|
|
((ipfw_insn_u16 *)cmd)->ports;
|
|
int i;
|
|
|
|
for (i = cmdlen - 1; !match && i>0;
|
|
i--, p += 2)
|
|
match = (etype >= p[0] &&
|
|
etype <= p[1]);
|
|
}
|
|
break;
|
|
|
|
case O_FRAG:
|
|
match = (offset != 0);
|
|
break;
|
|
|
|
case O_IN: /* "out" is "not in" */
|
|
match = (oif == NULL);
|
|
break;
|
|
|
|
case O_LAYER2:
|
|
match = (args->eh != NULL);
|
|
break;
|
|
|
|
case O_DIVERTED:
|
|
match = (cmd->arg1 & 1 && divinput_flags &
|
|
IP_FW_DIVERT_LOOPBACK_FLAG) ||
|
|
(cmd->arg1 & 2 && divinput_flags &
|
|
IP_FW_DIVERT_OUTPUT_FLAG);
|
|
break;
|
|
|
|
case O_PROTO:
|
|
/*
|
|
* We do not allow an arg of 0 so the
|
|
* check of "proto" only suffices.
|
|
*/
|
|
match = (proto == cmd->arg1);
|
|
break;
|
|
|
|
case O_IP_SRC:
|
|
match = is_ipv4 &&
|
|
(((ipfw_insn_ip *)cmd)->addr.s_addr ==
|
|
src_ip.s_addr);
|
|
break;
|
|
|
|
case O_IP_SRC_LOOKUP:
|
|
case O_IP_DST_LOOKUP:
|
|
if (is_ipv4) {
|
|
uint32_t a =
|
|
(cmd->opcode == O_IP_DST_LOOKUP) ?
|
|
dst_ip.s_addr : src_ip.s_addr;
|
|
uint32_t v = 0;
|
|
|
|
match = lookup_table(chain, cmd->arg1, a,
|
|
&v);
|
|
if (!match)
|
|
break;
|
|
if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
|
|
match =
|
|
((ipfw_insn_u32 *)cmd)->d[0] == v;
|
|
else
|
|
tablearg = v;
|
|
}
|
|
break;
|
|
|
|
case O_IP_SRC_MASK:
|
|
case O_IP_DST_MASK:
|
|
if (is_ipv4) {
|
|
uint32_t a =
|
|
(cmd->opcode == O_IP_DST_MASK) ?
|
|
dst_ip.s_addr : src_ip.s_addr;
|
|
uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
|
|
int i = cmdlen-1;
|
|
|
|
for (; !match && i>0; i-= 2, p+= 2)
|
|
match = (p[0] == (a & p[1]));
|
|
}
|
|
break;
|
|
|
|
case O_IP_SRC_ME:
|
|
if (is_ipv4) {
|
|
struct ifnet *tif;
|
|
|
|
INADDR_TO_IFP(src_ip, tif);
|
|
match = (tif != NULL);
|
|
}
|
|
break;
|
|
|
|
case O_IP_DST_SET:
|
|
case O_IP_SRC_SET:
|
|
if (is_ipv4) {
|
|
u_int32_t *d = (u_int32_t *)(cmd+1);
|
|
u_int32_t addr =
|
|
cmd->opcode == O_IP_DST_SET ?
|
|
args->f_id.dst_ip :
|
|
args->f_id.src_ip;
|
|
|
|
if (addr < d[0])
|
|
break;
|
|
addr -= d[0]; /* subtract base */
|
|
match = (addr < cmd->arg1) &&
|
|
( d[ 1 + (addr>>5)] &
|
|
(1<<(addr & 0x1f)) );
|
|
}
|
|
break;
|
|
|
|
case O_IP_DST:
|
|
match = is_ipv4 &&
|
|
(((ipfw_insn_ip *)cmd)->addr.s_addr ==
|
|
dst_ip.s_addr);
|
|
break;
|
|
|
|
case O_IP_DST_ME:
|
|
if (is_ipv4) {
|
|
struct ifnet *tif;
|
|
|
|
INADDR_TO_IFP(dst_ip, tif);
|
|
match = (tif != NULL);
|
|
}
|
|
break;
|
|
|
|
case O_IP_SRCPORT:
|
|
case O_IP_DSTPORT:
|
|
/*
|
|
* offset == 0 && proto != 0 is enough
|
|
* to guarantee that we have a
|
|
* packet with port info.
|
|
*/
|
|
if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
|
|
&& offset == 0) {
|
|
u_int16_t x =
|
|
(cmd->opcode == O_IP_SRCPORT) ?
|
|
src_port : dst_port ;
|
|
u_int16_t *p =
|
|
((ipfw_insn_u16 *)cmd)->ports;
|
|
int i;
|
|
|
|
for (i = cmdlen - 1; !match && i>0;
|
|
i--, p += 2)
|
|
match = (x>=p[0] && x<=p[1]);
|
|
}
|
|
break;
|
|
|
|
case O_ICMPTYPE:
|
|
match = (offset == 0 && proto==IPPROTO_ICMP &&
|
|
icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
|
|
break;
|
|
|
|
#ifdef INET6
|
|
case O_ICMP6TYPE:
|
|
match = is_ipv6 && offset == 0 &&
|
|
proto==IPPROTO_ICMPV6 &&
|
|
icmp6type_match(
|
|
ICMP6(ulp)->icmp6_type,
|
|
(ipfw_insn_u32 *)cmd);
|
|
break;
|
|
#endif /* INET6 */
|
|
|
|
case O_IPOPT:
|
|
match = (is_ipv4 &&
|
|
ipopts_match(ip, cmd) );
|
|
break;
|
|
|
|
case O_IPVER:
|
|
match = (is_ipv4 &&
|
|
cmd->arg1 == ip->ip_v);
|
|
break;
|
|
|
|
case O_IPID:
|
|
case O_IPLEN:
|
|
case O_IPTTL:
|
|
if (is_ipv4) { /* only for IP packets */
|
|
uint16_t x;
|
|
uint16_t *p;
|
|
int i;
|
|
|
|
if (cmd->opcode == O_IPLEN)
|
|
x = ip_len;
|
|
else if (cmd->opcode == O_IPTTL)
|
|
x = ip->ip_ttl;
|
|
else /* must be IPID */
|
|
x = ntohs(ip->ip_id);
|
|
if (cmdlen == 1) {
|
|
match = (cmd->arg1 == x);
|
|
break;
|
|
}
|
|
/* otherwise we have ranges */
|
|
p = ((ipfw_insn_u16 *)cmd)->ports;
|
|
i = cmdlen - 1;
|
|
for (; !match && i>0; i--, p += 2)
|
|
match = (x >= p[0] && x <= p[1]);
|
|
}
|
|
break;
|
|
|
|
case O_IPPRECEDENCE:
|
|
match = (is_ipv4 &&
|
|
(cmd->arg1 == (ip->ip_tos & 0xe0)) );
|
|
break;
|
|
|
|
case O_IPTOS:
|
|
match = (is_ipv4 &&
|
|
flags_match(cmd, ip->ip_tos));
|
|
break;
|
|
|
|
case O_TCPDATALEN:
|
|
if (proto == IPPROTO_TCP && offset == 0) {
|
|
struct tcphdr *tcp;
|
|
uint16_t x;
|
|
uint16_t *p;
|
|
int i;
|
|
|
|
tcp = TCP(ulp);
|
|
x = ip_len -
|
|
((ip->ip_hl + tcp->th_off) << 2);
|
|
if (cmdlen == 1) {
|
|
match = (cmd->arg1 == x);
|
|
break;
|
|
}
|
|
/* otherwise we have ranges */
|
|
p = ((ipfw_insn_u16 *)cmd)->ports;
|
|
i = cmdlen - 1;
|
|
for (; !match && i>0; i--, p += 2)
|
|
match = (x >= p[0] && x <= p[1]);
|
|
}
|
|
break;
|
|
|
|
case O_TCPFLAGS:
|
|
match = (proto == IPPROTO_TCP && offset == 0 &&
|
|
flags_match(cmd, TCP(ulp)->th_flags));
|
|
break;
|
|
|
|
case O_TCPOPTS:
|
|
match = (proto == IPPROTO_TCP && offset == 0 &&
|
|
tcpopts_match(TCP(ulp), cmd));
|
|
break;
|
|
|
|
case O_TCPSEQ:
|
|
match = (proto == IPPROTO_TCP && offset == 0 &&
|
|
((ipfw_insn_u32 *)cmd)->d[0] ==
|
|
TCP(ulp)->th_seq);
|
|
break;
|
|
|
|
case O_TCPACK:
|
|
match = (proto == IPPROTO_TCP && offset == 0 &&
|
|
((ipfw_insn_u32 *)cmd)->d[0] ==
|
|
TCP(ulp)->th_ack);
|
|
break;
|
|
|
|
case O_TCPWIN:
|
|
match = (proto == IPPROTO_TCP && offset == 0 &&
|
|
cmd->arg1 == TCP(ulp)->th_win);
|
|
break;
|
|
|
|
case O_ESTAB:
|
|
/* reject packets which have SYN only */
|
|
/* XXX should i also check for TH_ACK ? */
|
|
match = (proto == IPPROTO_TCP && offset == 0 &&
|
|
(TCP(ulp)->th_flags &
|
|
(TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
|
|
break;
|
|
|
|
case O_ALTQ: {
|
|
struct pf_mtag *at;
|
|
ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
|
|
|
|
match = 1;
|
|
at = pf_find_mtag(m);
|
|
if (at != NULL && at->qid != 0)
|
|
break;
|
|
at = pf_get_mtag(m);
|
|
if (at == NULL) {
|
|
/*
|
|
* Let the packet fall back to the
|
|
* default ALTQ.
