mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-18 10:35:55 +00:00
405ada37fb
This is needed with the pl011 driver. Before this change it would default to a shift of 0, however the hardware places the registers at 4-byte addresses meaning the value should be 2. This patch fixes this for the pl011 when configured using the fdt. The other drivers have a default value of 0 to keep this a no-op. MFC after: 1 week
619 lines
16 KiB
C
619 lines
16 KiB
C
/*-
|
|
* Copyright (c) 2012 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Oleksandr Rybalko under sponsorship
|
|
* from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kdb.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/fdt.h>
|
|
|
|
#include <dev/uart/uart.h>
|
|
#include <dev/uart/uart_cpu.h>
|
|
#include <dev/uart/uart_cpu_fdt.h>
|
|
#include <dev/uart/uart_bus.h>
|
|
#include <dev/uart/uart_dev_imx.h>
|
|
#include "uart_if.h"
|
|
|
|
#include <arm/freescale/imx/imx_ccmvar.h>
|
|
|
|
/*
|
|
* The hardare FIFOs are 32 bytes. We want an interrupt when there are 24 bytes
|
|
* available to read or space for 24 more bytes to write. While 8 bytes of
|
|
* slack before over/underrun might seem excessive, the hardware can run at
|
|
* 5mbps, which means 2uS per char, so at full speed 8 bytes provides only 16uS
|
|
* to get into the interrupt handler and service the fifo.
|
|
*/
|
|
#define IMX_FIFOSZ 32
|
|
#define IMX_RXFIFO_LEVEL 24
|
|
#define IMX_TXFIFO_LEVEL 24
|
|
|
|
/*
|
|
* Low-level UART interface.
|
|
*/
|
|
static int imx_uart_probe(struct uart_bas *bas);
|
|
static void imx_uart_init(struct uart_bas *bas, int, int, int, int);
|
|
static void imx_uart_term(struct uart_bas *bas);
|
|
static void imx_uart_putc(struct uart_bas *bas, int);
|
|
static int imx_uart_rxready(struct uart_bas *bas);
|
|
static int imx_uart_getc(struct uart_bas *bas, struct mtx *);
|
|
|
|
static struct uart_ops uart_imx_uart_ops = {
|
|
.probe = imx_uart_probe,
|
|
.init = imx_uart_init,
|
|
.term = imx_uart_term,
|
|
.putc = imx_uart_putc,
|
|
.rxready = imx_uart_rxready,
|
|
.getc = imx_uart_getc,
|
|
};
|
|
|
|
#if 0 /* Handy when debugging. */
|
|
static void
|
|
dumpregs(struct uart_bas *bas, const char * msg)
|
|
{
|
|
|
|
if (!bootverbose)
|
|
return;
|
|
printf("%s bsh 0x%08lx UCR1 0x%08x UCR2 0x%08x "
|
|
"UCR3 0x%08x UCR4 0x%08x USR1 0x%08x USR2 0x%08x\n",
|
|
msg, bas->bsh,
|
|
GETREG(bas, REG(UCR1)), GETREG(bas, REG(UCR2)),
|
|
GETREG(bas, REG(UCR3)), GETREG(bas, REG(UCR4)),
|
|
GETREG(bas, REG(USR1)), GETREG(bas, REG(USR2)));
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
imx_uart_probe(struct uart_bas *bas)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static u_int
|
|
imx_uart_getbaud(struct uart_bas *bas)
|
|
{
|
|
uint32_t rate, ubir, ubmr;
|
|
u_int baud, blo, bhi, i;
|
|
static const u_int predivs[] = {6, 5, 4, 3, 2, 1, 7, 1};
|
|
static const u_int std_rates[] = {
|
|
9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800, 921600
|
|
};
|
|
|
|
/*
|
|
* Get the baud rate the hardware is programmed for, then search the
|
|
* table of standard baud rates for a number that's within 3% of the
|
|
* actual rate the hardware is programmed for. It's more comforting to
|
|
* see that your console is running at 115200 than 114942. Note that
|
|
* here we cannot make a simplifying assumption that the predivider and
|
|
* numerator are 1 (like we do when setting the baud rate), because we
|
|
* don't know what u-boot might have set up.
