mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-22 11:17:19 +00:00
896763fa9e
versions of gcc and broken for current versions of egcs. Submitted by: "John S. Dyson" <dyson@iquest.net> but rewritten by me
471 lines
11 KiB
C
471 lines
11 KiB
C
/*-
|
|
* Copyright (c) 1993 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $Id: cpufunc.h,v 1.84 1999/01/08 19:51:02 bde Exp $
|
|
*/
|
|
|
|
/*
|
|
* Functions to provide access to special i386 instructions.
|
|
*/
|
|
|
|
#ifndef _MACHINE_CPUFUNC_H_
|
|
#define _MACHINE_CPUFUNC_H_
|
|
|
|
#define readb(va) (*(volatile u_int8_t *) (va))
|
|
#define readw(va) (*(volatile u_int16_t *) (va))
|
|
#define readl(va) (*(volatile u_int32_t *) (va))
|
|
|
|
#define writeb(va, d) (*(volatile u_int8_t *) (va) = (d))
|
|
#define writew(va, d) (*(volatile u_int16_t *) (va) = (d))
|
|
#define writel(va, d) (*(volatile u_int32_t *) (va) = (d))
|
|
|
|
#ifdef __GNUC__
|
|
|
|
#ifdef SMP
|
|
#include <machine/lock.h> /* XXX */
|
|
#endif
|
|
|
|
#ifdef SWTCH_OPTIM_STATS
|
|
extern int tlb_flush_count; /* XXX */
|
|
#endif
|
|
|
|
static __inline void
|
|
breakpoint(void)
|
|
{
|
|
__asm __volatile("int $3");
|
|
}
|
|
|
|
static __inline void
|
|
disable_intr(void)
|
|
{
|
|
__asm __volatile("cli" : : : "memory");
|
|
#ifdef SMP
|
|
MPINTR_LOCK();
|
|
#endif
|
|
}
|
|
|
|
static __inline void
|
|
enable_intr(void)
|
|
{
|
|
#ifdef SMP
|
|
MPINTR_UNLOCK();
|
|
#endif
|
|
__asm __volatile("sti");
|
|
}
|
|
|
|
#define HAVE_INLINE_FFS
|
|
|
|
static __inline int
|
|
ffs(int mask)
|
|
{
|
|
int result;
|
|
/*
|
|
* bsfl turns out to be not all that slow on 486's. It can beaten
|
|
* using a binary search to reduce to 4 bits and then a table lookup,
|
|
* but only if the code is inlined and in the cache, and the code
|
|
* is quite large so inlining it probably busts the cache.
|
|
*
|
|
* Note that gcc-2's builtin ffs would be used if we didn't declare
|
|
* this inline or turn off the builtin. The builtin is faster but
|
|
* broken in gcc-2.4.5 and slower but working in gcc-2.5 and 2.6.
|
|
*/
|
|
__asm __volatile("testl %0,%0; je 1f; bsfl %0,%0; incl %0; 1:"
|
|
: "=r" (result) : "0" (mask));
|
|
return (result);
|
|
}
|
|
|
|
#define HAVE_INLINE_FLS
|
|
|
|
static __inline int
|
|
fls(int mask)
|
|
{
|
|
int result;
|
|
__asm __volatile("testl %0,%0; je 1f; bsrl %0,%0; incl %0; 1:"
|
|
: "=r" (result) : "0" (mask));
|
|
return (result);
|
|
}
|
|
|
|
#if __GNUC__ < 2
|
|
|
|
#define inb(port) inbv(port)
|
|
#define outb(port, data) outbv(port, data)
|
|
|
|
#else /* __GNUC >= 2 */
|
|
|
|
/*
|
|
* The following complications are to get around gcc not having a
|
|
* constraint letter for the range 0..255. We still put "d" in the
|
|
* constraint because "i" isn't a valid constraint when the port
|
|
* isn't constant. This only matters for -O0 because otherwise
|
|
* the non-working version gets optimized away.
|
|
*
|
|
* Use an expression-statement instead of a conditional expression
|
|
* because gcc-2.6.0 would promote the operands of the conditional
|
|
* and produce poor code for "if ((inb(var) & const1) == const2)".
|
|
*
|
|
* The unnecessary test `(port) < 0x10000' is to generate a warning if
|
|
* the `port' has type u_short or smaller. Such types are pessimal.
|
|
* This actually only works for signed types. The range check is
|
|
* careful to avoid generating warnings.