|
|
*/
|
|
break;
|
|
}
|
|
at->qid = altq->qid;
|
|
if (is_ipv4)
|
|
at->af = AF_INET;
|
|
else
|
|
at->af = AF_LINK;
|
|
at->hdr = ip;
|
|
break;
|
|
}
|
|
|
|
case O_LOG:
|
|
if (V_fw_verbose)
|
|
ipfw_log(f, hlen, args, m,
|
|
oif, offset, tablearg, ip);
|
|
match = 1;
|
|
break;
|
|
|
|
case O_PROB:
|
|
match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
|
|
break;
|
|
|
|
case O_VERREVPATH:
|
|
/* Outgoing packets automatically pass/match */
|
|
match = ((oif != NULL) ||
|
|
(m->m_pkthdr.rcvif == NULL) ||
|
|
(
|
|
#ifdef INET6
|
|
is_ipv6 ?
|
|
verify_path6(&(args->f_id.src_ip6),
|
|
m->m_pkthdr.rcvif) :
|
|
#endif
|
|
verify_path(src_ip, m->m_pkthdr.rcvif,
|
|
args->f_id.fib)));
|
|
break;
|
|
|
|
case O_VERSRCREACH:
|
|
/* Outgoing packets automatically pass/match */
|
|
match = (hlen > 0 && ((oif != NULL) ||
|
|
#ifdef INET6
|
|
is_ipv6 ?
|
|
verify_path6(&(args->f_id.src_ip6),
|
|
NULL) :
|
|
#endif
|
|
verify_path(src_ip, NULL, args->f_id.fib)));
|
|
break;
|
|
|
|
case O_ANTISPOOF:
|
|
/* Outgoing packets automatically pass/match */
|
|
if (oif == NULL && hlen > 0 &&
|
|
( (is_ipv4 && in_localaddr(src_ip))
|
|
#ifdef INET6
|
|
|| (is_ipv6 &&
|
|
in6_localaddr(&(args->f_id.src_ip6)))
|
|
#endif
|
|
))
|
|
match =
|
|
#ifdef INET6
|
|
is_ipv6 ? verify_path6(
|
|
&(args->f_id.src_ip6),
|
|
m->m_pkthdr.rcvif) :
|
|
#endif
|
|
verify_path(src_ip,
|
|
m->m_pkthdr.rcvif,
|
|
args->f_id.fib);
|
|
else
|
|
match = 1;
|
|
break;
|
|
|
|
case O_IPSEC:
|
|
#ifdef IPSEC
|
|
match = (m_tag_find(m,
|
|
PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
|
|
#endif
|
|
/* otherwise no match */
|
|
break;
|
|
|
|
#ifdef INET6
|
|
case O_IP6_SRC:
|
|
match = is_ipv6 &&
|
|
IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
|
|
&((ipfw_insn_ip6 *)cmd)->addr6);
|
|
break;
|
|
|
|
case O_IP6_DST:
|
|
match = is_ipv6 &&
|
|
IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
|
|
&((ipfw_insn_ip6 *)cmd)->addr6);
|
|
break;
|
|
case O_IP6_SRC_MASK:
|
|
case O_IP6_DST_MASK:
|
|
if (is_ipv6) {
|
|
int i = cmdlen - 1;
|
|
struct in6_addr p;
|
|
struct in6_addr *d =
|
|
&((ipfw_insn_ip6 *)cmd)->addr6;
|
|
|
|
for (; !match && i > 0; d += 2,
|
|
i -= F_INSN_SIZE(struct in6_addr)
|
|
* 2) {
|
|
p = (cmd->opcode ==
|
|
O_IP6_SRC_MASK) ?
|
|
args->f_id.src_ip6:
|
|
args->f_id.dst_ip6;
|
|
APPLY_MASK(&p, &d[1]);
|
|
match =
|
|
IN6_ARE_ADDR_EQUAL(&d[0],
|
|
&p);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case O_IP6_SRC_ME:
|
|
match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
|
|
break;
|
|
|
|
case O_IP6_DST_ME:
|
|
match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
|
|
break;
|
|
|
|
case O_FLOW6ID:
|
|
match = is_ipv6 &&
|
|
flow6id_match(args->f_id.flow_id6,
|
|
(ipfw_insn_u32 *) cmd);
|
|
break;
|
|
|
|
case O_EXT_HDR:
|
|
match = is_ipv6 &&
|
|
(ext_hd & ((ipfw_insn *) cmd)->arg1);
|
|
break;
|
|
|
|
case O_IP6:
|
|
match = is_ipv6;
|
|
break;
|
|
#endif
|
|
|
|
case O_IP4:
|
|
match = is_ipv4;
|
|
break;
|
|
|
|
case O_TAG: {
|
|
uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
|
|
tablearg : cmd->arg1;
|
|
|
|
/* Packet is already tagged with this tag? */
|
|
mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
|
|
|
|
/* We have `untag' action when F_NOT flag is
|
|
* present. And we must remove this mtag from
|
|
* mbuf and reset `match' to zero (`match' will
|
|
* be inversed later).
|
|
* Otherwise we should allocate new mtag and
|
|
* push it into mbuf.
|
|
*/
|
|
if (cmd->len & F_NOT) { /* `untag' action */
|
|
if (mtag != NULL)
|
|
m_tag_delete(m, mtag);
|
|
} else if (mtag == NULL) {
|
|
if ((mtag = m_tag_alloc(MTAG_IPFW,
|
|
tag, 0, M_NOWAIT)) != NULL)
|
|
m_tag_prepend(m, mtag);
|
|
}
|
|
match = (cmd->len & F_NOT) ? 0: 1;
|
|
break;
|
|
}
|
|
|
|
case O_FIB: /* try match the specified fib */
|
|
if (args->f_id.fib == cmd->arg1)
|
|
match = 1;
|
|
break;
|
|
|
|
case O_TAGGED: {
|
|
uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
|
|
tablearg : cmd->arg1;
|
|
|
|
if (cmdlen == 1) {
|
|
match = m_tag_locate(m, MTAG_IPFW,
|
|
tag, NULL) != NULL;
|
|
break;
|
|
}
|
|
|
|
/* we have ranges */
|
|
for (mtag = m_tag_first(m);
|
|
mtag != NULL && !match;
|
|
mtag = m_tag_next(m, mtag)) {
|
|
uint16_t *p;
|
|
int i;
|
|
|
|
if (mtag->m_tag_cookie != MTAG_IPFW)
|
|
continue;
|
|
|
|
p = ((ipfw_insn_u16 *)cmd)->ports;
|
|
i = cmdlen - 1;
|
|
for(; !match && i > 0; i--, p += 2)
|
|
match =
|
|
mtag->m_tag_id >= p[0] &&
|
|
mtag->m_tag_id <= p[1];
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The second set of opcodes represents 'actions',
|
|
* i.e. the terminal part of a rule once the packet
|
|
* matches all previous patterns.
|
|
* Typically there is only one action for each rule,
|
|
* and the opcode is stored at the end of the rule
|
|
* (but there are exceptions -- see below).
|
|
*
|
|
* In general, here we set retval and terminate the
|
|
* outer loop (would be a 'break 3' in some language,
|
|
* but we need to do a 'goto done').
|
|
*
|
|
* Exceptions:
|
|
* O_COUNT and O_SKIPTO actions:
|
|
* instead of terminating, we jump to the next rule
|
|
* ('goto next_rule', equivalent to a 'break 2'),
|
|
* or to the SKIPTO target ('goto again' after
|
|
* having set f, cmd and l), respectively.
|
|
*
|
|
* O_TAG, O_LOG and O_ALTQ action parameters:
|
|
* perform some action and set match = 1;
|
|
*
|
|
* O_LIMIT and O_KEEP_STATE: these opcodes are
|
|
* not real 'actions', and are stored right
|
|
* before the 'action' part of the rule.
|
|
* These opcodes try to install an entry in the
|
|
* state tables; if successful, we continue with
|
|
* the next opcode (match=1; break;), otherwise
|
|
* the packet * must be dropped
|
|
* ('goto done' after setting retval);
|
|
*
|
|
* O_PROBE_STATE and O_CHECK_STATE: these opcodes
|
|
* cause a lookup of the state table, and a jump
|
|
* to the 'action' part of the parent rule
|
|
* ('goto check_body') if an entry is found, or
|
|
* (CHECK_STATE only) a jump to the next rule if
|
|
* the entry is not found ('goto next_rule').