|
|
*/
|
|
i = (GETREG(bas, REG(UFCR)) & IMXUART_UFCR_RFDIV_MASK) >>
|
|
IMXUART_UFCR_RFDIV_SHIFT;
|
|
rate = imx_ccm_uart_hz() / predivs[i];
|
|
ubir = GETREG(bas, REG(UBIR)) + 1;
|
|
ubmr = GETREG(bas, REG(UBMR)) + 1;
|
|
baud = ((rate / 16 ) * ubir) / ubmr;
|
|
|
|
blo = (baud * 100) / 103;
|
|
bhi = (baud * 100) / 97;
|
|
for (i = 0; i < nitems(std_rates); i++) {
|
|
rate = std_rates[i];
|
|
if (rate >= blo && rate <= bhi) {
|
|
baud = rate;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (baud);
|
|
}
|
|
|
|
static void
|
|
imx_uart_init(struct uart_bas *bas, int baudrate, int databits,
|
|
int stopbits, int parity)
|
|
{
|
|
uint32_t baseclk, reg;
|
|
|
|
/* Enable the device and the RX/TX channels. */
|
|
SET(bas, REG(UCR1), FLD(UCR1, UARTEN));
|
|
SET(bas, REG(UCR2), FLD(UCR2, RXEN) | FLD(UCR2, TXEN));
|
|
|
|
if (databits == 7)
|
|
DIS(bas, UCR2, WS);
|
|
else
|
|
ENA(bas, UCR2, WS);
|
|
|
|
if (stopbits == 2)
|
|
ENA(bas, UCR2, STPB);
|
|
else
|
|
DIS(bas, UCR2, STPB);
|
|
|
|
switch (parity) {
|
|
case UART_PARITY_ODD:
|
|
DIS(bas, UCR2, PROE);
|
|
ENA(bas, UCR2, PREN);
|
|
break;
|
|
case UART_PARITY_EVEN:
|
|
ENA(bas, UCR2, PROE);
|
|
ENA(bas, UCR2, PREN);
|
|
break;
|
|
case UART_PARITY_MARK:
|
|
case UART_PARITY_SPACE:
|
|
/* FALLTHROUGH: Hardware doesn't support mark/space. */
|
|
case UART_PARITY_NONE:
|
|
default:
|
|
DIS(bas, UCR2, PREN);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The hardware has an extremely flexible baud clock: it allows setting
|
|
* both the numerator and denominator of the divider, as well as a
|
|
* separate pre-divider. We simplify the problem of coming up with a
|
|
* workable pair of numbers by assuming a pre-divider and numerator of
|
|
* one because our base clock is so fast we can reach virtually any
|
|
* reasonable speed with a simple divisor. The numerator value actually
|
|
* includes the 16x over-sampling (so a value of 16 means divide by 1);
|
|
* the register value is the numerator-1, so we have a hard-coded 15.
|
|
* Note that a quirk of the hardware requires that both UBIR and UBMR be
|
|
* set back to back in order for the change to take effect.
|
|
*/
|
|
if (baudrate > 0) {
|
|
baseclk = imx_ccm_uart_hz();
|
|
reg = GETREG(bas, REG(UFCR));
|
|
reg = (reg & ~IMXUART_UFCR_RFDIV_MASK) | IMXUART_UFCR_RFDIV_DIV1;
|
|
SETREG(bas, REG(UFCR), reg);
|
|
SETREG(bas, REG(UBIR), 15);
|
|
SETREG(bas, REG(UBMR), (baseclk / baudrate) - 1);
|
|
}
|
|
|
|
/*
|
|
* Program the tx lowater and rx hiwater levels at which fifo-service
|
|
* interrupts are signaled. The tx value is interpetted as "when there
|
|
* are only this many bytes remaining" (not "this many free").