|
|
*/
|
|
#define inb(port) __extension__ ({ \
|
|
u_char _data; \
|
|
if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \
|
|
&& (port) < 0x10000) \
|
|
_data = inbc(port); \
|
|
else \
|
|
_data = inbv(port); \
|
|
_data; })
|
|
|
|
#define outb(port, data) ( \
|
|
__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \
|
|
&& (port) < 0x10000 \
|
|
? outbc(port, data) : outbv(port, data))
|
|
|
|
static __inline u_char
|
|
inbc(u_int port)
|
|
{
|
|
u_char data;
|
|
|
|
__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
|
|
return (data);
|
|
}
|
|
|
|
static __inline void
|
|
outbc(u_int port, u_char data)
|
|
{
|
|
__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
|
|
}
|
|
|
|
#endif /* __GNUC <= 2 */
|
|
|
|
static __inline u_char
|
|
inbv(u_int port)
|
|
{
|
|
u_char data;
|
|
/*
|
|
* We use %%dx and not %1 here because i/o is done at %dx and not at
|
|
* %edx, while gcc generates inferior code (movw instead of movl)
|
|
* if we tell it to load (u_short) port.
|
|
*/
|
|
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
|
|
return (data);
|
|
}
|
|
|
|
static __inline u_int
|
|
inl(u_int port)
|
|
{
|
|
u_int data;
|
|
|
|
__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
|
|
return (data);
|
|
}
|
|
|
|
static __inline void
|
|
insb(u_int port, void *addr, size_t cnt)
|
|
{
|
|
__asm __volatile("cld; rep; insb"
|
|
: "=D" (addr), "=c" (cnt)
|
|
: "0" (addr), "1" (cnt), "d" (port)
|
|
: "memory");
|
|
}
|
|
|
|
static __inline void
|
|
insw(u_int port, void *addr, size_t cnt)
|
|
{
|
|
__asm __volatile("cld; rep; insw"
|
|
: "=D" (addr), "=c" (cnt)
|
|
: "0" (addr), "1" (cnt), "d" (port)
|
|
: "memory");
|
|
}
|
|
|
|
static __inline void
|
|
insl(u_int port, void *addr, size_t cnt)
|
|
{
|
|
__asm __volatile("cld; rep; insl"
|
|
: "=D" (addr), "=c" (cnt)
|
|
: "0" (addr), "1" (cnt), "d" (port)
|
|
: "memory");
|
|
}
|
|
|
|
static __inline void
|
|
invd(void)
|
|
{
|
|
__asm __volatile("invd");
|
|
}
|
|
|
|
#if defined(SMP) && defined(KERNEL)
|
|
|
|
/*
|
|
* When using APIC IPI's, invlpg() is not simply the invlpg instruction
|
|
* (this is a bug) and the inlining cost is prohibitive since the call
|
|
* executes into the IPI transmission system.
|
|
*/
|
|
void invlpg __P((u_int addr));
|
|
void invltlb __P((void));
|
|
|
|
static __inline void
|
|
cpu_invlpg(void *addr)
|
|
{
|
|
__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
|
|
}
|
|
|
|
static __inline void
|
|
cpu_invltlb(void)
|
|
{
|
|
u_int temp;
|
|
/*
|
|
* This should be implemented as load_cr3(rcr3()) when load_cr3()
|
|
* is inlined.
|
|
*/
|
|
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
|
|
: : "memory");
|
|
#if defined(SWTCH_OPTIM_STATS)
|
|
++tlb_flush_count;
|
|
#endif
|
|
}
|
|
|
|
#else /* !(SMP && KERNEL) */
|
|
|
|
static __inline void
|
|
invlpg(u_int addr)
|
|
{
|
|
__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
|
|
}
|
|
|
|
static __inline void
|
|
invltlb(void)
|
|
{
|
|
u_int temp;
|
|
/*
|
|
* This should be implemented as load_cr3(rcr3()) when load_cr3()
|
|
* is inlined.
|
|
*/
|
|
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
|
|
: : "memory");
|
|
#ifdef SWTCH_OPTIM_STATS
|
|
++tlb_flush_count;
|
|
#endif
|
|
}
|
|
|
|
#endif /* SMP && KERNEL */
|
|
|
|
static __inline u_short
|
|
inw(u_int port)
|
|
{
|
|
u_short data;
|
|
|
|
__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
|
|
return (data);
|
|
}
|
|
|
|
static __inline u_int
|
|
loadandclear(u_int *addr)
|
|
{
|
|
u_int result;
|
|
|
|
__asm __volatile("xorl %0,%0; xchgl %1,%0"
|
|
: "=&r" (result) : "m" (*addr));
|
|
return (result);
|
|
}
|
|
|
|
static __inline void
|
|
outbv(u_int port, u_char data)
|
|
{
|
|
u_char al;
|
|
/*
|
|
* Use an unnecessary assignment to help gcc's register allocator.
|
|
* This make a large difference for gcc-1.40 and a tiny difference
|
|
* for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
|
|
* best results. gcc-2.6.0 can't handle this.
|
|
*/
|
|
al = data;
|
|
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
|
|
}
|
|
|
|
static __inline void
|
|
outl(u_int port, u_int data)
|
|
{
|
|
/*
|
|
* outl() and outw() aren't used much so we haven't looked at
|
|
* possible micro-optimizations such as the unnecessary
|
|
* assignment for them.