|
|
* The result of the lookup is cached to make
|
|
* further instances of these opcodes are
|
|
* effectively NOPs.
|
|
*/
|
|
case O_LIMIT:
|
|
case O_KEEP_STATE:
|
|
if (install_state(f,
|
|
(ipfw_insn_limit *)cmd, args, tablearg)) {
|
|
retval = IP_FW_DENY;
|
|
goto done; /* error/limit violation */
|
|
}
|
|
match = 1;
|
|
break;
|
|
|
|
case O_PROBE_STATE:
|
|
case O_CHECK_STATE:
|
|
/*
|
|
* dynamic rules are checked at the first
|
|
* keep-state or check-state occurrence,
|
|
* with the result being stored in dyn_dir.
|
|
* The compiler introduces a PROBE_STATE
|
|
* instruction for us when we have a
|
|
* KEEP_STATE (because PROBE_STATE needs
|
|
* to be run first).
|
|
*/
|
|
if (dyn_dir == MATCH_UNKNOWN &&
|
|
(q = lookup_dyn_rule(&args->f_id,
|
|
&dyn_dir, proto == IPPROTO_TCP ?
|
|
TCP(ulp) : NULL))
|
|
!= NULL) {
|
|
/*
|
|
* Found dynamic entry, update stats
|
|
* and jump to the 'action' part of
|
|
* the parent rule.
|
|
*/
|
|
q->pcnt++;
|
|
q->bcnt += pktlen;
|
|
f = q->rule;
|
|
cmd = ACTION_PTR(f);
|
|
l = f->cmd_len - f->act_ofs;
|
|
IPFW_DYN_UNLOCK();
|
|
goto check_body;
|
|
}
|
|
/*
|
|
* Dynamic entry not found. If CHECK_STATE,
|
|
* skip to next rule, if PROBE_STATE just
|
|
* ignore and continue with next opcode.
|
|
*/
|
|
if (cmd->opcode == O_CHECK_STATE)
|
|
goto next_rule;
|
|
match = 1;
|
|
break;
|
|
|
|
case O_ACCEPT:
|
|
retval = 0; /* accept */
|
|
goto done;
|
|
|
|
case O_PIPE:
|
|
case O_QUEUE:
|
|
args->rule = f; /* report matching rule */
|
|
if (cmd->arg1 == IP_FW_TABLEARG)
|
|
args->cookie = tablearg;
|
|
else
|
|
args->cookie = cmd->arg1;
|
|
retval = IP_FW_DUMMYNET;
|
|
goto done;
|
|
|
|
case O_DIVERT:
|
|
case O_TEE: {
|
|
struct divert_tag *dt;
|
|
|
|
if (args->eh) /* not on layer 2 */
|
|
break;
|
|
mtag = m_tag_get(PACKET_TAG_DIVERT,
|
|
sizeof(struct divert_tag),
|
|
M_NOWAIT);
|
|
if (mtag == NULL) {
|
|
/* XXX statistic */
|
|
/* drop packet */
|
|
IPFW_RUNLOCK(chain);
|
|
return (IP_FW_DENY);
|
|
}
|
|
dt = (struct divert_tag *)(mtag+1);
|
|
dt->cookie = f->rulenum;
|
|
if (cmd->arg1 == IP_FW_TABLEARG)
|
|
dt->info = tablearg;
|
|
else
|
|
dt->info = cmd->arg1;
|
|
m_tag_prepend(m, mtag);
|
|
retval = (cmd->opcode == O_DIVERT) ?
|
|
IP_FW_DIVERT : IP_FW_TEE;
|
|
goto done;
|
|
}
|
|
case O_COUNT:
|
|
case O_SKIPTO:
|
|
f->pcnt++; /* update stats */
|
|
f->bcnt += pktlen;
|
|
f->timestamp = time_uptime;
|
|
if (cmd->opcode == O_COUNT)
|
|
goto next_rule;
|
|
/* handle skipto */
|
|
if (cmd->arg1 == IP_FW_TABLEARG) {
|
|
f = lookup_next_rule(f, tablearg);
|
|
} else {
|
|
if (f->next_rule == NULL)
|
|
lookup_next_rule(f, 0);
|
|
f = f->next_rule;
|
|
}
|
|
goto again;
|
|
|
|
case O_REJECT:
|
|
/*
|
|
* Drop the packet and send a reject notice
|
|
* if the packet is not ICMP (or is an ICMP
|
|
* query), and it is not multicast/broadcast.
|
|
*/
|
|
if (hlen > 0 && is_ipv4 && offset == 0 &&
|
|
(proto != IPPROTO_ICMP ||
|
|
is_icmp_query(ICMP(ulp))) &&
|
|
!(m->m_flags & (M_BCAST|M_MCAST)) &&
|
|
!IN_MULTICAST(ntohl(dst_ip.s_addr))) {
|
|
send_reject(args, cmd->arg1, ip_len, ip);
|
|
m = args->m;
|
|
}
|
|
/* FALLTHROUGH */
|
|
#ifdef INET6
|
|
case O_UNREACH6:
|
|
if (hlen > 0 && is_ipv6 &&
|
|
((offset & IP6F_OFF_MASK) == 0) &&
|
|
(proto != IPPROTO_ICMPV6 ||
|
|
(is_icmp6_query(args->f_id.flags) == 1)) &&
|
|
!(m->m_flags & (M_BCAST|M_MCAST)) &&
|
|
!IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
|
|
send_reject6(
|
|
args, cmd->arg1, hlen,
|
|
(struct ip6_hdr *)ip);
|
|
m = args->m;
|
|
}
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
case O_DENY:
|
|
retval = IP_FW_DENY;
|
|
goto done;
|
|
|
|
case O_FORWARD_IP: {
|
|
struct sockaddr_in *sa;
|
|
sa = &(((ipfw_insn_sa *)cmd)->sa);
|
|
if (args->eh) /* not valid on layer2 pkts */
|
|
break;
|
|
if (!q || dyn_dir == MATCH_FORWARD) {
|
|
if (sa->sin_addr.s_addr == INADDR_ANY) {
|
|
bcopy(sa, &args->hopstore,
|
|
sizeof(*sa));
|
|
args->hopstore.sin_addr.s_addr =
|
|
htonl(tablearg);
|
|
args->next_hop =
|
|
&args->hopstore;
|
|
} else {
|
|
args->next_hop = sa;
|
|
}
|
|
}
|
|
retval = IP_FW_PASS;
|
|
}
|
|
goto done;
|
|
|
|
case O_NETGRAPH:
|
|
case O_NGTEE:
|
|
args->rule = f; /* report matching rule */
|
|
if (cmd->arg1 == IP_FW_TABLEARG)
|
|
args->cookie = tablearg;
|
|
else
|
|
args->cookie = cmd->arg1;
|
|
retval = (cmd->opcode == O_NETGRAPH) ?
|
|
IP_FW_NETGRAPH : IP_FW_NGTEE;
|
|
goto done;
|
|
|
|
case O_SETFIB:
|
|
f->pcnt++; /* update stats */
|
|
f->bcnt += pktlen;
|
|
f->timestamp = time_uptime;
|
|
M_SETFIB(m, cmd->arg1);
|
|
args->f_id.fib = cmd->arg1;
|
|
goto next_rule;
|
|
|
|
case O_NAT: {
|
|
struct cfg_nat *t;
|
|
int nat_id;
|
|
|
|
if (IPFW_NAT_LOADED) {
|
|
args->rule = f; /* Report matching rule. */
|
|
t = ((ipfw_insn_nat *)cmd)->nat;
|
|
if (t == NULL) {
|
|
nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
|
|
tablearg : cmd->arg1;
|
|
LOOKUP_NAT(V_layer3_chain, nat_id, t);
|
|
if (t == NULL) {
|
|
retval = IP_FW_DENY;
|
|
goto done;
|
|
}
|
|
if (cmd->arg1 != IP_FW_TABLEARG)
|
|
((ipfw_insn_nat *)cmd)->nat = t;
|
|
}
|
|
retval = ipfw_nat_ptr(args, t, m);
|
|
} else
|
|
retval = IP_FW_DENY;
|
|
goto done;
|
|
}
|
|
|
|
case O_REASS: {
|
|
int ip_off;
|
|
|
|
f->pcnt++;
|
|
f->bcnt += pktlen;
|
|
ip_off = (args->eh != NULL) ? ntohs(ip->ip_off) : ip->ip_off;
|
|
if (ip_off & (IP_MF | IP_OFFMASK)) {
|
|
/*
|
|
* ip_reass() expects len & off in host
|
|
* byte order: fix them in case we come
|
|
* from layer2.
|
|
*/
|
|
if (args->eh != NULL) {
|
|
ip->ip_len = ntohs(ip->ip_len);
|
|
ip->ip_off = ntohs(ip->ip_off);
|
|
}
|
|
|
|
m = ip_reass(m);
|
|
args->m = m;
|
|
|
|
/*
|
|
* IP header checksum fixup after
|
|
* reassembly and leave header
|
|
* in network byte order.