|
|
*/
|
|
reg = GETREG(bas, REG(UFCR));
|
|
reg &= ~(IMXUART_UFCR_TXTL_MASK | IMXUART_UFCR_RXTL_MASK);
|
|
reg |= (IMX_FIFOSZ - IMX_TXFIFO_LEVEL) << IMXUART_UFCR_TXTL_SHIFT;
|
|
reg |= IMX_RXFIFO_LEVEL << IMXUART_UFCR_RXTL_SHIFT;
|
|
SETREG(bas, REG(UFCR), reg);
|
|
}
|
|
|
|
static void
|
|
imx_uart_term(struct uart_bas *bas)
|
|
{
|
|
|
|
}
|
|
|
|
static void
|
|
imx_uart_putc(struct uart_bas *bas, int c)
|
|
{
|
|
|
|
while (!(IS(bas, USR1, TRDY)))
|
|
;
|
|
SETREG(bas, REG(UTXD), c);
|
|
}
|
|
|
|
static int
|
|
imx_uart_rxready(struct uart_bas *bas)
|
|
{
|
|
|
|
return ((IS(bas, USR2, RDR)) ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
imx_uart_getc(struct uart_bas *bas, struct mtx *hwmtx)
|
|
{
|
|
int c;
|
|
|
|
uart_lock(hwmtx);
|
|
while (!(IS(bas, USR2, RDR)))
|
|
;
|
|
|
|
c = GETREG(bas, REG(URXD));
|
|
uart_unlock(hwmtx);
|
|
#if defined(KDB)
|
|
if (c & FLD(URXD, BRK)) {
|
|
if (kdb_break())
|
|
return (0);
|
|
}
|
|
#endif
|
|
return (c & 0xff);
|
|
}
|
|
|
|
/*
|
|
* High-level UART interface.
|
|
*/
|
|
struct imx_uart_softc {
|
|
struct uart_softc base;
|
|
};
|
|
|
|
static int imx_uart_bus_attach(struct uart_softc *);
|
|
static int imx_uart_bus_detach(struct uart_softc *);
|
|
static int imx_uart_bus_flush(struct uart_softc *, int);
|
|
static int imx_uart_bus_getsig(struct uart_softc *);
|
|
static int imx_uart_bus_ioctl(struct uart_softc *, int, intptr_t);
|
|
static int imx_uart_bus_ipend(struct uart_softc *);
|
|
static int imx_uart_bus_param(struct uart_softc *, int, int, int, int);
|
|
static int imx_uart_bus_probe(struct uart_softc *);
|
|
static int imx_uart_bus_receive(struct uart_softc *);
|
|
static int imx_uart_bus_setsig(struct uart_softc *, int);
|
|
static int imx_uart_bus_transmit(struct uart_softc *);
|
|
static void imx_uart_bus_grab(struct uart_softc *);
|
|
static void imx_uart_bus_ungrab(struct uart_softc *);
|
|
|
|
static kobj_method_t imx_uart_methods[] = {
|
|
KOBJMETHOD(uart_attach, imx_uart_bus_attach),
|
|
KOBJMETHOD(uart_detach, imx_uart_bus_detach),
|
|
KOBJMETHOD(uart_flush, imx_uart_bus_flush),
|
|
KOBJMETHOD(uart_getsig, imx_uart_bus_getsig),
|
|
KOBJMETHOD(uart_ioctl, imx_uart_bus_ioctl),
|
|
KOBJMETHOD(uart_ipend, imx_uart_bus_ipend),
|
|
KOBJMETHOD(uart_param, imx_uart_bus_param),
|
|
KOBJMETHOD(uart_probe, imx_uart_bus_probe),
|
|
KOBJMETHOD(uart_receive, imx_uart_bus_receive),
|
|
KOBJMETHOD(uart_setsig, imx_uart_bus_setsig),
|
|
KOBJMETHOD(uart_transmit, imx_uart_bus_transmit),
|
|
KOBJMETHOD(uart_grab, imx_uart_bus_grab),
|
|
KOBJMETHOD(uart_ungrab, imx_uart_bus_ungrab),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static struct uart_class uart_imx_class = {