|
|
*/
|
|
__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
|
|
}
|
|
|
|
static __inline void
|
|
outsb(u_int port, const void *addr, size_t cnt)
|
|
{
|
|
__asm __volatile("cld; rep; outsb"
|
|
: "=S" (addr), "=c" (cnt)
|
|
: "0" (addr), "1" (cnt), "d" (port));
|
|
}
|
|
|
|
static __inline void
|
|
outsw(u_int port, const void *addr, size_t cnt)
|
|
{
|
|
__asm __volatile("cld; rep; outsw"
|
|
: "=S" (addr), "=c" (cnt)
|
|
: "0" (addr), "1" (cnt), "d" (port));
|
|
}
|
|
|
|
static __inline void
|
|
outsl(u_int port, const void *addr, size_t cnt)
|
|
{
|
|
__asm __volatile("cld; rep; outsl"
|
|
: "=S" (addr), "=c" (cnt)
|
|
: "0" (addr), "1" (cnt), "d" (port));
|
|
}
|
|
|
|
static __inline void
|
|
outw(u_int port, u_short data)
|
|
{
|
|
__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
|
|
}
|
|
|
|
static __inline u_int
|
|
rcr2(void)
|
|
{
|
|
u_int data;
|
|
|
|
__asm __volatile("movl %%cr2,%0" : "=r" (data));
|
|
return (data);
|
|
}
|
|
|
|
static __inline u_int
|
|
read_eflags(void)
|
|
{
|
|
u_int ef;
|
|
|
|
__asm __volatile("pushfl; popl %0" : "=r" (ef));
|
|
return (ef);
|
|
}
|
|
|
|
static __inline u_int64_t
|
|
rdmsr(u_int msr)
|
|
{
|
|
u_int64_t rv;
|
|
|
|
__asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr));
|
|
return (rv);
|
|
}
|
|
|
|
static __inline u_int64_t
|
|
rdpmc(u_int pmc)
|
|
{
|
|
u_int64_t rv;
|
|
|
|
__asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc));
|
|
return (rv);
|
|
}
|
|
|
|
static __inline u_int64_t
|
|
rdtsc(void)
|
|
{
|
|
u_int64_t rv;
|
|
|
|
__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
|
|
return (rv);
|
|
}
|
|
|
|
static __inline void
|
|
setbits(volatile u_int *addr, u_int bits)
|
|
{
|
|
__asm __volatile(
|
|
#ifdef SMP
|
|
"lock; "
|
|
#endif
|
|
"orl %1,%0" : "=m" (*addr) : "ir" (bits));
|
|
}
|
|
|
|
static __inline void
|
|
wbinvd(void)
|
|
{
|
|
__asm __volatile("wbinvd");
|
|
}
|
|
|
|
static __inline void
|
|
write_eflags(u_int ef)
|
|
{
|
|
__asm __volatile("pushl %0; popfl" : : "r" (ef));
|
|
}
|
|
|
|
static __inline void
|
|
wrmsr(u_int msr, u_int64_t newval)
|
|
{
|
|
__asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr));
|
|
}
|
|
|
|
#else /* !__GNUC__ */
|
|
|
|
int breakpoint __P((void));
|
|
void disable_intr __P((void));
|
|
void enable_intr __P((void));
|
|
u_char inb __P((u_int port));
|
|
u_int inl __P((u_int port));
|
|
void insb __P((u_int port, void *addr, size_t cnt));
|
|
void insl __P((u_int port, void *addr, size_t cnt));
|
|
void insw __P((u_int port, void *addr, size_t cnt));
|
|
void invd __P((void));
|
|
void invlpg __P((u_int addr));
|
|
void invltlb __P((void));
|
|
u_short inw __P((u_int port));
|
|
u_int loadandclear __P((u_int *addr));
|
|
void outb __P((u_int port, u_char data));
|
|
void outl __P((u_int port, u_int data));
|
|
void outsb __P((u_int port, void *addr, size_t cnt));
|
|
void outsl __P((u_int port, void *addr, size_t cnt));
|
|
void outsw __P((u_int port, void *addr, size_t cnt));
|
|
void outw __P((u_int port, u_short data));
|
|
u_int rcr2 __P((void));
|
|
u_int64_t rdmsr __P((u_int msr));
|
|
u_int64_t rdpmc __P((u_int pmc));
|
|
u_int64_t rdtsc __P((void));
|
|
u_int read_eflags __P((void));
|
|
void setbits __P((volatile u_int *addr, u_int bits));
|
|
void wbinvd __P((void));
|
|
void write_eflags __P((u_int ef));
|
|
void wrmsr __P((u_int msr, u_int64_t newval));
|
|
|
|
#endif /* __GNUC__ */
|
|
|
|
void load_cr0 __P((u_int cr0));
|
|
void load_cr3 __P((u_int cr3));
|
|
void load_cr4 __P((u_int cr4));
|
|
void ltr __P((u_short sel));
|
|
u_int rcr0 __P((void));
|
|
u_int rcr3 __P((void));
|
|
u_int rcr4 __P((void));
|
|
|
|
#endif /* !_MACHINE_CPUFUNC_H_ */
|