|
|
*/
|
|
if (m != NULL) {
|
|
int hlen;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
/* revert len & off for layer2 pkts */
|
|
if (args->eh != NULL)
|
|
ip->ip_len = htons(ip->ip_len);
|
|
ip->ip_sum = 0;
|
|
if (hlen == sizeof(struct ip))
|
|
ip->ip_sum = in_cksum_hdr(ip);
|
|
else
|
|
ip->ip_sum = in_cksum(m, hlen);
|
|
retval = IP_FW_REASS;
|
|
args->rule = f;
|
|
goto done;
|
|
} else {
|
|
retval = IP_FW_DENY;
|
|
goto done;
|
|
}
|
|
}
|
|
goto next_rule;
|
|
}
|
|
|
|
default:
|
|
panic("-- unknown opcode %d\n", cmd->opcode);
|
|
} /* end of switch() on opcodes */
|
|
|
|
if (cmd->len & F_NOT)
|
|
match = !match;
|
|
|
|
if (match) {
|
|
if (cmd->len & F_OR)
|
|
skip_or = 1;
|
|
} else {
|
|
if (!(cmd->len & F_OR)) /* not an OR block, */
|
|
break; /* try next rule */
|
|
}
|
|
|
|
} /* end of inner for, scan opcodes */
|
|
|
|
next_rule:; /* try next rule */
|
|
|
|
} /* end of outer for, scan rules */
|
|
printf("ipfw: ouch!, skip past end of rules, denying packet\n");
|
|
IPFW_RUNLOCK(chain);
|
|
return (IP_FW_DENY);
|
|
|
|
done:
|
|
/* Update statistics */
|
|
f->pcnt++;
|
|
f->bcnt += pktlen;
|
|
f->timestamp = time_uptime;
|
|
IPFW_RUNLOCK(chain);
|
|
return (retval);
|
|
|
|
pullup_failed:
|
|
if (V_fw_verbose)
|
|
printf("ipfw: pullup failed\n");
|
|
return (IP_FW_DENY);
|
|
}
|
|
|
|
/*
|
|
* When a rule is added/deleted, clear the next_rule pointers in all rules.
|
|
* These will be reconstructed on the fly as packets are matched.
|
|
*/
|
|
static void
|
|
flush_rule_ptrs(struct ip_fw_chain *chain)
|
|
{
|
|
struct ip_fw *rule;
|
|
|
|
IPFW_WLOCK_ASSERT(chain);
|
|
|
|
for (rule = chain->rules; rule; rule = rule->next)
|
|
rule->next_rule = NULL;
|
|
}
|
|
|
|
/*
|
|
* Add a new rule to the list. Copy the rule into a malloc'ed area, then
|
|
* possibly create a rule number and add the rule to the list.
|
|
* Update the rule_number in the input struct so the caller knows it as well.
|
|
*/
|
|
static int
|
|
add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
struct ip_fw *rule, *f, *prev;
|
|
int l = RULESIZE(input_rule);
|
|
|
|
if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
|
|
return (EINVAL);
|
|
|
|
rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
|
|
if (rule == NULL)
|
|
return (ENOSPC);
|
|
|
|
bcopy(input_rule, rule, l);
|
|
|
|
rule->next = NULL;
|
|
rule->next_rule = NULL;
|
|
|
|
rule->pcnt = 0;
|
|
rule->bcnt = 0;
|
|
rule->timestamp = 0;
|
|
|
|
IPFW_WLOCK(chain);
|
|
|
|
if (chain->rules == NULL) { /* default rule */
|
|
chain->rules = rule;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If rulenum is 0, find highest numbered rule before the
|
|
* default rule, and add autoinc_step
|
|
*/
|
|
if (V_autoinc_step < 1)
|
|
V_autoinc_step = 1;
|
|
else if (V_autoinc_step > 1000)
|
|
V_autoinc_step = 1000;
|
|
if (rule->rulenum == 0) {
|
|
/*
|
|
* locate the highest numbered rule before default
|
|
*/
|
|
for (f = chain->rules; f; f = f->next) {
|
|
if (f->rulenum == IPFW_DEFAULT_RULE)
|
|
break;
|
|
rule->rulenum = f->rulenum;
|
|
}
|
|
if (rule->rulenum < IPFW_DEFAULT_RULE - V_autoinc_step)
|
|
rule->rulenum += V_autoinc_step;
|
|
input_rule->rulenum = rule->rulenum;
|
|
}
|
|
|
|
/*
|
|
* Now insert the new rule in the right place in the sorted list.
|
|
*/
|
|
for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
|
|
if (f->rulenum > rule->rulenum) { /* found the location */
|
|
if (prev) {
|
|
rule->next = f;
|
|
prev->next = rule;
|
|
} else { /* head insert */
|
|
rule->next = chain->rules;
|
|
chain->rules = rule;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
flush_rule_ptrs(chain);
|
|
done:
|
|
V_static_count++;
|
|
V_static_len += l;
|
|
IPFW_WUNLOCK(chain);
|
|
DEB(printf("ipfw: installed rule %d, static count now %d\n",
|
|
rule->rulenum, V_static_count);)
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Remove a static rule (including derived * dynamic rules)
|
|
* and place it on the ``reap list'' for later reclamation.
|
|
* The caller is in charge of clearing rule pointers to avoid
|
|
* dangling pointers.
|
|
* @return a pointer to the next entry.
|
|
* Arguments are not checked, so they better be correct.
|
|
*/
|
|
static struct ip_fw *
|
|
remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
|
|
struct ip_fw *prev)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
struct ip_fw *n;
|
|
int l = RULESIZE(rule);
|
|
|
|
IPFW_WLOCK_ASSERT(chain);
|
|
|
|
n = rule->next;
|
|
IPFW_DYN_LOCK();
|
|
remove_dyn_rule(rule, NULL /* force removal */);
|
|
IPFW_DYN_UNLOCK();
|
|
if (prev == NULL)
|
|
chain->rules = n;
|
|
else
|
|
prev->next = n;
|
|
V_static_count--;
|
|
V_static_len -= l;
|
|
|
|
rule->next = chain->reap;
|
|
chain->reap = rule;
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* Reclaim storage associated with a list of rules. This is
|
|
* typically the list created using remove_rule.
|
|
*/
|
|
static void
|
|
reap_rules(struct ip_fw *head)
|
|
{
|
|
struct ip_fw *rule;
|
|
|
|
while ((rule = head) != NULL) {
|
|
head = head->next;
|
|
if (DUMMYNET_LOADED)
|
|
ip_dn_ruledel_ptr(rule);
|
|
free(rule, M_IPFW);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove all rules from a chain (except rules in set RESVD_SET
|
|
* unless kill_default = 1). The caller is responsible for
|
|
* reclaiming storage for the rules left in chain->reap.
|
|
*/
|
|
static void
|
|
free_chain(struct ip_fw_chain *chain, int kill_default)
|
|
{
|
|
struct ip_fw *prev, *rule;
|
|
|
|
IPFW_WLOCK_ASSERT(chain);
|
|
|
|
flush_rule_ptrs(chain); /* more efficient to do outside the loop */
|
|
for (prev = NULL, rule = chain->rules; rule ; )
|
|
if (kill_default || rule->set != RESVD_SET)
|
|
rule = remove_rule(chain, rule, prev);
|
|
else {
|
|
prev = rule;
|
|
rule = rule->next;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Remove all rules with given number, and also do set manipulation.
|
|
* Assumes chain != NULL && *chain != NULL.
|
|
*
|
|
* The argument is an u_int32_t. The low 16 bit are the rule or set number,
|
|
* the next 8 bits are the new set, the top 8 bits are the command:
|
|
*
|
|
* 0 delete rules with given number
|
|
* 1 delete rules with given set number
|
|
* 2 move rules with given number to new set
|
|
* 3 move rules with given set number to new set
|
|
* 4 swap sets with given numbers
|
|
* 5 delete rules with given number and with given set number
|
|
*/
|
|
static int
|
|
del_entry(struct ip_fw_chain *chain, u_int32_t arg)
|
|
{
|
|
struct ip_fw *prev = NULL, *rule;
|
|
u_int16_t rulenum; /* rule or old_set */
|
|
u_int8_t cmd, new_set;
|
|
|
|
rulenum = arg & 0xffff;
|
|
cmd = (arg >> 24) & 0xff;
|
|
new_set = (arg >> 16) & 0xff;
|
|
|
|
if (cmd > 5 || new_set > RESVD_SET)
|
|
return EINVAL;
|
|
if (cmd == 0 || cmd == 2 || cmd == 5) {
|
|
if (rulenum >= IPFW_DEFAULT_RULE)
|
|
return EINVAL;
|
|
} else {
|
|
if (rulenum > RESVD_SET) /* old_set */
|
|
return EINVAL;
|
|
}
|
|
|
|
IPFW_WLOCK(chain);
|
|
rule = chain->rules;
|
|
chain->reap = NULL;
|
|
switch (cmd) {
|
|
case 0: /* delete rules with given number */
|
|
/*
|
|
* locate first rule to delete
|
|
*/
|
|
for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
|
|
;
|
|
if (rule->rulenum != rulenum) {
|
|
IPFW_WUNLOCK(chain);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* flush pointers outside the loop, then delete all matching
|
|
* rules. prev remains the same throughout the cycle.