|
|
"imx",
|
|
imx_uart_methods,
|
|
sizeof(struct imx_uart_softc),
|
|
.uc_ops = &uart_imx_uart_ops,
|
|
.uc_range = 0x100,
|
|
.uc_rclk = 24000000, /* TODO: get value from CCM */
|
|
.uc_rshift = 0
|
|
};
|
|
|
|
static struct ofw_compat_data compat_data[] = {
|
|
{"fsl,imx6q-uart", (uintptr_t)&uart_imx_class},
|
|
{"fsl,imx53-uart", (uintptr_t)&uart_imx_class},
|
|
{"fsl,imx51-uart", (uintptr_t)&uart_imx_class},
|
|
{"fsl,imx31-uart", (uintptr_t)&uart_imx_class},
|
|
{"fsl,imx27-uart", (uintptr_t)&uart_imx_class},
|
|
{"fsl,imx25-uart", (uintptr_t)&uart_imx_class},
|
|
{"fsl,imx21-uart", (uintptr_t)&uart_imx_class},
|
|
{NULL, (uintptr_t)NULL},
|
|
};
|
|
UART_FDT_CLASS_AND_DEVICE(compat_data);
|
|
|
|
#define SIGCHG(c, i, s, d) \
|
|
if (c) { \
|
|
i |= (i & s) ? s : s | d; \
|
|
} else { \
|
|
i = (i & s) ? (i & ~s) | d : i; \
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_attach(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas;
|
|
struct uart_devinfo *di;
|
|
|
|
bas = &sc->sc_bas;
|
|
if (sc->sc_sysdev != NULL) {
|
|
di = sc->sc_sysdev;
|
|
imx_uart_init(bas, di->baudrate, di->databits, di->stopbits,
|
|
di->parity);
|
|
} else {
|
|
imx_uart_init(bas, 115200, 8, 1, 0);
|
|
}
|
|
|
|
(void)imx_uart_bus_getsig(sc);
|
|
|
|
/* Clear all pending interrupts. */
|
|
SETREG(bas, REG(USR1), 0xffff);
|
|
SETREG(bas, REG(USR2), 0xffff);
|
|
|
|
DIS(bas, UCR4, DREN);
|
|
ENA(bas, UCR1, RRDYEN);
|
|
DIS(bas, UCR1, IDEN);
|
|
DIS(bas, UCR3, RXDSEN);
|
|
ENA(bas, UCR2, ATEN);
|
|
DIS(bas, UCR1, TXMPTYEN);
|
|
DIS(bas, UCR1, TRDYEN);
|
|
DIS(bas, UCR4, TCEN);
|
|
DIS(bas, UCR4, OREN);
|
|
ENA(bas, UCR4, BKEN);
|
|
DIS(bas, UCR4, WKEN);
|
|
DIS(bas, UCR1, ADEN);
|
|
DIS(bas, UCR3, ACIEN);
|
|
DIS(bas, UCR2, ESCI);
|
|
DIS(bas, UCR4, ENIRI);
|
|
DIS(bas, UCR3, AIRINTEN);
|
|
DIS(bas, UCR3, AWAKEN);
|
|
DIS(bas, UCR3, FRAERREN);
|
|
DIS(bas, UCR3, PARERREN);
|
|
DIS(bas, UCR1, RTSDEN);
|
|
DIS(bas, UCR2, RTSEN);
|
|
DIS(bas, UCR3, DTREN);
|
|
DIS(bas, UCR3, RI);
|
|
DIS(bas, UCR3, DCD);
|
|
DIS(bas, UCR3, DTRDEN);
|
|
ENA(bas, UCR2, IRTS);
|
|
ENA(bas, UCR3, RXDMUXSEL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_detach(struct uart_softc *sc)
|
|
{
|
|
|
|
SETREG(&sc->sc_bas, REG(UCR4), 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_flush(struct uart_softc *sc, int what)
|
|
{
|
|
|
|
/* TODO */
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_getsig(struct uart_softc *sc)
|
|
{
|
|
uint32_t new, old, sig;
|
|
uint8_t bes;
|
|
|
|
do {
|
|
old = sc->sc_hwsig;
|
|
sig = old;
|
|
uart_lock(sc->sc_hwmtx);
|
|
bes = GETREG(&sc->sc_bas, REG(USR2));
|
|
uart_unlock(sc->sc_hwmtx);
|
|
/* XXX: chip can show delta */
|
|
SIGCHG(bes & FLD(USR2, DCDIN), sig, SER_DCD, SER_DDCD);
|
|
new = sig & ~SER_MASK_DELTA;
|
|
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
|
|
|
|
return (sig);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
|
|
{
|
|
struct uart_bas *bas;
|
|
int error;
|
|
|
|
bas = &sc->sc_bas;
|
|
error = 0;
|
|
uart_lock(sc->sc_hwmtx);
|
|
switch (request) {
|
|
case UART_IOCTL_BREAK:
|
|
/* TODO */
|
|
break;
|
|
case UART_IOCTL_BAUD:
|
|
*(u_int*)data = imx_uart_getbaud(bas);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
uart_unlock(sc->sc_hwmtx);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_ipend(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas;
|
|
int ipend;
|
|
uint32_t usr1, usr2;
|
|
uint32_t ucr1, ucr2, ucr4;
|
|
|
|
bas = &sc->sc_bas;
|
|
ipend = 0;
|
|
|
|
uart_lock(sc->sc_hwmtx);
|
|
|
|
/* Read pending interrupts */
|
|
usr1 = GETREG(bas, REG(USR1));
|
|
usr2 = GETREG(bas, REG(USR2));
|
|
/* ACK interrupts */
|
|
SETREG(bas, REG(USR1), usr1);
|
|
SETREG(bas, REG(USR2), usr2);
|
|
|
|
ucr1 = GETREG(bas, REG(UCR1));
|
|
ucr2 = GETREG(bas, REG(UCR2));
|
|
ucr4 = GETREG(bas, REG(UCR4));
|
|
|
|
/* If we have reached tx low-water, we can tx some more now. */
|
|
if ((usr1 & FLD(USR1, TRDY)) && (ucr1 & FLD(UCR1, TRDYEN))) {
|
|
DIS(bas, UCR1, TRDYEN);
|
|
ipend |= SER_INT_TXIDLE;
|
|
}
|
|
|
|
/*
|
|
* If we have reached the rx high-water, or if there are bytes in the rx
|
|
* fifo and no new data has arrived for 8 character periods (aging
|
|
* timer), we have input data to process.
|
|
*/
|
|
if (((usr1 & FLD(USR1, RRDY)) && (ucr1 & FLD(UCR1, RRDYEN))) ||
|
|
((usr1 & FLD(USR1, AGTIM)) && (ucr2 & FLD(UCR2, ATEN)))) {
|
|
DIS(bas, UCR1, RRDYEN);
|
|
DIS(bas, UCR2, ATEN);
|
|
ipend |= SER_INT_RXREADY;
|
|
}
|
|
|
|
/* A break can come in at any time, it never gets disabled. */
|
|
if ((usr2 & FLD(USR2, BRCD)) && (ucr4 & FLD(UCR4, BKEN)))
|
|
ipend |= SER_INT_BREAK;
|
|
|
|
uart_unlock(sc->sc_hwmtx);
|
|
|
|
return (ipend);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_param(struct uart_softc *sc, int baudrate, int databits,
|
|
int stopbits, int parity)
|
|
{
|
|
|
|
uart_lock(sc->sc_hwmtx);
|
|
imx_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_probe(struct uart_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
error = imx_uart_probe(&sc->sc_bas);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* On input we can read up to the full fifo size at once. On output, we
|
|
* want to write only as much as the programmed tx low water level,
|
|
* because that's all we can be certain we have room for in the fifo
|
|
* when we get a tx-ready interrupt.