|
|
*/
|
|
flush_rule_ptrs(chain);
|
|
while (rule->rulenum == rulenum)
|
|
rule = remove_rule(chain, rule, prev);
|
|
break;
|
|
|
|
case 1: /* delete all rules with given set number */
|
|
flush_rule_ptrs(chain);
|
|
rule = chain->rules;
|
|
while (rule->rulenum < IPFW_DEFAULT_RULE)
|
|
if (rule->set == rulenum)
|
|
rule = remove_rule(chain, rule, prev);
|
|
else {
|
|
prev = rule;
|
|
rule = rule->next;
|
|
}
|
|
break;
|
|
|
|
case 2: /* move rules with given number to new set */
|
|
rule = chain->rules;
|
|
for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
|
|
if (rule->rulenum == rulenum)
|
|
rule->set = new_set;
|
|
break;
|
|
|
|
case 3: /* move rules with given set number to new set */
|
|
for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
|
|
if (rule->set == rulenum)
|
|
rule->set = new_set;
|
|
break;
|
|
|
|
case 4: /* swap two sets */
|
|
for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
|
|
if (rule->set == rulenum)
|
|
rule->set = new_set;
|
|
else if (rule->set == new_set)
|
|
rule->set = rulenum;
|
|
break;
|
|
case 5: /* delete rules with given number and with given set number.
|
|
* rulenum - given rule number;
|
|
* new_set - given set number.
|
|
*/
|
|
for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
|
|
;
|
|
if (rule->rulenum != rulenum) {
|
|
IPFW_WUNLOCK(chain);
|
|
return (EINVAL);
|
|
}
|
|
flush_rule_ptrs(chain);
|
|
while (rule->rulenum == rulenum) {
|
|
if (rule->set == new_set)
|
|
rule = remove_rule(chain, rule, prev);
|
|
else {
|
|
prev = rule;
|
|
rule = rule->next;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Look for rules to reclaim. We grab the list before
|
|
* releasing the lock then reclaim them w/o the lock to
|
|
* avoid a LOR with dummynet.
|
|
*/
|
|
rule = chain->reap;
|
|
chain->reap = NULL;
|
|
IPFW_WUNLOCK(chain);
|
|
if (rule)
|
|
reap_rules(rule);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear counters for a specific rule.
|
|
* The enclosing "table" is assumed locked.
|
|
*/
|
|
static void
|
|
clear_counters(struct ip_fw *rule, int log_only)
|
|
{
|
|
ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
|
|
|
|
if (log_only == 0) {
|
|
rule->bcnt = rule->pcnt = 0;
|
|
rule->timestamp = 0;
|
|
}
|
|
if (l->o.opcode == O_LOG)
|
|
l->log_left = l->max_log;
|
|
}
|
|
|
|
/**
|
|
* Reset some or all counters on firewall rules.
|
|
* The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
|
|
* the next 8 bits are the set number, the top 8 bits are the command:
|
|
* 0 work with rules from all set's;
|
|
* 1 work with rules only from specified set.
|
|
* Specified rule number is zero if we want to clear all entries.
|
|
* log_only is 1 if we only want to reset logs, zero otherwise.
|
|
*/
|
|
static int
|
|
zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
struct ip_fw *rule;
|
|
char *msg;
|
|
|
|
uint16_t rulenum = arg & 0xffff;
|
|
uint8_t set = (arg >> 16) & 0xff;
|
|
uint8_t cmd = (arg >> 24) & 0xff;
|
|
|
|
if (cmd > 1)
|
|
return (EINVAL);
|
|
if (cmd == 1 && set > RESVD_SET)
|
|
return (EINVAL);
|
|
|
|
IPFW_WLOCK(chain);
|
|
if (rulenum == 0) {
|
|
V_norule_counter = 0;
|
|
for (rule = chain->rules; rule; rule = rule->next) {
|
|
/* Skip rules from another set. */
|
|
if (cmd == 1 && rule->set != set)
|
|
continue;
|
|
clear_counters(rule, log_only);
|
|
}
|
|
msg = log_only ? "All logging counts reset" :
|
|
"Accounting cleared";
|
|
} else {
|
|
int cleared = 0;
|
|
/*
|
|
* We can have multiple rules with the same number, so we
|
|
* need to clear them all.
|
|
*/
|
|
for (rule = chain->rules; rule; rule = rule->next)
|
|
if (rule->rulenum == rulenum) {
|
|
while (rule && rule->rulenum == rulenum) {
|
|
if (cmd == 0 || rule->set == set)
|
|
clear_counters(rule, log_only);
|
|
rule = rule->next;
|
|
}
|
|
cleared = 1;
|
|
break;
|
|
}
|
|
if (!cleared) { /* we did not find any matching rules */
|
|
IPFW_WUNLOCK(chain);
|
|
return (EINVAL);
|
|
}
|
|
msg = log_only ? "logging count reset" : "cleared";
|
|
}
|
|
IPFW_WUNLOCK(chain);
|
|
|
|
if (V_fw_verbose) {
|
|
int lev = LOG_SECURITY | LOG_NOTICE;
|
|
|
|
if (rulenum)
|
|
log(lev, "ipfw: Entry %d %s.\n", rulenum, msg);
|
|
else
|
|
log(lev, "ipfw: %s.\n", msg);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check validity of the structure before insert.
|
|
* Fortunately rules are simple, so this mostly need to check rule sizes.
|
|
*/
|
|
static int
|
|
check_ipfw_struct(struct ip_fw *rule, int size)
|
|
{
|
|
int l, cmdlen = 0;
|
|
int have_action=0;
|
|
ipfw_insn *cmd;
|
|
|
|
if (size < sizeof(*rule)) {
|
|
printf("ipfw: rule too short\n");
|
|
return (EINVAL);
|
|
}
|
|
/* first, check for valid size */
|
|
l = RULESIZE(rule);
|
|
if (l != size) {
|
|
printf("ipfw: size mismatch (have %d want %d)\n", size, l);
|
|
return (EINVAL);
|
|
}
|
|
if (rule->act_ofs >= rule->cmd_len) {
|
|
printf("ipfw: bogus action offset (%u > %u)\n",
|
|
rule->act_ofs, rule->cmd_len - 1);
|
|
return (EINVAL);
|
|
}
|
|
/*
|
|
* Now go for the individual checks. Very simple ones, basically only
|
|
* instruction sizes.
|
|
*/
|
|
for (l = rule->cmd_len, cmd = rule->cmd ;
|
|
l > 0 ; l -= cmdlen, cmd += cmdlen) {
|
|
cmdlen = F_LEN(cmd);
|
|
if (cmdlen > l) {
|
|
printf("ipfw: opcode %d size truncated\n",
|
|
cmd->opcode);
|
|
return EINVAL;
|
|
}
|
|
DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
|
|
switch (cmd->opcode) {
|
|
case O_PROBE_STATE:
|
|
case O_KEEP_STATE:
|
|
case O_PROTO:
|
|
case O_IP_SRC_ME:
|
|
case O_IP_DST_ME:
|
|
case O_LAYER2:
|
|
case O_IN:
|
|
case O_FRAG:
|
|
case O_DIVERTED:
|
|
case O_IPOPT:
|
|
case O_IPTOS:
|
|
case O_IPPRECEDENCE:
|
|
case O_IPVER:
|
|
case O_TCPWIN:
|
|
case O_TCPFLAGS:
|
|
case O_TCPOPTS:
|
|
case O_ESTAB:
|
|
case O_VERREVPATH:
|
|
case O_VERSRCREACH:
|
|
case O_ANTISPOOF:
|
|
case O_IPSEC:
|
|
#ifdef INET6
|
|
case O_IP6_SRC_ME:
|
|
case O_IP6_DST_ME:
|
|
case O_EXT_HDR:
|
|
case O_IP6:
|
|
#endif
|
|
case O_IP4:
|
|
case O_TAG:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn))
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_FIB:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn))
|
|
goto bad_size;
|
|
if (cmd->arg1 >= rt_numfibs) {
|
|
printf("ipfw: invalid fib number %d\n",
|
|
cmd->arg1);
|
|
return EINVAL;
|
|
}
|
|
break;
|
|
|
|
case O_SETFIB:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn))
|
|
goto bad_size;
|
|
if (cmd->arg1 >= rt_numfibs) {
|
|
printf("ipfw: invalid fib number %d\n",
|
|
cmd->arg1);
|
|
return EINVAL;
|
|
}
|
|
goto check_action;
|
|
|
|
case O_UID:
|
|
case O_GID:
|
|
case O_JAIL:
|
|
case O_IP_SRC:
|
|
case O_IP_DST:
|
|
case O_TCPSEQ:
|
|
case O_TCPACK:
|
|
case O_PROB:
|
|
case O_ICMPTYPE:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_LIMIT:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_LOG:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
|
|
goto bad_size;
|
|
|
|
((ipfw_insn_log *)cmd)->log_left =
|
|
((ipfw_insn_log *)cmd)->max_log;
|
|
|
|
break;
|
|
|
|
case O_IP_SRC_MASK:
|
|
case O_IP_DST_MASK:
|
|
/* only odd command lengths */
|
|
if ( !(cmdlen & 1) || cmdlen > 31)
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_IP_SRC_SET:
|
|
case O_IP_DST_SET:
|
|
if (cmd->arg1 == 0 || cmd->arg1 > 256) {
|
|
printf("ipfw: invalid set size %d\n",
|
|
cmd->arg1);
|
|
return EINVAL;
|
|
}
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
|
|
(cmd->arg1+31)/32 )
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_IP_SRC_LOOKUP:
|
|
case O_IP_DST_LOOKUP:
|
|
if (cmd->arg1 >= IPFW_TABLES_MAX) {
|
|
printf("ipfw: invalid table number %d\n",
|
|
cmd->arg1);
|
|
return (EINVAL);
|
|
}
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
|
|
cmdlen != F_INSN_SIZE(ipfw_insn_u32))
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_MACADDR2:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_NOP:
|
|
case O_IPID:
|
|
case O_IPTTL:
|
|
case O_IPLEN:
|
|
case O_TCPDATALEN:
|
|
case O_TAGGED:
|
|
if (cmdlen < 1 || cmdlen > 31)
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_MAC_TYPE:
|
|
case O_IP_SRCPORT:
|
|
case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
|
|
if (cmdlen < 2 || cmdlen > 31)
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_RECV:
|
|
case O_XMIT:
|
|
case O_VIA:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_ALTQ:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_PIPE:
|
|
case O_QUEUE:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn))
|
|
goto bad_size;
|
|
goto check_action;
|
|
|
|
case O_FORWARD_IP:
|
|
#ifdef IPFIREWALL_FORWARD
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
|
|
goto bad_size;
|
|
goto check_action;
|
|
#else
|
|
return EINVAL;
|
|
#endif
|
|
|
|
case O_DIVERT:
|
|
case O_TEE:
|
|
if (ip_divert_ptr == NULL)
|
|
return EINVAL;
|
|
else
|
|
goto check_size;
|
|
case O_NETGRAPH:
|
|
case O_NGTEE:
|
|
if (!NG_IPFW_LOADED)
|
|
return EINVAL;
|
|
else
|
|
goto check_size;
|
|
case O_NAT:
|
|
if (!IPFW_NAT_LOADED)
|
|
return EINVAL;
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
|
|
goto bad_size;
|
|
goto check_action;
|
|
case O_FORWARD_MAC: /* XXX not implemented yet */
|
|
case O_CHECK_STATE:
|
|
case O_COUNT:
|
|
case O_ACCEPT:
|
|
case O_DENY:
|
|
case O_REJECT:
|
|
#ifdef INET6
|
|
case O_UNREACH6:
|
|
#endif
|
|
case O_SKIPTO:
|
|
case O_REASS:
|
|
check_size:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn))
|
|
goto bad_size;
|
|
check_action:
|
|
if (have_action) {
|
|
printf("ipfw: opcode %d, multiple actions"
|
|
" not allowed\n",
|
|
cmd->opcode);
|
|
return EINVAL;
|
|
}
|
|
have_action = 1;
|
|
if (l != cmdlen) {
|
|
printf("ipfw: opcode %d, action must be"
|
|
" last opcode\n",
|
|
cmd->opcode);
|
|
return EINVAL;
|
|
}
|
|
break;
|
|
#ifdef INET6
|
|
case O_IP6_SRC:
|
|
case O_IP6_DST:
|
|
if (cmdlen != F_INSN_SIZE(struct in6_addr) +
|
|
F_INSN_SIZE(ipfw_insn))
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_FLOW6ID:
|
|
if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
|
|
((ipfw_insn_u32 *)cmd)->o.arg1)
|
|
goto bad_size;
|
|
break;
|
|
|
|
case O_IP6_SRC_MASK:
|
|
case O_IP6_DST_MASK:
|
|
if ( !(cmdlen & 1) || cmdlen > 127)
|
|
goto bad_size;
|
|
break;
|
|
case O_ICMP6TYPE:
|
|
if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
|
|
goto bad_size;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
switch (cmd->opcode) {
|
|
#ifndef INET6
|
|
case O_IP6_SRC_ME:
|
|
case O_IP6_DST_ME:
|
|
case O_EXT_HDR:
|
|
case O_IP6:
|
|
case O_UNREACH6:
|
|
case O_IP6_SRC:
|
|
case O_IP6_DST:
|
|
case O_FLOW6ID:
|
|
case O_IP6_SRC_MASK:
|
|
case O_IP6_DST_MASK:
|
|
case O_ICMP6TYPE:
|
|
printf("ipfw: no IPv6 support in kernel\n");
|
|
return EPROTONOSUPPORT;
|
|
#endif
|
|
default:
|
|
printf("ipfw: opcode %d, unknown opcode\n",
|
|
cmd->opcode);
|
|
return EINVAL;
|
|
}
|
|
}
|
|
}
|
|
if (have_action == 0) {
|
|
printf("ipfw: missing action\n");
|
|
return EINVAL;
|
|
}
|
|
return 0;
|
|
|
|
bad_size:
|
|
printf("ipfw: opcode %d size %d wrong\n",
|
|
cmd->opcode, cmdlen);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Copy the static and dynamic rules to the supplied buffer
|
|
* and return the amount of space actually used.
|
|
*/
|
|
static size_t
|
|
ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
char *bp = buf;
|
|
char *ep = bp + space;
|
|
struct ip_fw *rule;
|
|
int i;
|
|
time_t boot_seconds;
|
|
|
|
boot_seconds = boottime.tv_sec;
|
|
/* XXX this can take a long time and locking will block packet flow */
|
|
IPFW_RLOCK(chain);
|
|
for (rule = chain->rules; rule ; rule = rule->next) {
|
|
/*
|
|
* Verify the entry fits in the buffer in case the
|
|
* rules changed between calculating buffer space and
|
|
* now. This would be better done using a generation
|
|
* number but should suffice for now.
|
|
*/
|
|
i = RULESIZE(rule);
|
|
if (bp + i <= ep) {
|
|
bcopy(rule, bp, i);
|
|
/*
|
|
* XXX HACK. Store the disable mask in the "next"
|
|
* pointer in a wild attempt to keep the ABI the same.
|
|
* Why do we do this on EVERY rule?
|
|
*/
|
|
bcopy(&V_set_disable,
|
|
&(((struct ip_fw *)bp)->next_rule),
|
|
sizeof(V_set_disable));
|
|
if (((struct ip_fw *)bp)->timestamp)
|
|
((struct ip_fw *)bp)->timestamp += boot_seconds;
|
|
bp += i;
|
|
}
|
|
}
|
|
IPFW_RUNLOCK(chain);
|
|
if (V_ipfw_dyn_v) {
|
|
ipfw_dyn_rule *p, *last = NULL;
|
|
|
|
IPFW_DYN_LOCK();
|
|
for (i = 0 ; i < V_curr_dyn_buckets; i++)
|
|
for (p = V_ipfw_dyn_v[i] ; p != NULL; p = p->next) {
|
|
if (bp + sizeof *p <= ep) {
|
|
ipfw_dyn_rule *dst =
|
|
(ipfw_dyn_rule *)bp;
|
|
bcopy(p, dst, sizeof *p);
|
|
bcopy(&(p->rule->rulenum), &(dst->rule),
|
|
sizeof(p->rule->rulenum));
|
|
/*
|
|
* store set number into high word of
|
|
* dst->rule pointer.
|
|
*/
|
|
bcopy(&(p->rule->set),
|
|
(char *)&dst->rule +
|
|
sizeof(p->rule->rulenum),
|
|
sizeof(p->rule->set));
|
|
/*
|
|
* store a non-null value in "next".
|
|
* The userland code will interpret a
|
|
* NULL here as a marker
|
|
* for the last dynamic rule.
|
|
*/
|
|
bcopy(&dst, &dst->next, sizeof(dst));
|
|
last = dst;
|
|
dst->expire =
|
|
TIME_LEQ(dst->expire, time_uptime) ?
|
|
0 : dst->expire - time_uptime ;
|
|
bp += sizeof(ipfw_dyn_rule);
|
|
}
|
|
}
|
|
IPFW_DYN_UNLOCK();
|
|
if (last != NULL) /* mark last dynamic rule */
|
|
bzero(&last->next, sizeof(last));
|
|
}
|
|
return (bp - (char *)buf);
|
|
}
|
|
|
|
|
|
/**
|
|
* {set|get}sockopt parser.