|
|
*/
|
|
sc->sc_rxfifosz = IMX_FIFOSZ;
|
|
sc->sc_txfifosz = IMX_TXFIFO_LEVEL;
|
|
|
|
device_set_desc(sc->sc_dev, "Freescale i.MX UART");
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_receive(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas;
|
|
int xc, out;
|
|
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
|
|
/*
|
|
* Empty the rx fifo. We get the RRDY interrupt when IMX_RXFIFO_LEVEL
|
|
* (the rx high-water level) is reached, but we set sc_rxfifosz to the
|
|
* full hardware fifo size, so we can safely process however much is
|
|
* there, not just the highwater size.
|
|
*/
|
|
while (IS(bas, USR2, RDR)) {
|
|
if (uart_rx_full(sc)) {
|
|
/* No space left in input buffer */
|
|
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
|
|
break;
|
|
}
|
|
xc = GETREG(bas, REG(URXD));
|
|
out = xc & 0x000000ff;
|
|
if (xc & FLD(URXD, FRMERR))
|
|
out |= UART_STAT_FRAMERR;
|
|
if (xc & FLD(URXD, PRERR))
|
|
out |= UART_STAT_PARERR;
|
|
if (xc & FLD(URXD, OVRRUN))
|
|
out |= UART_STAT_OVERRUN;
|
|
if (xc & FLD(URXD, BRK))
|
|
out |= UART_STAT_BREAK;
|
|
|
|
uart_rx_put(sc, out);
|
|
}
|
|
ENA(bas, UCR1, RRDYEN);
|
|
ENA(bas, UCR2, ATEN);
|
|
|
|
uart_unlock(sc->sc_hwmtx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_setsig(struct uart_softc *sc, int sig)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
imx_uart_bus_transmit(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas = &sc->sc_bas;
|
|
int i;
|
|
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
|
|
/*
|
|
* Fill the tx fifo. The uart core puts at most IMX_TXFIFO_LEVEL bytes
|
|
* into the txbuf (because that's what sc_txfifosz is set to), and
|
|
* because we got the TRDY (low-water reached) interrupt we know at
|
|
* least that much space is available in the fifo.
|
|
*/
|
|
for (i = 0; i < sc->sc_txdatasz; i++) {
|
|
SETREG(bas, REG(UTXD), sc->sc_txbuf[i] & 0xff);
|
|
}
|
|
sc->sc_txbusy = 1;
|
|
ENA(bas, UCR1, TRDYEN);
|
|
|
|
uart_unlock(sc->sc_hwmtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
imx_uart_bus_grab(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas = &sc->sc_bas;
|
|
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
DIS(bas, UCR1, RRDYEN);
|
|
DIS(bas, UCR2, ATEN);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
}
|
|
|
|
static void
|
|
imx_uart_bus_ungrab(struct uart_softc *sc)
|
|
{
|
|
struct uart_bas *bas = &sc->sc_bas;
|
|
|
|
bas = &sc->sc_bas;
|
|
uart_lock(sc->sc_hwmtx);
|
|
ENA(bas, UCR1, RRDYEN);
|
|
ENA(bas, UCR2, ATEN);
|
|
uart_unlock(sc->sc_hwmtx);
|
|
}
|