|
|
*/
|
|
static int
|
|
ipfw_ctl(struct sockopt *sopt)
|
|
{
|
|
#define RULE_MAXSIZE (256*sizeof(u_int32_t))
|
|
INIT_VNET_IPFW(curvnet);
|
|
int error;
|
|
size_t size;
|
|
struct ip_fw *buf, *rule;
|
|
u_int32_t rulenum[2];
|
|
|
|
error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Disallow modifications in really-really secure mode, but still allow
|
|
* the logging counters to be reset.
|
|
*/
|
|
if (sopt->sopt_name == IP_FW_ADD ||
|
|
(sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
|
|
error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
error = 0;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_FW_GET:
|
|
/*
|
|
* pass up a copy of the current rules. Static rules
|
|
* come first (the last of which has number IPFW_DEFAULT_RULE),
|
|
* followed by a possibly empty list of dynamic rule.
|
|
* The last dynamic rule has NULL in the "next" field.
|
|
*
|
|
* Note that the calculated size is used to bound the
|
|
* amount of data returned to the user. The rule set may
|
|
* change between calculating the size and returning the
|
|
* data in which case we'll just return what fits.
|
|
*/
|
|
size = V_static_len; /* size of static rules */
|
|
if (V_ipfw_dyn_v) /* add size of dyn.rules */
|
|
size += (V_dyn_count * sizeof(ipfw_dyn_rule));
|
|
|
|
/*
|
|
* XXX todo: if the user passes a short length just to know
|
|
* how much room is needed, do not bother filling up the
|
|
* buffer, just jump to the sooptcopyout.
|
|
*/
|
|
buf = malloc(size, M_TEMP, M_WAITOK);
|
|
error = sooptcopyout(sopt, buf,
|
|
ipfw_getrules(&V_layer3_chain, buf, size));
|
|
free(buf, M_TEMP);
|
|
break;
|
|
|
|
case IP_FW_FLUSH:
|
|
/*
|
|
* Normally we cannot release the lock on each iteration.
|
|
* We could do it here only because we start from the head all
|
|
* the times so there is no risk of missing some entries.
|
|
* On the other hand, the risk is that we end up with
|
|
* a very inconsistent ruleset, so better keep the lock
|
|
* around the whole cycle.
|
|
*
|
|
* XXX this code can be improved by resetting the head of
|
|
* the list to point to the default rule, and then freeing
|
|
* the old list without the need for a lock.
|
|
*/
|
|
|
|
IPFW_WLOCK(&V_layer3_chain);
|
|
V_layer3_chain.reap = NULL;
|
|
free_chain(&V_layer3_chain, 0 /* keep default rule */);
|
|
rule = V_layer3_chain.reap;
|
|
V_layer3_chain.reap = NULL;
|
|
IPFW_WUNLOCK(&V_layer3_chain);
|
|
if (rule != NULL)
|
|
reap_rules(rule);
|
|
break;
|
|
|
|
case IP_FW_ADD:
|
|
rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
|
|
error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
|
|
sizeof(struct ip_fw) );
|
|
if (error == 0)
|
|
error = check_ipfw_struct(rule, sopt->sopt_valsize);
|
|
if (error == 0) {
|
|
error = add_rule(&V_layer3_chain, rule);
|
|
size = RULESIZE(rule);
|
|
if (!error && sopt->sopt_dir == SOPT_GET)
|
|
error = sooptcopyout(sopt, rule, size);
|
|
}
|
|
free(rule, M_TEMP);
|
|
break;
|
|
|
|
case IP_FW_DEL:
|
|
/*
|
|
* IP_FW_DEL is used for deleting single rules or sets,
|
|
* and (ab)used to atomically manipulate sets. Argument size
|
|
* is used to distinguish between the two:
|
|
* sizeof(u_int32_t)
|
|
* delete single rule or set of rules,
|
|
* or reassign rules (or sets) to a different set.
|
|
* 2*sizeof(u_int32_t)
|
|
* atomic disable/enable sets.
|
|
* first u_int32_t contains sets to be disabled,
|
|
* second u_int32_t contains sets to be enabled.
|
|
*/
|
|
error = sooptcopyin(sopt, rulenum,
|
|
2*sizeof(u_int32_t), sizeof(u_int32_t));
|
|
if (error)
|
|
break;
|
|
size = sopt->sopt_valsize;
|
|
if (size == sizeof(u_int32_t)) /* delete or reassign */
|
|
error = del_entry(&V_layer3_chain, rulenum[0]);
|
|
else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
|
|
V_set_disable =
|
|
(V_set_disable | rulenum[0]) & ~rulenum[1] &
|
|
~(1<<RESVD_SET); /* set RESVD_SET always enabled */
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case IP_FW_ZERO:
|
|
case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
|
|
rulenum[0] = 0;
|
|
if (sopt->sopt_val != 0) {
|
|
error = sooptcopyin(sopt, rulenum,
|
|
sizeof(u_int32_t), sizeof(u_int32_t));
|
|
if (error)
|
|
break;
|
|
}
|
|
error = zero_entry(&V_layer3_chain, rulenum[0],
|
|
sopt->sopt_name == IP_FW_RESETLOG);
|
|
break;
|
|
|
|
case IP_FW_TABLE_ADD:
|
|
{
|
|
ipfw_table_entry ent;
|
|
|
|
error = sooptcopyin(sopt, &ent,
|
|
sizeof(ent), sizeof(ent));
|
|
if (error)
|
|
break;
|
|
error = add_table_entry(&V_layer3_chain, ent.tbl,
|
|
ent.addr, ent.masklen, ent.value);
|
|
}
|
|
break;
|
|
|
|
case IP_FW_TABLE_DEL:
|
|
{
|
|
ipfw_table_entry ent;
|
|
|
|
error = sooptcopyin(sopt, &ent,
|
|
sizeof(ent), sizeof(ent));
|
|
if (error)
|
|
break;
|
|
error = del_table_entry(&V_layer3_chain, ent.tbl,
|
|
ent.addr, ent.masklen);
|
|
}
|
|
break;
|
|
|
|
case IP_FW_TABLE_FLUSH:
|
|
{
|
|
u_int16_t tbl;
|
|
|
|
error = sooptcopyin(sopt, &tbl,
|
|
sizeof(tbl), sizeof(tbl));
|
|
if (error)
|
|
break;
|
|
IPFW_WLOCK(&V_layer3_chain);
|
|
error = flush_table(&V_layer3_chain, tbl);
|
|
IPFW_WUNLOCK(&V_layer3_chain);
|
|
}
|
|
break;
|
|
|
|
case IP_FW_TABLE_GETSIZE:
|
|
{
|
|
u_int32_t tbl, cnt;
|
|
|
|
if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
|
|
sizeof(tbl))))
|
|
break;
|
|
IPFW_RLOCK(&V_layer3_chain);
|
|
error = count_table(&V_layer3_chain, tbl, &cnt);
|
|
IPFW_RUNLOCK(&V_layer3_chain);
|
|
if (error)
|
|
break;
|
|
error = sooptcopyout(sopt, &cnt, sizeof(cnt));
|
|
}
|
|
break;
|
|
|
|
case IP_FW_TABLE_LIST:
|
|
{
|
|
ipfw_table *tbl;
|
|
|
|
if (sopt->sopt_valsize < sizeof(*tbl)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
size = sopt->sopt_valsize;
|
|
tbl = malloc(size, M_TEMP, M_WAITOK);
|
|
error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
|
|
if (error) {
|
|
free(tbl, M_TEMP);
|
|
break;
|
|
}
|
|
tbl->size = (size - sizeof(*tbl)) /
|
|
sizeof(ipfw_table_entry);
|
|
IPFW_RLOCK(&V_layer3_chain);
|
|
error = dump_table(&V_layer3_chain, tbl);
|
|
IPFW_RUNLOCK(&V_layer3_chain);
|
|
if (error) {
|
|
free(tbl, M_TEMP);
|
|
break;
|
|
}
|
|
error = sooptcopyout(sopt, tbl, size);
|
|
free(tbl, M_TEMP);
|
|
}
|
|
break;
|
|
|
|
case IP_FW_NAT_CFG:
|
|
if (IPFW_NAT_LOADED)
|
|
error = ipfw_nat_cfg_ptr(sopt);
|
|
else {
|
|
printf("IP_FW_NAT_CFG: %s\n",
|
|
"ipfw_nat not present, please load it");
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
|
|
case IP_FW_NAT_DEL:
|
|
if (IPFW_NAT_LOADED)
|
|
error = ipfw_nat_del_ptr(sopt);
|
|
else {
|
|
printf("IP_FW_NAT_DEL: %s\n",
|
|
"ipfw_nat not present, please load it");
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
|
|
case IP_FW_NAT_GET_CONFIG:
|
|
if (IPFW_NAT_LOADED)
|
|
error = ipfw_nat_get_cfg_ptr(sopt);
|
|
else {
|
|
printf("IP_FW_NAT_GET_CFG: %s\n",
|
|
"ipfw_nat not present, please load it");
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
|
|
case IP_FW_NAT_GET_LOG:
|
|
if (IPFW_NAT_LOADED)
|
|
error = ipfw_nat_get_log_ptr(sopt);
|
|
else {
|
|
printf("IP_FW_NAT_GET_LOG: %s\n",
|
|
"ipfw_nat not present, please load it");
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
|
|
error = EINVAL;
|
|
}
|
|
|
|
return (error);
|
|
#undef RULE_MAXSIZE
|
|
}
|
|
|
|
/**
|
|
* dummynet needs a reference to the default rule, because rules can be
|
|
* deleted while packets hold a reference to them. When this happens,
|
|
* dummynet changes the reference to the default rule (it could well be a
|
|
* NULL pointer, but this way we do not need to check for the special
|
|
* case, plus here he have info on the default behaviour).
|
|
*/
|
|
struct ip_fw *ip_fw_default_rule;
|
|
|
|
/*
|
|
* This procedure is only used to handle keepalives. It is invoked
|
|
* every dyn_keepalive_period
|
|
*/
|
|
static void
|
|
ipfw_tick(void * __unused unused)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
struct mbuf *m0, *m, *mnext, **mtailp;
|
|
int i;
|
|
ipfw_dyn_rule *q;
|
|
|
|
if (V_dyn_keepalive == 0 || V_ipfw_dyn_v == NULL || V_dyn_count == 0)
|
|
goto done;
|
|
|
|
/*
|
|
* We make a chain of packets to go out here -- not deferring
|
|
* until after we drop the IPFW dynamic rule lock would result
|
|
* in a lock order reversal with the normal packet input -> ipfw
|
|
* call stack.
|
|
*/
|
|
m0 = NULL;
|
|
mtailp = &m0;
|
|
IPFW_DYN_LOCK();
|
|
for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
|
|
for (q = V_ipfw_dyn_v[i] ; q ; q = q->next ) {
|
|
if (q->dyn_type == O_LIMIT_PARENT)
|
|
continue;
|
|
if (q->id.proto != IPPROTO_TCP)
|
|
continue;
|
|
if ( (q->state & BOTH_SYN) != BOTH_SYN)
|
|
continue;
|
|
if (TIME_LEQ(time_uptime + V_dyn_keepalive_interval,
|
|
q->expire))
|
|
continue; /* too early */
|
|
if (TIME_LEQ(q->expire, time_uptime))
|
|
continue; /* too late, rule expired */
|
|
|
|
*mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
|
|
q->ack_fwd, TH_SYN);
|
|
if (*mtailp != NULL)
|
|
mtailp = &(*mtailp)->m_nextpkt;
|
|
*mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
|
|
q->ack_rev, 0);
|
|
if (*mtailp != NULL)
|
|
mtailp = &(*mtailp)->m_nextpkt;
|
|
}
|
|
}
|
|
IPFW_DYN_UNLOCK();
|
|
for (m = mnext = m0; m != NULL; m = mnext) {
|
|
mnext = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
ip_output(m, NULL, NULL, 0, NULL, NULL);
|
|
}
|
|
done:
|
|
callout_reset(&V_ipfw_timeout, V_dyn_keepalive_period * hz,
|
|
ipfw_tick, NULL);
|
|
}
|
|
|
|
int
|
|
ipfw_init(void)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
struct ip_fw default_rule;
|
|
int error;
|
|
|
|
V_autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
|
|
|
|
V_ipfw_dyn_v = NULL;
|
|
V_dyn_buckets = 256; /* must be power of 2 */
|
|
V_curr_dyn_buckets = 256; /* must be power of 2 */
|
|
|
|
V_dyn_ack_lifetime = 300;
|
|
V_dyn_syn_lifetime = 20;
|
|
V_dyn_fin_lifetime = 1;
|
|
V_dyn_rst_lifetime = 1;
|
|
V_dyn_udp_lifetime = 10;
|
|
V_dyn_short_lifetime = 5;
|
|
|
|
V_dyn_keepalive_interval = 20;
|
|
V_dyn_keepalive_period = 5;
|
|
V_dyn_keepalive = 1; /* do send keepalives */
|
|
|
|
V_dyn_max = 4096; /* max # of dynamic rules */
|
|
|
|
V_fw_deny_unknown_exthdrs = 1;
|
|
|
|
#ifdef INET6
|
|
/* Setup IPv6 fw sysctl tree. */
|
|
sysctl_ctx_init(&ip6_fw_sysctl_ctx);
|
|
ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
|
|
CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
|
|
SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
|
|
OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
|
|
&V_fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
|
|
SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
|
|
OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
|
|
&V_fw_deny_unknown_exthdrs, 0,
|
|
"Deny packets with unknown IPv6 Extension Headers");
|
|
#endif
|
|
|
|
V_layer3_chain.rules = NULL;
|
|
IPFW_LOCK_INIT(&V_layer3_chain);
|
|
ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
|
|
sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
|
|
UMA_ALIGN_PTR, 0);
|
|
IPFW_DYN_LOCK_INIT();
|
|
callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
|
|
|
|
bzero(&default_rule, sizeof default_rule);
|
|
|
|
default_rule.act_ofs = 0;
|
|
default_rule.rulenum = IPFW_DEFAULT_RULE;
|
|
default_rule.cmd_len = 1;
|
|
default_rule.set = RESVD_SET;
|
|
|
|
default_rule.cmd[0].len = 1;
|
|
default_rule.cmd[0].opcode =
|
|
#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
|
|
1 ? O_ACCEPT :
|
|
#endif
|
|
O_DENY;
|
|
|
|
error = add_rule(&V_layer3_chain, &default_rule);
|
|
if (error != 0) {
|
|
printf("ipfw2: error %u initializing default rule "
|
|
"(support disabled)\n", error);
|
|
IPFW_DYN_LOCK_DESTROY();
|
|
IPFW_LOCK_DESTROY(&V_layer3_chain);
|
|
uma_zdestroy(ipfw_dyn_rule_zone);
|
|
return (error);
|
|
}
|
|
|
|
ip_fw_default_rule = V_layer3_chain.rules;
|
|
printf("ipfw2 "
|
|
#ifdef INET6
|
|
"(+ipv6) "
|
|
#endif
|
|
"initialized, divert %s, nat %s, "
|
|
"rule-based forwarding "
|
|
#ifdef IPFIREWALL_FORWARD
|
|
"enabled, "
|
|
#else
|
|
"disabled, "
|
|
#endif
|
|
"default to %s, logging ",
|
|
#ifdef IPDIVERT
|
|
"enabled",
|
|
#else
|
|
"loadable",
|
|
#endif
|
|
#ifdef IPFIREWALL_NAT
|
|
"enabled",
|
|
#else
|
|
"loadable",
|
|
#endif
|
|
|
|
default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
|
|
|
|
#ifdef IPFIREWALL_VERBOSE
|
|
V_fw_verbose = 1;
|
|
#endif
|
|
#ifdef IPFIREWALL_VERBOSE_LIMIT
|
|
V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
|
|
#endif
|
|
if (V_fw_verbose == 0)
|
|
printf("disabled\n");
|
|
else if (V_verbose_limit == 0)
|
|
printf("unlimited\n");
|
|
else
|
|
printf("limited to %d packets/entry by default\n",
|
|
V_verbose_limit);
|
|
|
|
error = init_tables(&V_layer3_chain);
|
|
if (error) {
|
|
IPFW_DYN_LOCK_DESTROY();
|
|
IPFW_LOCK_DESTROY(&V_layer3_chain);
|
|
uma_zdestroy(ipfw_dyn_rule_zone);
|
|
return (error);
|
|
}
|
|
ip_fw_ctl_ptr = ipfw_ctl;
|
|
ip_fw_chk_ptr = ipfw_chk;
|
|
callout_reset(&V_ipfw_timeout, hz, ipfw_tick, NULL);
|
|
LIST_INIT(&V_layer3_chain.nat);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ipfw_destroy(void)
|
|
{
|
|
INIT_VNET_IPFW(curvnet);
|
|
struct ip_fw *reap;
|
|
|
|
ip_fw_chk_ptr = NULL;
|
|
ip_fw_ctl_ptr = NULL;
|
|
callout_drain(&V_ipfw_timeout);
|
|
IPFW_WLOCK(&V_layer3_chain);
|
|
flush_tables(&V_layer3_chain);
|
|
V_layer3_chain.reap = NULL;
|
|
free_chain(&V_layer3_chain, 1 /* kill default rule */);
|
|
reap = V_layer3_chain.reap, V_layer3_chain.reap = NULL;
|
|
IPFW_WUNLOCK(&V_layer3_chain);
|
|
if (reap != NULL)
|
|
reap_rules(reap);
|
|
IPFW_DYN_LOCK_DESTROY();
|
|
uma_zdestroy(ipfw_dyn_rule_zone);
|
|
if (V_ipfw_dyn_v != NULL)
|
|
free(V_ipfw_dyn_v, M_IPFW);
|
|
IPFW_LOCK_DESTROY(&V_layer3_chain);
|
|
|
|
#ifdef INET6
|
|
/* Free IPv6 fw sysctl tree. */
|
|
sysctl_ctx_free(&ip6_fw_sysctl_ctx);
|
|
#endif
|
|
|
|
printf("IP firewall unloaded\n");
|
|
}
|